
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTACT PROBLEMS WITH SURFACE STRESS EFFECTS 

 

Mr. Supakorn Tirapat 

A Dissertation Submitted in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy Program in Civil Engineering 

Department of Civil Engineering 

Faculty of Engineering 

Chulalongkorn University 

Academic Year 2017 

Copyright of Chulalongkorn University 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ปัญหาการสัมผสัท่ีมีผลกระทบจากหน่วยแรงท่ีผวิ 

 

นายศุภกร ติระพฒัน์ 

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวศิวกรรมศาสตรดุษฎีบณัฑิต 

สาขาวชิาวศิวกรรมโยธา ภาควชิาวศิวกรรมโยธา 
คณะวศิวกรรมศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั 

ปีการศึกษา 2560 

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Title CONTACT PROBLEMS WITH SURFACE 

STRESS EFFECTS 

By Mr. Supakorn Tirapat 

Field of Study Civil Engineering 

Thesis Advisor Professor Dr. Teerapong Senjuntichai 

Thesis Co-Advisor Associate Professor Dr. Jaroon Rungamornrat 
  

 Accepted by the Faculty of Engineering, Chulalongkorn University in 

Partial Fulfillment of the Requirements for the Doctoral Degree 
 

 Dean of the Faculty of Engineering 

(Associate Professor Dr. Supot Teachavorasinskun) 

THESIS COMMITTEE 

 Chairman 

(Professor Dr. Thaksin Thepchatri) 

 Thesis Advisor 

(Professor Dr. Teerapong Senjuntichai) 

 Thesis Co-Advisor 

(Associate Professor Dr. Jaroon Rungamornrat) 

 Examiner 

(Assistant Professor Dr. Watanachai Smittakorn) 

 Examiner 

(Associate Professor Dr. Akhrawat Lenwari) 

 External Examiner 

(Professor Dr. Pruettha Nanakorn) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 

 

THAI ABST RACT 

ศุภกร  ติระพัฒน์  : ปัญหาการสัมผัส ท่ี มีผลกระทบจากหน่วยแรงท่ีผิ ว  (CONTACT 

PROBLEMS WITH SURFACE STRESS EFFECTS) อ.ท่ีปรึกษาวิทยานิพนธ์หลกั: ศ. 

ดร. ธีรพงศ์ เสนจนัทร์ฒิไชย, อ.ท่ีปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร. จรูญ รุ่งอมรรัตน์ {, 103 

หนา้. 

วิทยานิพนธ์ฉบบัน้ีน าเสนอปัญหาการสัมผสัท่ีมีผลกระทบจากหน่วยแรงท่ีผิว โดยใชส้มการ
ของเกอร์ตินและเมอร์ดอครูปแบบสมบูรณ์ในการจ าลองพฤติกรรมของหน่วยแรงท่ีผิว ในการศึกษาน้ีได้
น าเสนอผลเฉลยมูลฐานของชั้นบางยืดหยุ่นวางบนตวักลางก่ึงปริภูมิภายใตแ้รงกระท าแบบสมมาตรรอบ
แกน การหาค าตอบของผลเฉลยของการเคล่ือนท่ีและหน่วยแรงในรูปของปริพนัธ์ก่ึงอนนัตอ์าศยัหลกัการ
ตวัแทนความเครียดศกัด์ิของเลิฟและการแปลงแฮนเคลอินทิกรัล ซ่ึงสามารถหาค าตอบท่ีถูกตอ้งแม่นย  า
โดยการใชร้ะเบียบวิธีเชิงตวัเลขท่ีเหมาะสม ผลเฉลยมูลฐานดงักล่าวถูกน ามาใชใ้นการพฒันาแบบจ าลอง
ทางคณิตศาสตร์ส าหรับปัญหาการกดแบบแข็งเกร็งทั้งแบบมีและไม่มีแรงเสียดทานบนชั้นบางยืดหยุ่นวาง
บนตวักลางก่ึงปริภูมิ นอกจากน้ีไดน้ าไปใชใ้นการวิเคราะห์ปัญหาการรับแรงร่วมกนัระหว่างแผ่นวงกลม
ยืดหยุน่และตวักลางก่ึงปริภูมิภายใตอิ้ทธิพลของหน่วยแรงท่ีผิวในระดบันาโน ผลเฉลยเชิงตวัเลขถูกใชใ้น
การศึกษาอิทธิพลของหน่วยแรงท่ีผิวท่ีมีผลต่อค าตอบของสนามยืดหยุ่น พบวา่หน่วยแรงท่ีผิวจะมีอิทธิพล
มากโดยเฉพาะตรงบริเวณท่ีใกลก้บัพ้ืนผิวและส่งผลใหว้สัดุมีพฤติกรรมท่ีข้ึนอยูก่บัขนาดและท าใหว้สัดุมี
ความแข็งมากข้ึน จากการศึกษาในคร้ังน้ีสามารถสรุปไดว้่าหน่วยแรงท่ีผิวมีอิทธิพลต่อพฤติกรรมเชิงกล
ของวสัดุในระดบันาโนอย่างมาก ค าตอบท่ีไดจ้ากการวิเคราะปัญหาน้ี สามารถใช้เป็นผลเฉลยเกณฑ์
เปรียบเทียบในการพฒันาระเบียบวิธีการเชิงตวัเลข เช่น ไฟไนตเ์อลิเมนตแ์ละระเบียบวิธีบาวดารีเอลิเมนต์ 
ส าหรับการวิเคราะห์ปัญหาการสมัผสัท่ีซบัซอ้นมากข้ึนภายใตอิ้ทธิพลของหน่วยแรงท่ีผิวส าหรับปัญหาใน
ระดบันาโนและปัญหาท่ีเก่ียวขอ้งกบัวสัดุยืดหยุน่อ่อน 

 

 

ภาควิชา วิศวกรรมโยธา 

สาขาวิชา วิศวกรรมโยธา 

ปีการศึกษา 2560 
 

ลายมือช่ือนิสิต   
 

ลายมือช่ือ อ.ท่ีปรึกษาหลกั    
ลายมือช่ือ อ.ท่ีปรึกษาร่วม      

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v 

 

 

ENGLISH ABST RACT 

# # 5571436521 : MAJOR CIVIL ENGINEERING 

KEYWORDS: CONTACT PROBLEM / LAYERED MEDIUM / GURTIN-MURDOCH / 

NANOINDENTATION / NANOPLATE / SIZE-DEPENDENT / SURFACE STRESSES / 

THIN FILMS 

SUPAKORN TIRAPAT: CONTACT PROBLEMS WITH SURFACE STRESS 

EFFECTS. ADVISOR: PROF. DR. TEERAPONG SENJUNTICHAI, CO-

ADVISOR: ASSOC. PROF. DR. JAROON RUNGAMORNRAT {, 103 pp. 

This dissertation presents a theoretical study of contact problems with consideration 

of surface energy effects by adopting a complete Gurtin-Murdoch theory of surface elasticity. 

The fundamental solution of a layered elastic half-space subjected to axisymmetric surface 

loading is obtained by using Love’s representation and the Hankel integral transform. The 

analytical solutions for both displacement and stress fields are expressed in terms of semi-

infinite integrals, which can be accurately evaluated by employing a numerical quadrature 

scheme. The obtained solutions are employed as the required influence functions in the 

investigation of axisymmetric indentation on a layered elastic medium with frictionless and 

adhesive contacts. In addition, they are also employed in the analysis of an elastic circular 

nanoplate under axisymmetric vertical loading resting on an elastic half-space based on a 

variational formulation. The accuracy of the present solution scheme is confirmed by 

comparison with relevant existing solutions, and selected numerical results on elastic fields 

under various contact problems are also presented. It is found that the surface stresses have a 

significant influence on both displacement and stress fields in the elastic medium especially in 

the vicinity of the surface. An extensive parametric study confirms that, unlike the classical 

elasticity solution, the material becomes stiffer and size-dependent with the presence of surface 

stresses. The present solution can be used as a benchmark solution in the development of 

numerical techniques such as the finite element and boundary element methods for analysis of 

more complicated contact problems under the influence of surface energy effects such as 

nanoscale problems and soft elastic solids. 
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INTRODUCTION 

1.1 General  

In recent years, researches related to nanotechnology have received increasing 

attentions due to the vast applications of nano-scale structures and devices in various 

fields such as biology, chemistry, physics, medicines and engineering. For instance, 

logic and memory devices have driven the development of new materials, tools and 

technologies for the fabrication of even more complex devices with their sizes now 

down to the sub-micron and nanometer levels. Nano-crystals are also examples of a 

new invention at a nanoscale level. Metal nano-crystals can be incorporated into car 

bumpers, making the parts stronger, or into aluminum, making it more durable. Other 

applications of the metal nano-crystals can be found in the production of bearings, new 

types of sensors and components for computers and electronic hardware. Useful 

information regarding physical and mechanical properties at the nanoscale level is 

necessary for the design of microelectromechanical systems (MEMS) and 

nanoelectromechanical systems (NEMS) devices. It is thus evident that understanding 

fundamental aspects of mechanical properties at a nano scale is important for optimum 

design of nano-sized devices and structures. 

The study of mechanical behaviors at nano-scale can be investigated by two 

basic approaches, namely, experimental method and theoretical simulations. Some of 

previous researches using direct experimental methods have been found in the 

literature, for instance, Wong et al. (1997) performed AFM bending tests to determine 

the mechanical properties of cantilever SiC beams by using conventional beam theory. 

Mao et al. (2003) employed the same method to investigate the hardness of both ZnO 

and SnO2 nano-belts. Jing et al. (2006) determined the elastic modulus of silver 

nanowires with diameters ranging from 20 to 140 nm by performing three-point 

bending tests, and found that the Young’s modulus of silver nanowires is increased 

significantly with decreasing wire diameter when the diameter is less than 90 nm. Jindal 

et al. (2014) obtained result of static tests for hardness and elastic modulus by nano-

indenter on a MWCNT based PC composite. Although actual material behavior can be 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

obtained by performing an experiment, the results are still found highly dependent on 

experimental environments, and the procedure is quite expensive due to the requirement 

of high-precision equipment.  

For the analytical approach, mathematical modeling and simulations have 

become an attractive alternative and been widely used to analyze the mechanical 

behaviors of nanoscale systems. Two major approaches have been commonly 

employed to study nanoscale systems, i.e. molecular or atomistic models and 

continuum based models. Though molecular simulations are considered very accurate 

for nanoscale systems because of their effectiveness in detailing of bonds or atoms, but 

they need huge computational efforts to model billions of atoms at a nanoscale and 

hence they are limited in practical applications. Therefore, the continuum-based 

approach is considered attractive due to the computational efficiency and lesser 

complexity. However, the classical concepts of continuum mechanics need to be 

modified to account for some effects that exist at the nanoscale. Unlike the atomistic 

simulations that calculate the behavior of atom by atom, the modified continuum 

models are incorporated to account for the nanoscale effects. 

From atomistic study, it was reported that the energy associated with atoms at 

or near free surface or interface is different from that of atoms in the bulk material 

(Miller and Shenoy, 2000; Shenoy, 2005). Due to the high surface to volume ratio at a 

nano-scale level when compared to that at a macro-scale level, the influence of excess 

energy associated with surface/interface atoms, called the surface/interfacial free 

energy, is significant, and the mechanical behavior becomes size-dependent (Wong et 

al., 1997). Thus, the surface energy effects, which are generally ignored in conventional 

continuum mechanics, must be considered in modified continuum-based simulations 

for nano-scale problems. Several continuum-based models have been developed to take 

into account surface energy effects and size-dependent material behaviors such as the 

couple stress theory (Mindlin and Tiersten, 1962; Toupin, 1964), the strain gradient 

elasticity theory (Mindlin, 1964; Gao and Zhou, 2013), and the surface elasticity theory 

by Gurtin and Murdoch (1975; 1978). Among various exiting continuum-based models, 

the Gurtin-Murdoch model has been adopted extensively for the investigation of 

continuum mechanics problems that account surface energy effects for simulation of 
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nanomaterials and soft elastic solids due to its attractive features both in terms of 

computational efficiency and level of accuracy gained. 

Contact mechanics is the study of the deformation of two solids that come into 

contact area. It is fundamental to various fields of engineering by providing information 

necessary for the safe and energy efficient design of technical systems and for the study 

of tribology, contact stiffness, electrical contact resistance and indentation hardness. 

This dissertation is concerned with the analysis of various contact problems at 

nanoscale level based on continuum mechanics approach by incorporating the influence 

of surface energy effects from Gurtin-Murdoch theory of surface elasticity. The 

analytical solution for fundamental problems of a layered elastic medium subjected to 

axisymmetric surface loading is obtained in Chapter III. Axisymmetric rigid 

indentation on a layered elastic medium with consideration of either frictionless or 

adhesive contact is presented in Chapter IV. The interaction between a circular elastic 

plate and an isotropic elastic half-space is studied in Chapter V. In each chapter, 

selected numerical results are presented to demonstrate the influence of surface stresses 

on elastic fields of the contact problems under consideration. 

 

1.2 Objectives and Scopes of Present Study 

The main objectives and scopes of the present study are given as follows: 

i. To develop efficient solution schemes to investigate various contact 

problems that take into account the influence of surface stresses by 

adopting a complete Gurtin-Murdoch continuum theory of elastic 

material surface. The following contact problems are to be considered: 

a layered elastic medium under surface loading; nanoindentation on a 

layered elastic medium; and interaction between an elastic nanoplate 

and an elastic medium under vertical loading. 

ii. To investigate size-dependent and nanoscale influence on elastic fields 

of various contact problems under consideration. 
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LITERATURE REVIEWS 

2.1 General 

Contact mechanics is the study of deformations of solids that touch each other 

at one or more points. The stresses and deformations arising from the contact between 

two elastic solids have practical applications such as hardness testing, impact damage 

of engineering ceramics, locomotive wheel-rail contact, coupling devices braking 

systems, bearings, mechanical linkages, metal working and many others. In the fields 

of material sciences and engineering, studies related to mechanical behaviors of 

nanostructured materials have become a subject of numerous investigations due to the 

fact that understanding fundamental aspects of their behaviors at nano-scale level is 

important for optimum design of nanosized devices and structures. Due to the high 

surface to volume ratio at the nano-scale level when compared to that at a macro-scale 

level, the influence of surface/interface free energy associated with atoms at or near a 

free surface, and  the mechanical behavior becomes size-dependent (Wong et al., 1997). 

Therefore, the surface energy effects, which are generally ignored in conventional 

continuum mechanics, must be taken into account in modified continuum-based 

simulations for nano-scale problems. The present study is concerned with the analysis 

of various contact problems with consideration of surface energy effects. In the 

following section, a review of literature related to surface elasticity theory, contact 

problems is presented. 

 

2.2 Surface Elasticity Theory 

The concepts of surface energy and surface stress were originally formulated by 

Gibbs (1906). In the formulation of the thermodynamics of surface, Gibbs defined the 

surface free energy (  ) to represent the changeable work per unit area needed to create 

a new surface. Gibbs also pointed out that for an elastic solid there is another type of 

surface quantity, which is different from the surface energy, called the surface stress 

that represents the reversible work per unit area needed to elastically stretch a pre-
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existing surface. From the thermodynamics of solid surfaces, the relationship between 

the surface stress and the surface free energy was derived by Cammarata (1994), who 

showed that the surface of a solid has different atomistic structure from the bulk and is 

treated as a specific mathematical surface which has no thickness. The free energy per 

unit area of the surface is called specific surface energy, and its changer per unit amount 

of strain is referred as surface stress.  It should be noted that   is a scalar quantity, while 

the surface stress is a second order tensor in the tangent plane of the surface and the 

strain normal to the surface is excluded. The relationship between the surface stress and 

surface free energy as 

 




 




= +


   (2.1) 

where 
  and 

  denote the surface stress and surface strain, respectively, and 
 is 

the two-dimensional  Kronecker delta. The Greek indices range from 1 to 2. 

The term surface energy  is usually accepted as an excess energy term since a 

surface can be interpreted as a layer to which certain energy is attached (Fischer et al., 

2008). Due to the different local environment, atoms at or near a free surface or 

interface have different equilibrium positions than do atoms in the bulk of a material. 

As a result, the energy of these atoms is, in general, different from that of the atoms in 

the bulk (Dingreville and Cherkaoui, 2005). The influence of surface energy effect is 

significant on their behavior for a nanoscale system. The ratio of surface free energy 

(J/m2) and Young’s modulus E (J/m3), / E , has a dimension of length (m) and points 

to some other inherent parameters of a material (Yakobson, 2003). Obviously, this ratio 

has the dimension of length, and defines an intrinsic length scale for the material. For 

usual metallic materials, the ratio is normally less than one Angstrom. When  the 

characteristic size of the metals is very large comparable to this intrinsic scale, the effect 

of surface energy (or surface stress) becomes important on the properties of the 

materials, and thus the properties of this material becomes size-dependent. To support 

this assumption, many experiments have been performed. For example, Wong et al. 

(1997) used atomic force microscopy method to determine the Young’s modulus, 

strength and toughness of nanorods and nanotubes. They showed that those properties 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

depend on the size of materials. In the case of a soft elastic solid, the surface free energy 

is a little less than that of a metal, but its elastic modulus is also much smaller than that 

of a conventional solid. Consequently, the corresponding intrinsic length scale of a soft 

solid is much larger and becomes comparable to material dimensions in practical 

situations and then the surface energy effects can play an important role on its 

mechanical properties (He and Lim, 2006). Thus, in order to study the behavior of soft 

materials or to obtain the correct response of nanoscale system, the surface stress should 

be incorporated into classical continuum models. 

Many researchers have developed modified continuum models to include the 

effects of surface and interface energy, and the most well-known model was presented 

by Gurtin-Murdoch model. Gurtin and Murdoch (1975; 1978) and Gurtin et al. (1998), 

who proposed a theoretical framework based on the continuum mechanics concepts to 

study the mechanical behavior of material surfaces. The surface is modeled as the zero-

thickness layer, whose material properties are different from the bulk, and perfectly 

bonded to an underlying bulk material without slipping. For an isotropic elastic surface, 

a linearized expression for surface stress-strain constitutive relation has the following 

form 

( ) ( )2s s s s s s s su               = + − + + +   (2.2) 

where the superscript ‘s’ is used to denote the quantities corresponding to the surface, 

s  and s  are surface Lamé constants and s  is the residual surface tension under 

unstrained conditions, which is a constant. 

The validity of Gurtin-Murdoch model has been verified in various studies. For 

instance, Miller and Shenoy (2000) employed the Gurtin-Murdoch constitutive relation 

to investigate the behavior of bars, beams, and plates subjected to uniaxial loading and 

pure bending. Their results were compared with direct atomistic simulations of 

nanoscale structures and good agreement between the simulations and the model was 

found and the size dependence of the stiffness of bars, beams and plate was observed. 

Shenoy (2002) extended the work of Miller and Shenoy (2000) by adding the torsional 

rigidities of nanosized structural elements and applied to the case of nanoscale bars in 

torsion. The theoretical results were compared with the solutions from atomistic 
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simulations for the torsion of various metal squared bars, and good agreement was 

found by assuming that the surface energy depends only on the surface strain. 

Dingreville and Cherkaoui (2005) incorporated the surface free energy into the 

continuum theory of mechanics to demonstrate that the overall elastic behavior of 

structural elements (such as particles, wires, films) is size-dependent. The effective 

Young’s modulus of thin films of various thicknesses computed by using molecular 

static (MS) simulations and their proposed formulation was found to be in good 

agreement. Moreover, they showed that the MS simulation is much more 

computationally expensive than the proposed formulation. This thus confirms the 

advantages of using continuum-based models. 

Although the experimental measurement of surface elastic properties (i.e. 

surface energy, surface stress, and surface elastic stiffness) seems to be challenging, 

several tests at nano-scale have actually been performed. Jing et al. (2006) measured 

the surface elastic properties of silver nanowires by using three-point bending test and 

contact atomic force microscopy (C-AFM). They found that the surface elastic modulus 

sE and surface residual stress s of the silver nanowire are 8.7 N/m and 5.8 N/m 

respectively. Another approach, which is rather computationally expensive, is atomistic 

simulations. Shenoy (2005) presented a fully nonlinear treatment of surface stress and 

surface elastic constants by performing atomistic simulations. 

The surface elasticity model has been extensively used to study the size-

dependent behavior at the nanoscale in various problems. For example, He et al. (2004) 

and Huang (2008) used Gurtin-Murdoch continuum-based model to study the size 

dependence of the mechanical response of ultra-thin film. Similarly, Lu et al. (2006) 

studied the size-dependent static and dynamic analyses of plate-like thin film structures 

by modifying the thin plate model in Lim and He (2004). Incorporating continuum 

theory with surface elasticity was further developed by several researchers to study 

nano-inhomogeneities problems. For instance, Shama and Wheeler (2006) and Shama 

et al. (2003) investigated the size-dependent elastic field of spherical and ellipsoidal 

nan-inclusions by using Gurtin-Murdoch model with the effect of surface energy. Duan 

et al. (2005) extended the Eshelby formulism for a spherical inhomogeneous inclusion 

with the interface stress effect subjected to an arbitrary uniform eigenstrain under the 
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surface/interface effects. Tian and Rajapakse (2006; 2007) used the Gurtin-Murdoch 

model to examine the size-dependent elastic field of nano-scale circular and elliptical 

inhomogeneity. In addition, Intarit et al. (2010) presented analytical solutions for shear 

and opening dislocations in an elastic half-plane with surface stresses by using the 

Gurtin-Murdoch continuum theory and Fourier integral transform techniques. They 

indicated that the influence of surface stresses becomes significant only near the surface 

for both dislocations and buried loading cases. Subsequently, Intarit et al. (2011) 

repeated the work of Intarit et al. (2010) by considering the out-of-plane terms in the 

Gurtin-Murdoch continuum theory in the buried vertical and horizontal line loads, and 

showed significantly different solutions compared to previous studies. Sapsathiarn and 

Rajapakse (2013) used the governing equations of circular nano-plate presented by Liu 

and Rajapakse (2013) to develop a finite-element method for static and free vibration 

analysis of axisymmetric circular nano-plate, and showed the size-dependent response 

of nano-plate. Recently, Intarit et al. (2017) considered a penny-shaped crack in an 

infinite elastic medium subjected to vertical pressure loading at the crack surface, and 

presented the influence of surface stress on the elastic field. 

 

2.3 Contact Problems with Surface Stress Effects 

Stress analysis of a layered elastic medium under applied surface loading has 

been used to study characterization of mechanical properties of layered materials: e.g. 

protective coatings, multilayer capacitors and layered composite materials; analysis and 

design of pavement and foundations; and in-situ testing of soils and rocks, etc. In the 

past, the classical elasticity solution of a layer substrate system has investigated the 

effect of different elastic properties of layer substrate system and layered thickness on 

the contact pressure, contact size of the system as compared to the homogeneous 

medium (Gupta and Walowit, 1974; Barber and Ciavarella, 2000; Perriot and Barthel, 

2004; Greenwood and Barber, 2012). Burmister (1945) considered an elastic half-space 

bonded to one or two elastic layers and subjected to an axially symmetric surface 

loading. He also presented some numerical results on the vertical surface displacements 

at the center of the loaded region for several different combinations of physical and 

geometrical properties in the single surface layer problem. Fox (1948) produced the 
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first extensive tabular summary of normal and radial stresses below the interfaces. 

Especially, Gerrard (1969) presented the solutions for the stresses, strains and 

displacements in two-layer system that showed the effect of layer thickness and the 

mismatch of elastic modulus on the resulting contact pressure (i.e. vertical, inward 

shear, and uni-directional shear).   

In the nano-scale level, several researchers have investigated a variety of contact 

mechanics by adopting the Gurtin-Murdoch theory of surface elasticity. For surface-

loading problems, Huang and Yu (2006) studied an elastic half-plane under surface 

loading with consideration of surface energy effects. An elastic layer with finite 

thickness, subjected to surface loading under plane-strain and axisymmetric conditions, 

was also considered by Zhao and Rajapakse (2009). Intarit et al. (2010) derived 

fundamental solutions of an elastic half-plane under internal loading and dislocations. 

An elastic half-plane under surface shear loading was also investigated by Lei et al. 

(2012). Ou and Pang (2013) considered the two-dimension Hertzian contact problems 

at nanoscale based on surface elasticity theory by employing the complex variable 

function method. Recently, nano-contact problem of layered viscoelastic solids with 

surface energy effects was presented by Abdel Rahman and Mahmoud (2016). All these 

studies, however, considered the surface stress tensor as a 2D quantity with its out-of-

plane components being neglected. Wang et al. (2010) showed that the out-of-plane 

terms of the surface displacement gradient could be significant even in the case of small 

deformations particularly for curved and rotated surfaces. The complete version of 

Gurtin-Murdoch model, with consideration of the out-of-plane term, has later been 

employed to examine various continuum mechanics problems, e.g. problems related to 

internally loaded elastic layer under plane strain condition (Intarit et al., 2011) and 

axisymmetric loading (Rungamornrat et al., 2016) respectively. In addition, the 

influence of surface energy effects is also significant in problems related to soft elastic 

solids (He and Lim, 2006). A review of literature indicates that studies related to a 

layered elastic medium with consideration of surface energy effects based on the 

Gurtin-Murdoch theory are very limited. This class of problems has extensive 

applications in the study of nanocoatings and nanoscale surface layers that are used in 

electronic devices, tribological and biomaterial applications, advanced industrial 

materials, communication devices, and so forth. 
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Indentation techniques have been widely used in several researches to study the 

mechanical properties of materials such as hardness and elastic modulus. Several 

experimental techniques have been proposed to investigate by indentation techniques. 

For instance, the depth-sensing indentation tests were performed to find hardness and 

Young’s modulus of thin films from the slope of the unloading curves in the load versus 

penetration depth while hardness values are calculated from the data along the loading 

curves (Doerner and Nix, 1986). Similarly, Oliver and Pharr (1992) improved 

indentation experiments for determining hardness and elastic modulus of six materials 

(e.g. fused silica, soda-lime glass, single crystals of aluminum, tungsten, quartz, and 

sapphire) from indentation load-displacement data. Hainsworth and Page (1994) used 

nanoindentation techniques to study chemomechanical effects on the detailed surface 

mechanical response (e.g. elastic flexure, stiffness, dislocation nucleation and 

plasticity) of single-crystal sapphire. Armstrong et al. (1995) studied an increase in 

hardness value for copper material by using a nanoindentation test. Oliver and Pharr 

(2004) applied indentation techniques to measure hardness and elastic modulus in the 

characterization of small-scale mechanical behavior introduced in 1992. They 

improved testing equipment and techniques to make more accurate mechanical property 

measurement. Since the smart materials have been variously used in nanoscale systems, 

the understanding of mechanics of nanostructures is essential in the development for 

engineering applications. Cao et al. (2007) explained that accurate prediction of the 

indentation load-displacement relationship of an elastic sharp indenter indenting into 

an elastic half-space is critical for analyzing the nanoindentation data if super-hard 

materials are used in the procedure proposed by Oliver and Pharr (1992). Chang and 

Zhang (2009) investigated the deformation behavior of silicon under ultra-low loading 

conditions with nanoindentation using a Berkovich indenter. They found that when a 

proper area function of the indenter tip is used the mechanical properties of silicon can 

be accurately characterized and the Young’s modulus of silicon (100) is 171 GPa. 

Shokien et al. (2013) studied the effect of graphene nano-platelets (GNPs) on the 

mechanical properties of polymer nanocomposites  by using nanoindentation and 

nanoscratch methods. They showed that the mechanical properties of the pure polymer 

matrix are improved with the addition of low amounts of the graphene nano-platelets. 

While the experimental techniques have been commonly used by various researchers 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

to investigate the mechanical properties, the testing procedure requires high precision 

machines and supreme laboratories. 

Several researchers presented elastic solutions of indentation problems by 

employing continuum mechanics theory. The classical solution of axisymmetric rigid 

frictionless indentation on elastic half-space is first considered by Boussinesq (1885). 

Harding and Sneddon (1945) and Sneddon (1965) established a solution of the 

axisymmetric Boussinesq problem, which enabled them to deduce simple formulas 

giving the penetration of a punch of arbitrary profile by using Hankel integral transform 

techniques. Thereafter, Clements (1971) considered a rigid punch to determine stresses 

produced by the indentation on the plane surface of an anisotropic half space by 

employing the theory of anisotropic elasticity for a three dimension solution developed 

by Eshelby et al. (1953) and Stroh (1958). The indentation problems associated with an 

elastic layer perfectly bonded to an elastic half-space have also been investigated. 

Dhaliwal and Rau (1970) developed a solution of the axisymmetric Boussinesq problem 

for an elastic layer lying over an elastic foundation under a rigid punch of arbitrary 

profiles by using a Fredholm integral equation. Later, Rau and Dhaliwal (1972) 

proposed a numerical technique to solve the integral equation developed by Dhaliwal 

and Rau (1970). They showed the load and deformation characteristics under 

cylindrical, conical, paraboloidal and spherical punch shapes. Yu et al. (1990) 

considered an axisymmetric mixed boundary value problem with an elastic layer in 

frictionless contact or perfectly bonded to a semi-infinite elastic half-space and 

presented numerical results obtained from solving Fredholm integral equations of the 

second kind to demonstrate the effect of a substrate on the elastic properties of films. 

They provided useful guidelines for the proper choice of an approximate layer thickness 

and substrate elastic properties to determine the elastic constants of the layer. Yang 

(1998) solved the problem of impressing a rigid flat-ended cylindrical indenter onto an 

incompressible elastic film by applying Fredholm integral equation of the second kind 

to reduce an integral transform solution. In addition, Huajian et al. (1992) and Xu and 

Pharr (2006) provided approximate results by using a perturbation analysis, in which 

the stress and strain fields are regarded as a superposition of the contact filed in a 

homogeneous half-space and one due to the transformation of one part of the half-space 

(representing the film or the substrate) into another type of material. 
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The above solutions to indentation problems were obtained based on the 

assumption of frictionless contact surface. If the coefficient of friction between a rigid 

indenter and an elastic medium is large enough, the indenter is prevented from any 

sliding on the contact area. This condition is known as an adhesive contact problem, 

and it is mathematically more complicated than the case of frictionless contact. For the 

indentation with adhesive contact, the top surface of elastic medium is decomposed into 

a surface outside the contact region on which both normal and shear stresses are 

identically zero, and a surface inside the contact region on which the normal 

displacement is prescribed in terms of the indentation depth and the radial displacement 

is zero at every point of the contact region. The analysis of indentation with adhesive 

contact was first performed incrementally for a growth in the contact radius 

(Mossakovskii, 1954, 1963; Goodman, 1962). Spence (1968) introduced a self-

similarity approach for a flat-ended cylinder and a parabolic punch, corrected some 

misprints in the Mossakovskii examples, and also presented the solution for a conical 

punch. By adopting Mossakovskii’s approach, Borodich and Keer (2004) obtained the 

exact solution to the axisymmetric adhesive elastic contact problem for punches whose 

shapes are described by monomial functions. A detailed and comprehensive analysis of 

the literature related to the adhesive contact problems is given by Galin and Gladwell 

(2008) and Borodich (2014). Recently, Selvadurai and Katebi (2015) examined the 

axisymmetric adhesive contact problem between a rigid circular plate and an 

incompressible elastic half-space where the shear modulus of the elastic material varies 

exponentially with depth. 

At nano-scale level, analytical investigation is also performed to study 

nanoindentation problems. Zhao (2009) derived an analytical solution of a frictionless 

nanoindentation problem, in which elastic fields within the half-space caused by flat-

ended cylindrical, conical and spherical rigid indenters are presented. Although Gurtin-

Murdoch continuum model used in the formulation is not complete (e.g. no out-of-plane 

term), numerical result showed a size-dependent behavior due to the surface energy 

effect, i.e. when the contact area becomes smaller, the material behaves stiffer. Long et 

al. (2012) considered a two-dimension contact problem of a rigid cylinder indenting on 

an elastic half-space with surface tension. The Guass-Chebyshev quadrature formula is 

applied to solve the derived integral equation. Long and Wang (2013) extended this 
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work to handle axisymmetric indentation problems between a sphere and a half-space. 

Zhou and Gao (2013) derived for both half-space and half-plane contact problems with 

the linearized surface elasticity theory of Gurtin and Murdoch by using the Papkovitch-

Neuber potential functions, Fourier transforms and Bessel functions. Gao et al. (2013) 

developed a non-classical formulation of the Boussinesq problem with the surface 

effect, in which both the residual surface stress and the surface elasticity are considered. 

Pinyochotiwong et al. (2013) later generalized the work of Zhao (2009) to investigate 

an axisymmetric, rigid, frictionless indentor with the integration of the influence of 

surface stresses for two indentor profiles (i.e., flat-ended and paraboloidal indentors). 

They used the standard Love’s representation and Hankel integral transform to predict 

the influence of surface stresses on the mechanical response of a homogeneous elastic 

half-space indented by using a complete version of Gurtin-Murdoch surface elasticity 

model. The finite element method was also employed by Attia and Mahmoud (2015) to 

consider a frictionless nanoindentation problem on a functionally graded layered elastic 

medium with the influence of surface stresses. Recently, Intarit et al. (2018) extended 

Pinyochotiwong et al. (2013) to consider an axisymmetric indentation on an elastic 

layer bonded to rigid base with the consideration of surface energy effects. Based on 

the above literature review, it is evident that the analysis of axisymmetric rigid 

indentation with frictionless and adhesive contacts on a layered elastic half-space under 

the influence of surface energy effects has never been considered in the past. The results 

of this problem are useful in the characterization of mechanical properties of 

nanocoatings and nanoscale surface layers such as hardness and elastic modulus. 

The analysis of interaction between a circular elastic plate and an elastic 

supporting medium is of fundamental importance in the field of civil engineering. This 

includes the study of structural foundations, floating structures, laminated or composite 

materials and the analytical study of geological structures. The classical study by 

Borowicka (1939) investigated the influence of the relative rigidity of a circular plate, 

subjected to uniform external load and resting on an isotropic elastic half-space using a 

power series expansion technique. Brown (1969) presented a modified solution for a 

uniformly loaded plate in which they considered the effect of near edge singular terms 

in the approximation of the contact stress distribution by using integral transforms and 

collocation. Selvadurai (1979), who is the first who utilized an energy method, 
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presented the investigation of the elastostatic contact problem where the deflected shape 

of the circular plate is presented in the form of a power series in terms of the radial 

coordinate. Likewise, Selvadurai (1979) also used an energy approach to study the 

behavior of a circular flexible plate embedded in bonded contact with an elastic infinite 

half-space subjected to a uniformly distributed axisymmetric external load. Zaman et 

al. (1988) developed an analytical formulation based on an energy approach to predict 

the flexural behavior of a uniformly loaded thin flexible circular plates resting in 

smooth and continuous contact with an isotropic elastic half-space. The deflected shape 

of the plate is approximated by an even power series expansion in terms of the radial 

coordinate. Selvadurai et al. (2007) examined the elastic contact problem between a 

flexible elastic diaphragm and an isotropic elastic half-space under an applied normal 

stress. Pak et al. (2008) presented a new hybrid method for a circular solid or annular 

plate in tensionless and frictionless contact with an elastic half-space by employing 

Kirchhoff plate theory and classical three-dimensional elastostatics to set of Green’s 

functions. Selvadurai and Dumont (2011) employed the energy method to examine the 

contact problem for an isotropic elastic half-space containing a Mindlin-type axial force 

and a flexible circular plate subjected simultaneously to an external load. Katebi and 

Selvadurai (2015) employed an energy method to examine the axisymmetric contact 

problem for a flexible circular plate in smooth contact with an incompressible elastic 

half-space. The coefficients in the series that satisfies the kinematics of deformation of 

the plate and the Kirchhoff boundary condition at the edge of the plate are evaluated by 

making use of the principle of minimum potential energy. 

Nano-plate strurtures are used in various nanotechnology-based such as nano-

electro-mechanical systems (NEMS) due to their superior optical, electronic and 

mechanical properties (Craighead, 2000). Gurtin-Murdoch continuum theory is applied 

to develop a new continuum mechanics model for static deformation of thin and thick 

circular nano-plates proposed by Liu and Rajapakse (2013). The analytical solution for 

deflections of a uniformly loaded thin plate resting on an elastic spring support is also 

presented to demonstrate the key features of mechanical behaviours of nano-plate. 

Recently, Gao and Zhang (2016) presented a new non-classical Krichhoff plate model 

by using a modified couple stress theory, a surface elasticity theory and a two-parameter 

elastic foundation model via a variational formulation based on Hamilton’s principle. 
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Their numerical results show that the deflection of a simply supported plate with or 

without the elastic foundation predicted by the current model is smaller than that 

predicted by the classical model. Based on a survey of literature mentioned above, it is 

found that the study on the influence of surface stresses on contact problems related to 

flexural behavior of loaded elastic circular plate resting on the surface of an elastic 

medium has never been considered in the literature. Results from this problem by 

incorporating a complete Gurtin-Murdoch model are crucial to investigate the size-

dependent behavior and gain an insight into nano-scale influence on interaction 

between flexural structures and the supporting medium, which can be found in various 

applications at the nano-scale level. 
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LAYERED ELASTIC MEDIUM UNDER SURFACE LOADING AND 

SURFACE STRESS EFFECTS 

3.1 General 

Stress analysis of a layered elastic medium under applied surface loading has 

extensive applications in the study of nanocoatings and nanoscale surface layers that 

are used in electronic devices, tribological and biomaterial applications, advanced 

industrial materials, communication devices, and so forth. This chapter presents the 

analytical solutions to a layered elastic half-space under axisymmetric surface loading 

by adopting the complete Gurtin-Murdoch theory of surface elasticity. The boundary 

value problems of a layered elastic half-space under axisymmetric surface loading 

involving non-classical boundary conditions due to surface stress influence are 

formulated by employing the standard Love’s representation and Hankel integral 

transform. Selected numerical results for displacements and stresses due to applied 

vertical and radial loading are presented to portray the influence of layer thickness, 

surface material parameters, and size dependency on elastic fields. The present 

fundamental solution is useful in the development of numerical solution scheme for the 

investigation of more complicated problems such as nano-indentation and contact 

problems involving a layered elastic medium. 

 

3.2 Basic Equation and General Solution 

Consider a layered elastic half-space consisting of two elastic materials with 

different properties perfectly bonded together, in which the upper material is an elastic 

layer of finite thickness h and subjected to axisymmetric vertical and radial surface 

loads denoted by p(r) and q(r) respectively, as shown in Figure 3.1. According to the 

Gurtin-Murdoch surface elasticity theory, both materials consist of two parts, the bulk 

material and the surface, which is a zero-thickness layer perfectly bonded to the bulk 

material without slipping. The equilibrium equations, the constitutive equations, and 

the strain-displacement relationship of the bulk material under axisymmetric 
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deformations are the same as those in the classical elasticity theory, which are given 

respectively by 

0; 0rrrr rz rz zz rz

r z r r z r

     −   
+ + = + + =

   
  (3.1) 

( ) ( )2 ; 2rr rr zz rr zz             = + + + = + + +   (3.2) 

( )2 ; 2zz rr zz rz rz       = + + + =    (3.3) 

1
; ; ;

2

r r z r z
rr zz rz

u u u u u

r r z z r
   

    
= = = = + 

    
  (3.4) 

where {σrr, σθθ, σzz, σrz} denote the components of stress tensors; {ɛrr, ɛθθ, ɛzz, ɛrz} denote 

the components of strain tensors; and {ur, uz} denote the components of displacement 

tensors respectively. In addition,  and  are Lamé constants of a bulk material. On the 

surface, the equilibrium conditions in terms of the generalized Young-Laplace equation 

(Povstenko, 1993), the surface constitutive relations, and the strain-displacement 

relationship can be expressed, respectively, as (Gurtin and Murdoch, 1975; Gurtin and 

Murdoch, 1978; Gurtin et al., 1998) 

0 0

0 0
0; 0

s ss s s

rrrr zr zr
zr r zz zz z

t t
r r r r

   
 

= =

− 
+ + + = + + + =

 
  (3.5) 

( ) ( ) ( ) ( )2 ; 2s s s s s s s s s s s s s s s s

rr rr rr                 = + + + + = + + + +   (3.6) 

s
s s z
zr

du

dr
 =    (3.7) 

;
s s

s sr r
rr

du u

dr r
 = =    (3.8) 

where the superscript “s” is used to denote the quantities corresponding to the surface; 

s and s are surface Lamé constants;  s is the residual surface stress (or surface tension) 

under unstrained conditions. In addition, 0

rt and 0

zt  denote the prescribed traction on the 

surface in the radial and vertical directions respectively. Equation (3.7) can be viewed 
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as the out-of-plane contribution of the pre-existing surface tension s  in the deformed 

configuration whereas the surface gradient of the displacement duz
s/dr acts as the out-

of-plane component of the unit vector tangent to the surface in the deformed state. This 

term has been ignored in several previous studies even though the contribution of  s 

could be significant even in the case of small deformations (e.g. see Intarit et al., 2011; 

Pinyochotiwong et al., 2013; Rungamornrat et al., 2016).  

For the axisymmetric case, the corresponding elastic fields can be obtained by 

solving the following biharmonic equation (Sneddon, 1951) in a cylindrical coordinate 

system (r,, z) 

( )2 2 , 0r z   =    (3.9) 

where 
2 2

2

2 2

1

r r r z

  
 = + +

  
 denotes the Laplacian operator in a cylindrical coordinate 

and ( ),r z is Love’s strain potential. 

By applying Hankel integral transform into equation (3.9), we obtain, 

( )
2

2
2

2
, 0

d
G z

dz
 

 
− = 

 
   (3.10) 

where ( ) ( )0
0

,G z r J r dr 


=  and ( )nJ  denotes the Bessel functions of the first 

kind of order n. The general solution of above equation may be written in the form 

( ) ( ) ( ), z zG z A Bz e C Dz e  −= + + +    (3.11) 

where A, B, C and D are arbitrary functions that can be determined from the boundary 

conditions. 

Thereafter, the general solutions for bulk stresses and displacements of an 

elastic solid can be expressed in the forms of Hankel integral transform as (Sneddon, 

1951; Selvadurai, 2000) 

( )2

1

0

r

dG
u J r d

dz

 
  




+

=     (3.12) 
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( )
2

2

02

0

2
z

d G
u G J r d

dz

 
   




 +

= − 
 

    (3.13) 

( ) ( )
( )

( )
3

2 2

0 13

0 0

2
2rr

d G dG dG
J r d J r d

dz dz r dz

 
          

 + 
= + + − 

 
    (3.14) 

( )
( )

( )
3

2 2

0 13

0 0

2d G dG dG
J r d J r d

dz dz r dz


 
        

 + 
= − + 

 
    (3.15) 

( ) ( ) ( )
3

2

03

0

2 3 4zz

d G dG
J r d

dz dz
        


 

= + − + 
 

   (3.16) 

( ) ( )
2

2 2

12

0

2rz

d G
G J r d

dz
       


 

= + + 
 

    (3.17) 

Finally, the substitution of the function G, given by Eq.(3.11), results in the stresses and 

displacements, expressed in terms of the arbitrary functions A, B, C and D as, 

( ) ( )  ( )2

1

0

1 1z z

ru A z B e C z D e J r d  
      





−+
= − + − + + +         (3.18) 

( )2

0

0

2 2z z

zu A z B e C z D e J r d    
      

    



−
       +  

= − + + + − −       
+ +        

  

  (3.19) 

( )
( )3

0

0

2 2 2 2z zrr A z B e C z D e J r d      
      

     



−
 +       + + 

= − + − + + +       
+ +        

   

( )
( ) ( )  ( )2

1

0

2
1 1z zA z B e C z D e J r d

r

  
      





−
+

− − + − + + +         (3.20) 

  ( )3

0

0

2 z zBe De J r d  
  

 



−= +   

( )
( ) ( )  ( )2

1

0

2
1 1z zA z B e C z D e J r d

r

  
      





−
+

+ − + − + + +         (3.21) 
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( )
( )3

0

0

2
z zzz A z B e C z D e J r d    

      
     



−
 +        

= + + + − + −       
+ +        



  (3.22) 

( )
( )3

1

0

2
z zrz A z B e C z D e J r d    

      
     



−
 +        

= − − + + +       
+ +        



  (3.23) 

 

3.3 Solution of Boundary Value Problem 

Boundary value problem of a layered elastic half-space subjected to 

axisymmetric normal and tangential traction, denoted by p(r) and q(r) respectively, 

applied at its surface as shown in Figure 3.1 is considered in this section. To solve this 

problem, the layered half-space is divided into two domains. The domain ‘1’ represents 

the upper layer and the domain ‘2’ represents the underlying half-space. The general 

solutions of the bulk material in the domain ‘1’, are given by Eqs. (3.18) to (3.23) 

whereas those of the the domain ‘2’ can also be obtained from Eqs. (3.18) to (3.23) by 

replacing the arbitrary functions A to D with the arbitrary functions E to H respectively. 

Note that G  0 and H  0 are imposed to ensure the regularity of the solutions at infinity 

for the domain ‘2’. In addition, the subscript i =1, 2 is used to denote the quantities 

corresponding to the domains ‘1’ and ‘2’, respectively. The solutions of A to F can be 

determined by solving the following boundary and continuity conditions. 

( )
2

1 1
1 1 20

0

1s z z
zz z

z

d u du
p r

dr r dr
 

=

=

 
+ + = − 

 
   (3.24) 

( )
2

1 1 1
1 1 2 20

0

1s r r r
rz z

z

d u du u
q r

dr r dr r
 

=

=

 
+ + − = − 

 
   (3.25) 

2

2 2
1 2 2 2

1
0s z z

zz zzz h z h

z h

d u du

dr r dr
  

= =

=

 
− + + = 

 
   (3.26) 

2

2 2 2
1 2 2 2 2

1
0s r r r

rz rzz h z h

z h

d u du u

dr r dr r
  

= =

=

 
− + + − = 

 
 (3.27) 
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1 2 0z zz h z h
u u

= =
− =    (3.28) 

1 2 0r rz h z h
u u

= =
− =    (3.29) 

where 2s s s

i i i  = +  is a surface material constant. It should be noted that Eqs. (3.24) 

to (3.27) are non-classical boundary conditions obtained from Eqs. (3.5) to (3.8). In 

view of Eqs. (3.18) to (3.23) together with the assumption that the surface residual stress 

 s is constant, the following six linear algebraic equations are established to solve for 

the arbitrary functions A to F. 

( ) ( )
( )

1 1 1 1
1 1 1 1 2

1 1
2 2 2

s s
s s

P
A B C D

     
       



    
 + + + + − + + − = −   

   
   

  (3.30) 

( )

1 1 1 1 1 1
1 1 1

1 1
1 2

1
2 2 2

1
2 2

s s s

s

A B C

Q
D

        
    

  




       
  + + − + − + −     

     
     

 
+ − − = − 

 
 

 (3.31) 

( ) ( )1 1 1 1

2 2 2 2 2
2 2 2

2 22

1 1

2
0

2 2

h h h h

s s
h h

e A h e B e C h e D

e E h h e F

   

 

       

      
     

 

− −

− −

   + + − + −

     
  + − + + − − + + =   

        

  (3.32) 

( ) ( )

( )

1 1 1 1 1 1

2 2 2 2
2 2 2 2

2 2

1 1

1 0
2 2

h h h h

s s
h h

e A h e B e C h e D

e E h h e F

   

 

         

     
      

 

− −

− −

     + − + + + + − +

    
  + − + + − − − − =   

   
   

  (3.33) 

( ) ( ) 2
1 1 1 1

2

2

2

2 2

2 0

h h h h h

h

e A h e B e C h e D e E

h e F

    




        








− − −

−

 
   − + − − − + − +  

 
 

  
 + + = 

  
  

  (3.34) 
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( ) ( )

( )

2
1 1 1 1

2

2

2

1 1

1 0

h h h h h

h

e A h e B e C h e D e E

h e F

    




        








− − −

−

 
   − + − + + + +  

 
 

 
+ − + = 

 
 

  (3.35) 

where the following non-dimensional quantities in the above equations are defined as: 

h  = h/Λ1; 1 1 1  = + ; 2 2 2   = + ;
1 1 1  = ;

2 2 1  = ; 2 2 1  = ;
1 1 1 1

s s  =  ; 

2 2 1 1

s s  =  ; 
1 1 1 1

s s  =  ; 
2 2 1 1

s s  =  ; and ( ) ( )1 1 1 1 1 1 12 2s      = + + . In 

addition, the functions ( )P   and ( )Q   are obtained from the surface loads p(r) and 

q(r) respectively as 

( ) ( ) ( )0

0

P p r J r rdr 


=     (3.36) 

( ) ( ) ( )1

0

Q q r J r rdr 


=     (3.37) 

in which 1 ;p p = 1q q = ; and 1r r=  . The arbitrary functions A to F for given 

functions of the applied surface loads p(r) and q(r) can then be obtained separately by 

solving the linear equation system, Eqs. (3.30) to (3.35), and they are given by 

N RA A A  = +    (3.38) 

N RB B B= +    (3.39) 

N RC C C  = +    (3.40) 

N RD D D= +    (3.41) 

11 12 13 14

21 22 23 24

A

b b b bE B

b b b bF C

D







 
 

    
=    

     
  

   (3.42) 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

22 33 44 34 43 23 34 42 32 44 24 32 43 33 42

21 34 43 33 44 23 31 44 34 41 24 33 41 31 43

2
21 32 44 34 42 22 34 41 31 44 24 31 42 32 41

21 33 42 32 4

2

N

N

N ij

N

A a a a a a a a a a a a a a a a

B a a a a a a a a a a a a a a aP

C a a a a a a a a a a a a a a aa

D a a a a a





 

− + − + − 
 

− + − + − 
= − 

− + − + − 
  −  ( ) ( ) ( )3 22 31 43 33 41 23 32 41 31 42a a a a a a a a a a

 
 
 
 
 
 + − + − 

 

  (3.43) 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

12 34 43 33 44 13 32 44 34 42 14 33 42 32 43

11 33 44 34 43 13 34 41 31 44 14 31 43 33 41

11 34 42 32 44 12 31 44 34 41 14 32 41 31 42

11 32 43 33 4

22

R

R

R ij

R

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a a a a

A

B

a a a a a a a a

Q

C a

a a a a

a

aD





 

 


− + − + −

− +


 
= − 

 


− + −

− + − + −

−  ( ) ( ) ( )2 12 33 41 31 43 13 31 42 32 41a a a a a a a a a a

 
 
 
 


+ − + −


 


 

  (3.44) 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

ij

a a a a

a a a a
a

a a a a

a a a a

=    (3.45) 

1 1
11 1

2

s

a
  




= +    (3.46) 

12 11 sa  = +    (3.47) 

1 1
13 1

2

s

a
  




= − +    (3.48) 

14 11 sa  = −    (3.49) 

1 1
21 1

2

s

a
  




= +    (3.50) 

1 1
22 11

2

s

a
  




= − −    (3.51) 

1 1
23 1

2

s

a
  




= −    (3.52) 
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1 1
24 11

2

s

a
  




= − + −    (3.53) 

( )
2

1
31 2 22 2

2

h
se

a


  
−

= − +    (3.54) 

( )( ) ( )( )
2

2 2 1
32 1 2 2 1 2

2 2

2
2 2 2 2

2 2

h
s he

a h h e


 
       

 

−
−

 + = + − + + +
 +

  (3.55) 

1 2 2 1 2
33 1

2 2
22

s

a
     


 

  
= − − +

 +
   (3.56) 

( ) ( ) 21 1 1
34 2 2 1 1 2

2 2

2 2
1 2 1

2 2

s h h
a h h

    
       

 

     + − = − − + − + − +   
    +   

  (3.57) 

( )
2

1
41 2 22 2

2

h
se

a


  
−

= − +    (3.58) 

( )( )( )
2

2 2 1
42 1 2 2 2

2 2

2
1 2 2 2

2 2

h
s he

a h e


 
     

 

−
−

 += − − + + −
 +

  (3.59) 

1 2 1 2 2
43 1

2 2
2 2

s

a
     


 

  
= − +

 +
   (3.60) 

( ) 21 2 1 1
44 1 1 2 2

2 2

2 2
1 1

2 2

s h
a h

     
    

 

     + − = + + − − −   
    +   

  (3.61) 

1 2
11

2

b
 




=


  (3.62) 

( )( )
( )

2 2 1 2

12

2 2 2

2 1

2

h
b

    

  

 − −
= −

  +
   (3.63) 
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( )
( )

1 2 2 2 2
2

13

2 2 2

2 2

2

h
h

b e 
     

  

  − +
= −

  +
   (3.64) 

( )( )
( )

2

2 2 1 2 2 1 2 1 2
2

14

2 2 2

2

2

h

h h h
b e 

           

  

     + − + +
= −

  +
  (3.65) 

21 0b =    (3.66) 

1
22 2

2 2

2

2
b




 

 +
=

 +
   (3.67) 

2 1 2
23

2 2

2

2

hb e   

 


=

 +
   (3.68) 

2 1 1
24 2

2 2

2 2

2

h h
b e    


 

 + −
=

 +
   (3.69) 

Substitution of the arbitrary functions A to F into Eqs. (3.18) to (3.23) yields the 

displacement and stress fields at an arbitrary point of the layered elastic half-space 

under axisymmetric surface loading as shown in Figure 3.1. 

 

3.4 Numerical Results and Discussion 

The complete solutions of displacements and stresses corresponding to the 

boundary value problems of a layered elastic medium under axisymmetric surface 

loading shown in Figure 3.1 are given by Eqs. (3.18) to (3.23) with the arbitrary 

functions A to F given by Eqs. (3.38) to (3.44). Given the complexity of the arbitrary 

functions A to F, closed-form solutions to the displacement and stress fields cannot be 

obtained. Therefore it is essential to determine all elastic fields by numerically 

evaluating the semi-infinite integrals appearing in Eqs. (3.18) to (3.23). It is found that 

those semi-infinite integrals with respect to  can be accurately evaluated by employing 

an adaptive numerical quadrature scheme. This scheme subdivides the interval of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

integration and employs a 21-point Gauss–Kronrod rule (Piessens, 1983) to estimate 

the integral over each subinterval. The error for each subinterval is estimated by 

comparing the obtained results with those from a 10-point Gauss-Kronrod rule. The 

subdivision continues until the error from the approximation is reached a specified 

tolerance. 

The accuracy of the present solution is first verified by comparing with the 

existing solution given by Gerrard (1969), who presented the classical solutions 

(without the influence of surface energy effects) of a layered elastic half-space 

subjected to axisymmetric surface loading. Table 3.1 presents a comparison of 

normalized displacements at the surface (z = 0) and normalized stresses at the interface 

(z = h) along the radial direction of a layered elastic half-space under uniformly 

distributed normal traction p0, acting over a circular area of radius a at the surface. The 

comparison of surface displacements and stresses at the interface of the layered half-

space under linearly distributed shear traction ( )q r  = -q0r/1a applied over a circular 

area of radius a at the surface is also presented in Table 3.2. In addition, 1/2 = 5 with 

Poisson’s ratio ν1 = ν2 = 0.2, and h/a = 1 are considered for the numerical results given 

in both tables. The solutions for normalized displacements and stresses from the present 

study are obtained by setting the parameters associated with the surface energy effects 

to be zero, i.e., τ s  0 and  s  0. It is evident that excellent agreement between the two 

solutions is observed for both displacements and stresses shown in Tables 3.1 and 3.2. 

Numerical results for vertical and radial displacements, and vertical and shear 

stresses corresponding to a layered elastic half-space with the influence of surface 

energy effects subjected to axisymmetric surface loading as shown in Figure 3.1 are 

presented next. Two cases of axisymmetric surface loading, namely, the vertical 

loading and the radial loading are considered in the numerical study. The vertical 

loading denotes the case where uniformly distributed normal traction p0 applied over a 

circular area of normalized radius ɑ/Λ1 = ͞a = 10. The radial loading represents the case 

where the layered half-space is subjected to linearly distributed tangential traction 

( )q r  = q0 ͞r/1 ͞a over a circular area of normalized radius ͞a = 10, where q0 is the 

maximum traction at the edge of the loading region. The functions defined as shown in 
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Eqs. (3.36) and (3.37) are given respectively for the vertical loading and the radial 

loading as follows, 

( ) ( )0
1

p a
P J a 


=  and 0Q =    (3.70) 

0P =  and ( ) ( ) ( )0 0
1 02

2q q a
Q J a J a  

 
= −    (3.71) 

In addition, the numerical results presented hereafter correspond to the case where the 

material for the upper layer (the domain ‘1’) is Si [100] whereas Al [111] is chosen for 

the underlying half-space (the domain ‘2’) respectively. The material properties for 

both domains are given in Table 3.3 (Miller and Shenoy, 2000). 

Figures 3.2 presents radial variations of non-dimensional displacements at the 

top surface (z = 0) and non-dimensional stresses at the interface (z = h) of a layered 

elastic half-space under the vertical loading for different values of normalized thickness 

of the top layer (h/a). Note that the stress profiles in all figures presented in this section 

are computed at the interface (z = h) at the bulk material of the underlying half-space. 

Figure 3.2(a) shows radial profiles of vertical and radial surface displacements for 

various values of h/a whereas the profiles of normal and shear stresses at the interface 

are illustrated in Figure 3.2(b). The classical solutions also presented in these figures 

for comparison are obtained by setting the parameters associated with the surface 

energy effects to be zero, i.e., τ s  0 and  s  0. It is evident from Figure 3.2 that 

although the results from the present study and the classical solution display similar 

trends for both displacements and stresses at all values of h/a, the surface energy effects 

renders the layered medium stiffer. The present solution yields lower surface 

displacements and stresses at the interface. The influence of surface energy is however 

less significant in the interface stresses, especially in the case of the shear stress. It is 

also found that the magnitude of all displacements and stresses decrease with increasing 

the normalized thickness of the layer (h/a) since the upper layer is stiffer than the 

underlying half-space (Lamé constants of Si [100] are higher than those of Al [111]). 

In addition, as the layer thickness increases both vertical and radial surface 
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displacements move towards the homogeneous half-space solutions presented by Intarit 

(2012), and both solutions are virtually identical when h/a ≥ 100.  

Radial profiles of normalized surface displacements (z = 0) and normalized 

stress at the interface (z = h) of the layered elastic medium under the vertical loading 

are shown in Figure 3.3 to demonstrate the influence of the residual surface stress ( s) 

on elastic fields. The values of the residual surface stress in the underlying half-space 

are varied (i.e. 
2

s  = 0.1, 1, 5, 10 N/m) whereas other material parameters associated 

with both upper layer and underlying half-space given in Table 3.3 remain unchanged. 

In addition, the normalized thickness of h/a = 1 is considered in the numerical results 

shown in this figure. Once again, the influence of the surface stress is clearly observed 

from the displacement and stress solutions presented in Figure 3.3. The values of all 

displacements and stresses from the present study are substantially reduced from their 

classical elasticity counterparts as the value of the residual surface stress increases. 

The next numerical results are presented to demonstrate the size-dependent 

behavior of the present solution when the influence of surface energy effects is 

considered. Figure 3.4 shows radial variations of vertical and radial surface 

displacements, and the vertical and shear stresses at the interface of the layered half-

space under the vertical loading for different values of the normalized radius of 

loading area ͞a (i.e. ͞a = ɑ/Λ1 = 1, 5, 10). In addition, the thickness of the top layer 

and the circular loading area are varied while their ratio is maintained at h/ɑ = 1. Note 

that the solution when ͞a = 1 corresponds to the case where the thickness of the layer is 

equal to the characteristic length (Λ1). The corresponding non-dimensional solution for 

the classical elasticity case is also shown, and it is size-independent. The size-

dependency of the present solution is clearly observed in all displacement and stress 

profiles. It is evident from the numerical results presented in Figure 3.4 that the present 

solution accounting for surface energy effects approaches the classical solution as the 

loading radius increases. This is consistent with the fact that a larger loading area would 

produce higher displacements and stresses. 

The final set of the numerical results corresponds to the case where the layered 

elastic half-space is subjected to the radial loading, in which the tangential traction is 

applied linearly distributed over a circular area of normalized radius  ͞a = 10. Figure 
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3.5 presents radial profiles of non-dimensional displacements at the top surface (z = 0) 

and non-dimensional stresses at the interface (z = h) for different values of h/a. It is 

evident from Figure 3.5 that both displacements and stresses of the layered half-space 

under radial loading depend more significantly on surface energy effects for all values 

of h/a when compared to the results presented in Figure 3.2 under the vertical 

loading case. The presence of surface stresses significantly lowers the magnitude of all 

displacements and stresses shown in Figure 3.5.  In addition, all displacements and 

stresses are reduced as the normalized thickness of the layer (h/a) increases. Once 

again, both vertical and radial surface displacements are practically the same as the 

half-space solutions given by Intarit (2012) when h/a ≥ 100 similar to what observed in 

the vertical loading case. 

 

3.5 Conclusion 

An analytical treatment of a layered elastic half-space under axisymmetric 

surface loading, taking into account the influence of surface energy effects is presented 

in this chapter. The boundary value problem corresponding to a layered elastic half-

space subjected to axisymmetric normal and tangential traction is formulated based on 

the complete Gurtin-Murdoch theory of surface elasticity and the application of Hankel 

integral transforms. An efficient numerical quadrature scheme is developed to evaluate 

all involved integrals. Selected numerical results for radial profiles of displacements 

and stresses are presented to portray the influence of various parameters on elastic 

fields. The numerical results indicate that the surface energy effects play an important 

role in both stress and displacement fields of a layered elastic medium. Surface residual 

stress reduces the surface displacements and stresses at the interface of the layered 

medium. Unlike the classical elasticity solution, the present study shows substantial 

size-dependency of elastic fields. Both displacement and stress fields show strong 

dependency on the loading area, and the magnitude of non-dimensional displacements 

and stresses increase with increasing the radius of the loading area. The application of 

the present fundamental solution for nano-indentation and contact problems will be 

presented in next chapter. In addition, the present solution can also be used as a 

benchmark solution for assessing the accuracy of numerical models such as the finite 
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element and boundary element methods, which can be used to investigate more 

complicated problems in the presence of surface energy effects. 
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Figure 3.1 Layered elastic half-space subjected to axisymmetric surface loading. 
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(a) 

 

(b) 

Figure 3.2 Radial variations of elastic fields under the vertical loading for different 

values of layer thickness (h/a): (a) surface displacements (z = 0) and (b) stresses at the 

interface (z = h). 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

 
(a) 

 

(b) 

Figure 3.3 Radial variations of elastic fields under the vertical loading for h/a = 1 and 

different magnitudes of residual surface stress ( s
2): (a) surface displacements (z = 0)  

and (b) stresses at the interface (z = h). 
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(a) 

 

(b) 

Figure 3.4 Radial variations of elastic fields under the vertical loading for h/a = 1 and 

different values of loading radius ( a ): (a) surface displacements (z = 0) and (b) 

stresses at the interface (z = h). 
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(a) 

 

(b) 

Figure 3.5 Radial variations of elastic fields under the radial loading for different 

values of layer thickness (h/a): (a) surface displacements (z = 0) and (b) stresses at the 

interface (z = h). 
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Table 3.1 Comparison of normalized surface displacements and stresses at the interface 

of a layered elastic half-space under uniformly distributed normal traction for 1/2 = 5 

and h/a = 1. 

r/a 

1uz/ap0 1ur/ap0 zz/p0 rz/p0 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

0.0 0.9945 0.9944 0.0000 0.0000 0.4260 0.4260 0.0000 0.0000 

0.5 0.9442 0.9440 -0.0746 -0.0746 0.3790 0.3790 0.0867 0.0867 

1.0 0.7651 0.7649 -0.1363 -0.1363 0.2526 0.2526 0.1303 0.1303 

2.0 0.4630 0.4629 -0.1048 -0.1048 0.0657 0.0657 0.0719 0.0719 

3.0 0.3179 0.3177 -0.0747 -0.0748 0.0174 0.0174 0.0307 0.0307 

5.0 0.1867 0.1866 -0.0420 -0.0421 0.0010 0.0010 0.0069 0.0069 

10.0 0.0933 0.0932 -0.0217 -0.0218 0.0001 0.0000 0.0009 0.0009 

 
 

Table 3.2 Comparison of normalized surface displacements and stresses at the 

interfaces of a layered elastic half-space under linearly distributed tangential traction 

for 1/2 = 5 and h/a = 1. 

r/a 

1uz/aq0 1ur/aq0 zz/q0 rz/q0 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

Gerrard 

(1969) 

Present 

solution 

0.0 0.1188 0.1189 0.0000 0.0000 0.1150 0.1150 0.0000 0.0000 

0.5 0.0941 0.0941 -0.0952 -0.0952 0.0803 0.0803 0.0359 0.0359 

1.0 0.0253 0.0253 -0.0934 -0.0934 0.0173 0.0173 0.0312 0.0312 

2.0 0.0044 0.0044 -0.0198 -0.0198 -0.0068 -0.0068 -0.0005 -0.0005 

3.0 -0.0003 -0.0003 -0.0087 -0.0087 -0.0028 -0.0028 -0.0020 -0.0020 

4.0 -0.0006 -0.0005 -0.0051 -0.0051 -0.0010 -0.0010 -0.0012 -0.0012 

5.0 -0.0003 -0.0003 -0.0036 -0.0036 -0.0004 -0.0004 -0.0007 -0.0007 

10.0 0.0001 0.0001 -0.0014 -0.0014 0.0000 0.0000 -0.0001 -0.0001 
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Table 3.3 Material properties employed in numerical study. 

Material 

parameters 
Upper layer Underlying half-space 

  (N/m2) 78.0849 × 109 58.17 × 109 

 (N/m2) 40.2256 × 109 26.13 × 109 

 s (N/m) 0.6056 1 

 s (N/m) 4.4939 6.8511 

 s (N/m) 2.7779 -0.376 

 s (N/m) 10.0497 6.0991 
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NANOINDENTATION ON LAYERED ELASTIC MEDIUM 

4.1 General 

This chapter presents the analysis of axisymmetric rigid indentation on a layered 

elastic half-space with consideration of surface energy effects under frictionless and 

adhesive contacts by adopting a complete Gurtin-Murdoch continuum model for theory 

of surface elasticity. The fundamental solutions of a layered elastic medium with 

consideration of surface stresses derived in Chapter III are employed in the formulation 

of axisymmetric indentation problem as a mixed-boundary value problem. The 

displacement boundary condition is expressed in terms of a displacement Green’s 

function, which is obtained by employing the Hankel integral transforms. The unknow 

contact pressure distribution under an indenter of axisymmetric profiles is determined 

by using a discretization technique. The accuracy of the proposed solution scheme is 

verified by comparing with existing solutions. Selected numerical results are presented 

to portray the influence of surface stresses on a layered elastic half-space under 

indentation with frictionless and adhesive contacts. 

 

4.2 Nanoindentation with Frictionless Contact 

Consider a layered elastic medium subjected to axisymmetric indentation under 

the action of a vertical force P as shown in Figure 4.1. The frictionless contact between 

the indenter and the layered medium is assumed in this study. In addition, the punch 

profile is given by (r) where the final radius of a contact region and the indentation 

depth at the center of the punch are denoted by a and d respectively. The punch profile 

is assumed to be smooth (i.e., d/dr is well-defined) at any point within the contact 

region except along the boundary r = a where the profile can be non-smooth. A punch 

with a well-defined d/dr for r  a is termed smooth-contact indentation [e.g., a 

paraboloid indenter in Figure 4.1 (a)] whereas for non-smooth-contact indentation, 

d/dr is not well-defined at r = a [e.g., a flat-ended indenter in Figure 4.1 (b)]. 
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For axisymmetric frictionless indentation, the top surface of the upper layer can 

be decomposed into the surface outside the contact region (r > a) on which the traction 

(both normal and shear) is identically zero, and the surface inside the contact region (r 

 a) on which the normal displacement is prescribed in terms of the indentation depth 

d and the punch profile (r). In addition, the shear traction vanishes on the contact area 

due to the condition of frictionless contact surface. To solve this indentation problem, 

the subscript "1" is employed to represent the quantities corresponding to the bulk of 

the upper layer and the surface. In addition, the subscript "2" is used to represent the 

quantities associated with the bulk of the half-space and the interface between the layer 

and the half-space. The mixed boundary conditions at the top surface can then be 

expressed as, 

( )1 0
; 0z z

u d r r a
=

= −      (4.1) 

2

1 1
1 1 20

0

1
0;s z z

zz z

z

d u du
a r

dr r dr
 

=

=

 
+ + =    

 
   (4.2) 

2

1 1 1
1 1 2 20

0

1
0s r r r

rz z

z

d u du u

dr r dr r
 

=

=

 
+ + − = 

 
   (4.3) 

In addition, the continuity conditions at the interface are given by Eqs. (3.26) to (3.29). 

By using the method of superposition, the vertical displacement at the contact 

surface, Eq. (4.1), can be expressed as an integral equation in the following form: 

( ) ( ) ( )
0

, ; 0
a

N

zU r r p r dr d r r a   = −      (4.4) 

where ( )p r  denotes the normal contact traction occurred inside the contact region; 

and ( ),N

zU r r  denotes the Green’s function corresponding to the vertical displacement 

at any distance r on the contact area due to a unit vertical ring load applied on the top 

surface of the layered medium at the radius r. The Green’s function can be expressed 

in the form of Hankel integral transform as, 
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( ) ( ) ( )2

1 1 0
0

1 1

2 2
, 1

1 1

N

zU r r A B C D J r d     
 

      
 = − +  + + −    

+ +     
   (4.5) 

where 
1  = 1 1  ; r  = r/1; and ( ) ( )1 1 1 1 1 1 12 2s      = + + . In addition, A, B, C, 

and D are the arbitrary functions, which can be obtained explicitly from Chapter III 

with the loading functions ( )P   and ( )Q   defined respectively as,   

( ) ( )0P r J r  =  and 1r r =     (4.6) 

( ) 0Q  =    (4.7) 

In order to obtain the unknown normal contact traction ( )p r , the contact 

surface under the indenter is discretized into a number of Ne annular ring elements. It 

is assumed that the normal contact traction is constant within each ring element. The 

vertical displacements at the contact surface, Eq. (4.4), can then be expressed as, 

( ) ( ) ( )
1

, ; 0
Ne

N

z i j j i

j

U r r p r d r r a
=

 = −      (4.8) 

where ( ),N

z i jU r r  ( ,i j = 1, 2,…, Ne) denotes the Green’s function corresponding to the 

vertical displacement at the center of the ith ring element due to vertical loading of unit 

intensity applied uniformly over the jth ring element. The expression of the Green’s 

function under the vertical annular loading is also given by Eq. (4.5) with the arbitrary 

functions A to D being given in Chapter III together with the following loading 

functions for ( )P   and ( )Q   

( )
( ) ( )0 1 0 1i ir J r r J r

P
 


 

= −    (4.9) 

( ) 0Q  =    (4.10) 

where 1i ir r=   and 0 0 1r r=   are inner and outer radii of the annular loading. 
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Once the normal traction distribution in the contact region ( )p r  is obtained, 

all elastic fields within the bulk of the layered half-space under axisymmetric 

indentation as shown in Figure 4.1 can be determined from the following equation: 

( ) ( ) ( )
0

, , ;NR r z R r z r p r dr


  =     (4.11) 

where ( ),R r z  denotes displacements and stresses at any point (r, z) in a layered elastic 

half-space under axisymmetric indentation on the top surface; and ( ), ;NR r z r  denotes 

the Green’s functions corresponding to displacements and stresses at any point (r, z) 

due to the vertical loading (ring or annular) acting on the top surface of the layered 

medium at the radius r. The Green’s functions, ( ), ;NR r z r , expressed in the form of 

the Hankel integral transforms, are presented in Chapter III.  

A computer program based on the solution procedure described in the previous 

section has been developed to study axisymmetric rigid frictionless indentation on a 

layered elastic half-space as shown in Figure 4.1. In this study, indenters with flat-ended 

cylindrical and paraboloidal punch profiles are investigated for non-smooth and smooth 

contacts respectively. For flat-ended cylindrical punch [see Figure 4.1 (b)], the contact 

radius a and a normal indentation depth d are defined with the punch profile being (r) 

= 0. For paraboloidal punch, the punch profile is given by (r) =  r
2 where  is a 

constant and the radius of contact region a is unknown a priori [see Figure 4.1 (a)]. The 

unknown contact traction between a rigid indenter and the layered medium can be 

determined by employing discretization approach outlined in the preceding section. The 

required Green’s function is obtained from a layered elastic half-space under the 

vertical annular loading of unit intensity. It is noted that Green’s functions are expressed 

as semi-infinite integrals with respect to  [see Eq. (4.5)], which can be accurately 

evaluated by employing the adaptive numerical quadrature scheme discussed in 

Chapter III.  

The accuracy of the numerical solutions obtained from the present scheme is 

validated with existing solutions. First, the present solution is specialized for the case 

of flat-ended cylindrical punch of radius a on a layered elastic half-space without the 
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influence of surface energy effects. Figure 4.2 (a) shows a comparison of normalized 

contact pressure profiles along the radial direction under the flat-ended cylindrical 

indenter between the present solution and the solution by Chen and Engel (1972) for 

different numbers of annular elements, Ne, used to discretize the contact area. The 

material parameters employed in the comparison are 1 = 0.333 and 2 = 0.250 with 

1 2  = 0.25, and the ratio of layer thickness to punch radius is h/a = 3. In addition, the 

surface parameters are set to be negligibly small ( s  = 
s  ≈ 0). It is found that 

converged numerical solution is obtained when Ne  20, and it agrees very closely with 

the solution by Chen and Engel (1972). 

Figure 4.2 (b) shows the comparison between the present numerical solutions 

and the solutions given by Pinyochotiwong et al. (2013) for axisymmetric indentation 

on a homogeneous elastic half-space with the influence of surface energy effects. The 

following material parameters are employed in the present solution: 1  = 2  = 58.17 

GPa; 1  = 2  = 26.13 GPa; 
1

s = 1 N/m; and 
1

s  = 6.0991 N/m. In addition, 
2

s = 2

s   

0. Comparison of normalized contact pressure profiles under flat-ended cylindrical and 

paraboloidal indenters are shown in Figures 4.2 (b) for discretization method. It should 

be noted that under flat-ended cylindrical punch a vertical ring load has to be applied 

at r = a in the present solution to account for a normal ring load induced at the indenter 

edge due to the presence of the residual surface stress. The applied vertical force P 

would then be supported by the ring load together with the contact pressure generated 

under the indenter. A convergence study indicates that a very good agreement between 

the present solution and the benchmark solution (Pinyochotiwong et al., 2013) is 

obtained with Ne = 30 for flat-ended cylindrical and paraboloidal indenters as shown in 

Figures 4.2 (b). The accuracy of the proposed solution scheme is thus verified through 

these comparisons. 

The influence of surface energy effects on axisymmetric frictionless indentation 

on a layered elastic half-space is investigated next for flat-ended cylindrical and 

paraboloidal indenters respectively. For convenience, the following non-dimensional 

quantities are employed: z = z/1; h = h/1; a  = a/1; d = d/1; and  = /1. The 

discretization technique is employed with Ne = 30 for the numerical results presented 
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hereafter. For the layered elastic medium considered in the numerical study, the 

properties of the bulk and the surface of the top layer are identical to those of the half-

space employed by Pinyochotiwong et al. (2013) whereas 2  = 78.08 GPa, 2  = 40.23 

GPa for the underlying half-space. In addition, 
2

s  = 0.3944 N/m, and 
2

s  = -3.9506 

N/m at the interface. Note that the broken lines in all figures presented in this section 

denote the classical solutions where surface stress effects are ignored (i.e.  s =  s ≈ 0).  

The influence of the residual surface stress ( s) on the normalized contact 

pressure and surface displacement are shown respectively in Figures 4.3 (a) and 4.3 (b) 

with h/a = 1 and a  = 1. In addition, the value of 
1

s  is varied whereas the value of 
2

s  

and other material parameters remain unchanged, and the following ratios of 
1 2

s s   are 

considered, i.e. 
1 2

s s   = 0.5, 1, 2 and 4. Note that the conditions of h/a = 1 and a  = 1 

correspond to the case where the layer thickness is equal to the characteristic length 

(1). Numerical results in Figure 4.4 indicate that both contact pressure and surface 

displacement from the present study and the classical elasticity display similar trends 

for all values of 
1 2

s s  . It can be seen from Figure 4.3 (a) that the normalized contact 

pressure from the present study is lower than its classical counterpart due to the 

presence of surface stresses, and it decreases with increasing the ratio of 
1 2

s s  . This 

is due to the fact that a larger ring load is generated for higher value of residual surface 

stress at the top surface resulting in smaller contact pressure being developed under the 

indenter. In addition, the singularity is observed at the profiles near the indenter edge 

for both present and classical solutions. Figure 4.3 (b) reveals that the vertical 

displacements outside the contact area obtained from the present study are higher than 

the classical solution since higher indentation force is required due to the presence of 

surface stresses to produce the same indentation depth. 

Figures 4.4 (a) and 4.4 (b) respectively display radial variations of normalized 

vertical displacements and vertical stresses of a layered elastic half-space under 

axisymmetric indentation at different depths for the contact radius of a  = 1.0 and h/a 

= 1. It is evident that the surface stresses have a significant influence on both 

displacements and stresses in the layered medium. The vertical displacements from the 

present study are higher than their classical counterparts in both layer and half-space as 
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shown in Figure 4.4 (a). Numerical results presented in Figure 4.4 (b) display lower 

vertical stresses from the present study on the area under the contact region (r/a < 1.0) 

in the top layer (z/1 < 1.0) whereas, in the half-space (z/1 > 1.0), minor difference 

between the vertical stresses from the present and classical solutions is observed. 

The indentation forces on a layered elastic half-space with the consideration of 

surface energy effects are also investigated. Figure 4.5 (a) presents variations of 

normalized indentation force with the normalized contact radius, a , for different values 

of normalized layer thickness h/a. The dash lines in the figure indicate the 

corresponding classical elasticity solutions (i.e.  s =  s  0), and they are size-

independent. In addition, Pc denotes the indentation force on an elastic half-space (h/a 

→ ) for the classical elasticity. It is clearly seen from Figure 4.5 (a) that under the 

influence of surface energy effects the normalized indentation force depends 

significantly on the contact radius indicating a size-dependent behavior. The 

indentation force increases with decreasing the layer thickness, which is physically 

realistic since the upper layer is softer than the underlying half-space, the reduction in 

thickness then renders the layered medium stiffer. In addition, the indentation force 

decreases with increasing the contact radius, and it converges to the classical solution. 

To study the influence of shear moduli in the layered medium, variations of 

normalized indentation force with the ratio 1/2 for different values of h/a are shown 

in Figure 4.5 (b). It is evident from Figure 4.5 (b) that the present solution and the 

classical solution display similar behavior where the indentation forces decrease with 

increasing the ratio of 1/2 for all values of layer thickness. This behavior was also 

noted by Dhaliwal (1970), who studied axisymmetric rigid indentation on an elastic 

layer overlying an elastic half-space. In addition, the indentation force from the present 

study is higher than its classical counterpart confirming the fact that the influence of 

surface energy effects renders the layered medium stiffer. 

The second set of numerical results corresponding to rigid frictionless 

indentation under a paraboloidal indenter with the normalized profile of ( ) 20.5r r =  

is reported in Figures 4.6 - 4.8. This case is a smooth contact punch where the contact 

radius a is unknown a priori. Note that the contact radius is obtained by imposing the 
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continuity of vertical stress on the top surface at r = a. In addition, the normal ring load 

is not induced along the indenter edge under smooth contact indentation. Radial profiles 

of normalized contact pressure and normalized surface displacement under 

paraboloidal indentation are illustrated in Figure 4.6 for 
1 2

s s   = 0.5, 1, 2, and 4 by 

varying the value of 
1

s  with the values of 
2

s  and other material parameters being 

unchanged. In addition, h/a = 1 and a  = 1 are employed for the numerical results shown 

in Figure 4.6. It is evident that the surface stresses have a significant influence on 

normalized contact pressure and surface displacement under paraboloidal indentation. 

The normalized contact pressure profiles presented in Figure 4.6 (a) show no singularity 

at the edge of a smooth contact indenter. The contact pressure from the classical solution 

vanishes at the indenter edge whereas, in the present solution, non-zero contact pressure 

is observed at r = a due to the existence of surface stresses. In addition, numerical 

results presented in Figure 4.6 reveal that both contact pressure and displacement in the 

present study increase with increasing the values of 
1 2

s s  , and they are higher than the 

classical solutions since the surface stresses render the layered medium stiffer, and 

larger indentation force is then required for the same indentation depth. 

Figures 4.7 illustrates radial profiles of normalized vertical displacements and 

vertical stresses in a layered elastic medium under paraboloidal indentation at various 

depths for h/a = 1 and a  = 1. Figure 4.7 reveals that the influence of surface stresses 

on elastic fields under paraboloidal indentation is similar to what observed under flat-

ended cylindrical punch shown in Figure 4.4. The vertical displacements under the 

influence of surface stresses are larger than the corresponding classical solutions in both 

layer and half-space, and the presence of surface energy effects results in discrepancy 

in vertical stresses between the present and classical solutions, especially in the top 

layer.  

Figures 4.8 (a) and 4.8 (b) respectively show variations of normalized 

indentation force on a layered elastic half-space with contact radius a  and shear 

modulus ratio 1/2 for different values of layer thickness h/a. Numerical results 

presented in Figure 4.8 indicate that the indentation force under paraboloidal punch 

displays similar dependence on the surface energy effects when compared to what 

observed in Figure 4.5 for non-smooth contact indentation. In Figure 4.8 (a), the 
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indentation force decreases with increasing the layer thickness and the contact radius, 

and it converges to the classical solution for increasing values of a . The indentation 

forces from the present study and the classical elasticity decrease with increasing the 

ratio of 1/2 for all thicknesses as shown in Figure 4.8 (b). It is also found that the 

indentation force under paraboloidal punch is independent of the ratio 1/2 when h/a 

≥ 10. This implies that an analysis of a layered elastic half-space under the paraboloidal 

punch and the influence of surface energy effects can be performed as a rigid 

indentation on an elastic half-space with the properties identical to the top layer of the 

layered medium when the thickness of the top layer is at least ten times greater than the 

contact radius. 

 

4.3 Nanoindentation with Adhesive Contact 

The analysis of nanoindentation outlined in the previous section are carried out 

based on the assumption of frictionless contact surface. If the coefficient of friction 

between a rigid flat-ended cylindrical punch and a layered elastic half-space is large 

enough, the indenter is prevented from any sliding on the contact area. This condition 

is known as an adhesive contact. For axisymmetric adhesive indentation as shown in 

Figure 4.9, the surface of the upper layer can be decomposed into a surface outside the 

contact region (r > a) on which both normal and shear stresses are identically zero, and 

a surface inside the contact region (r ≤ a) on which the normal displacement is 

prescribed in terms of the indentation depth d and the radial displacement is zero at 

every point of the contact region. The mixed boundary conditions at the top surface for 

the adhesive contact problem can then be expressed as 

1 0
; 0z z

u d r a
=

=      (4.12) 

1 0
0; 0r z

u r a
=

=      (4.13) 

2

1 1
1 1 20

0

1
0;s z z

zz z

z

d u du
a r

dr r dr
 

=

=

 
+ + =    

 
   (4.14) 
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2

1 1 1
1 1 2 20

0

1
0;s r r r

rz z

z

d u du u
a r

dr r dr r
 

=

=

 
+ + − =    

 
  (4.15) 

In addition, the continuity conditions at the interface are given by Eqs. (3.26) to (3.29). 

By using the method of superposition, the normal and radial surface 

displacements are given by Eqs. (4.12) and (4.13), can be expressed in the form of 

integral equations as, 

( ) ( ) ( ) ( )
0 0

, , ;
a a

N R

z zU r r p r dr U r r q r dr d      +  =   0 r a    (4.16) 

( ) ( ) ( ) ( )
0 0

, , 0;
a a

N R

r rU r r p r dr U r r q r dr      +  =   0 r a    (4.17) 

where ( ),j

iU r r  denotes the Green’s function corresponding to the normal (i = z) or 

radial (i = r) surface displacement at any distance r on the contact surface due to a unit 

normal (j = N) or a unit radial (j = R) ring load acting on the surface of the upper layer 

at the radius r. The Green’s functions corresponding to the normal and radial surface 

displacements of a layered elastic half-space with consideration of surface energy 

effects can be expressed in the form of Hankel integral transform as 

( ) ( ) ( )2

1 1 0
0

1 1

2 2
, 1

1 1

k

zU r r A B C D J r d     
 

      
 = − +  + + −    

+ +     
   (4.18) 

( ) ( )   ( )2

1 1 1
0

, 1k

rU r r A B C D J r d     


 = +  − + + +   (4.19) 

where 
1 1 1  = ; 1r r=  ; and ( ) ( )1 1 1 1 1 1 12 2s      = + + . In addition, A, B, C 

and D are the arbitrary functions of the applied surface loads at any the radius r, which 

are given explicitly in Chapter III and the superscript “k” is used to denote a unit normal 

ring load (k = N) or a unit radial ring load (k = R) acting on the surface of the upper 

layer. Note that the loading function ( )P   is defined in Eq. (4.6) whereas ( )Q   is 

given by 

( ) ( )1Q r J r  =    (4.20) 
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For the analysis of the adhesive contact problem, the normal traction, p(r), and 

the shear traction, q(r), can be represented as discrete regions of uniform traction acting 

over annular areas. The contact surface under the indenter is discretized into a number 

of Ne annular ring elements. It is assumed that p(r) and q(r) are constant within each 

ring element. The vertical and radial surface displacements at the contact surface, Eqs. 

(4.16) and (4.17), can then be expressed as, 

     
=    

    

N R

z z

N R

r r

p dU U

q 0U U
   (4.21) 

where the elements ( ),k

z i jU r r  and ( ),k

r i jU r r  (i,j = 1, 2,…, Ne) of matrices k

zU  and 

k

rU  respectively denote the Green’s functions corresponding to the normal and radial 

surface displacements of a layered elastic half-space at the center of the ith ring element 

subjected to a uniform annular normal load (k = N) or a uniform annular radial load 

(k = R) over the jth ring element. Note that uniform annular normal loading is given 

by Eq. (4.9) whereas uniform annular radial loading can be obtained from the 

integration of Eq. (4.20). In addition, 

( ) ( ) ( )1 2 ...
T

Nep r p r p r=p    (4.22) 

( ) ( ) ( )1 2 ...
T

Neq r q r q r=q    (4.23) 

...
T

d d d=d    (4.24) 

If a frictionless contact between a rigid flat-ended cylindrical punch and a layered 

elastic half-space is considered, the shear traction vanishes and the surface 

displacement at the top surface in Eq. (4.21) is then reduced to 

( ) ( )
1

,
Ne

N

z i j j

j

U r r p r d
=

 =    (4.25) 

Once the normal traction p(r) and the shear traction q(r) in the contact area are 

obtained, all elastic fields within the bulk material of the layered half-space under 
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axisymmetric indentation as shown in Figure 4.9 can be determined from the following 

equation: 

( ) ( ) ( ) ( ) ( )
0 0

, , ; , ;N RR r z R r z r p r dr R r z r q r dr
 

     =  +     (4.26) 

where ( ),R r z  denotes displacements and stresses at any point (r, z) of the layered 

elastic half-space; ( ), ;NR r z r  and ( ), ;RR r z r are the Green’s functions corresponding 

to displacements and stresses at any point (r, z) within the bulk material due to a unit 

normal load and a unit radial load (ring or annular), respectively, acting on the surface 

of the upper layer at the radius r. Note that all elastic fields within the bulk material 

expressed in the forms of Hankel integral transforms are given in Chapter III. 

Numerical solution scheme based on the discretization approach in the previous 

section is implemented into a computer program to study flat-ended cylindrical punch 

on a layered elastic half-space under adhesive contact as shown in Figure 4.9. The 

unknown contact traction (both normal and shear) between the rigid indenter and the 

layered medium can be represented as discrete regions of uniform tractions acting over 

annular regions as expressed in Eq (4.21). The required Green’s functions, ( ),j

iU r r , 

are determined from a layered elastic half-space subjected to a uniform annular load of 

unit intensity, and the numerical evaluation of these Green’s functions is discussed in 

Chapter III. 

The accuracy of the obtained numerical results are validated with existing 

solutions. First, the present solution is specialized for the case of adhesive contact 

between flat-ended cylindrical punch of radius a and an elastic half-space without 

surface stress effects. Figure 4.10 shows comparisons between the numerical solutions 

from the present study and existing solution given by Spence (1968). The following 

material parameters are employed: 1  = 2  = 58.17 GPa and 1  = 2  = 26.13 GPa. In 

addition, the surface parameters are set to be negligibly small in the present solution 

(i.e. 
1 2

s s = =  
1 2 0s s =  ). Comparisons of normalized contact pressure and surface 

displacement profiles at the top surface are shown in Figures 4.10 (a) and 4.10 (b) 

respectively. Numerical results presented in Figure 4.10 (a) indicate that a very good 
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agreement between the present and benchmark solutions is obtained when Ne = 40 for 

the normalized contact pressures. Similarly, both normal and radial surface 

displacements obtained from the current study agree very closely with the benchmark 

solutions with Ne = 40 as shown in Figure 4.10 (b). 

Figure 4.11 shows the comparison between the present study and an existing 

solution proposed by Pinyochotiwong et al. (2013) for an axisymmetric rigid 

frictionless flat-ended punch acting on a homogeneous elastic half-space with the 

influence of surface stresses. The corresponding surface material constants employed 

in the present solution defined as 
1

s = 1 N/m and 
1

s = 6.0991 N/m at the top surface 

whereas 
2

s = 
2

s   0 at the interface. Comparisons of normalized contact pressure and 

vertical displacement profiles at the top surface shown in Figures 4.11 (a) and 4.11 (b) 

respectively indicates a very good agreement between the present solution and the 

benchmark solution (Pinyochotiwong et al., 2013). The accuracy of the proposed 

solution scheme is thus confirmed through these comparisons. 

Next, the influence of surface energy effects on rigid indentation with adhesive 

contact on a layered elastic half-space is investigated for a flat-ended cylindrical 

indenter as shown in Figure 4.9. For convenience, the following non-dimensional 

quantities are used: z  = z/1; h  = h/1; a  = a/1 and d  = d/1. The discretization 

technique with Ne = 40 is used for the numerical results of the adhesive contact problem 

presented hereafter. In addition, the material properties employed in the top surface and 

the bulk in the top layer are identical to those considered by Pinyochotiwong et al. 

(2013) whereas 2 = 78.08 GPa, 2 = 40.23 GPa for the bulk of the underlying half-

space; and 
2

s = 0.3944 N/m,
2

s  = -3.9506 N/m at the interface. Note that the broken 

lines in all figures presented in this section denote the classical solutions corresponding 

to the indentation on the layered elastic half-space with no surface energy effects (i.e. 

 s =  s   0). Figures 4.12 (a) and 4.12 (b), respectively display radial profiles of 

contact pressure and vertical surface displacement under the indenter for both adhesive 

and frictionless contacts with a  = 1 and h/a = 1. It is evident from Figure 4.12 that the 

numerical results from the present study and the classical solution exhibit similar trends 

for both pressure and displacement profiles, and the surface energy influence renders 
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the layered medium stiffer. Numerical results presented in Figure 4.12 (a) indicates that 

both classical and present solutions show singular contact traction close to the indenter 

edge. In addition, the traction developed under the adhesive contact is comparatively 

higher than that under the frictionless contact due to the presence of adhesion resulting 

in higher indentation force is then required to produce the same indentation depth. 

Figures 4.13 (a) and 4.13 (b) respectively present radial variations of normalized 

displacements and stresses of a layered elastic half-space under adhesive indentation at 

different depths for the contact radius of a = 1.0 and the layer thickness of h/a = 1. It is 

evident from Figure 4.13 that the solutions from the present study and the classical 

elasticity exhibit similar trends. Figure 4.13 (a) indicates that both vertical and radial 

displacements from the present study are higher than the classical elastic solutions. 

Numerical results for the normalized vertical stress and shear stress at various depths 

shown in Figure 4.13 (b) reveal that the presence of surface stresses causes the reduction 

in stresses under the contact region, whereas outside the contact region the increase of 

stresses is observed. In addition, the influence of the surface stress becomes negligible 

when r/a > 2.5. 

To demonstrate the effect of contact radius a of flat-ended cylindrical punch on 

a layered elastic half-space with the influence of surface energy, Figures 4.14 (a) and 

4.14 (b) show radial variations of normalized contact pressure and surface 

displacements of the layered half-space with h/a = 1 for different values of the 

normalized contact radius, i.e. a  = 1a   = 0.5, 1.0 and 1.5. Note that the solution with 

a  = 1.0 corresponds to the case where the thickness of the layer is equal to the 

characteristic length ( 1 ). It can be obviously seen from Figure 4.14 (a) that the 

singularity of normal and shear tractions is observed close to the edge of indenter for 

both classical and present solutions. It should be noted that under the adhesive contact 

normal and radial ring loads have to be applied at r = a in the present solution to account 

for both ring loadings induced at the indenter edge due to the presence of the residual 

surface stress. The applied vertical force P would then be supported by both ring loads 

together with the contact pressure generated under the indenter. The size-dependency 

of the present solution is clearly observed in contact pressure and displacement profiles 

shown in Figure 4.14 whereas the classical elasticity solution is size-independent. It is 
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also found that the influence of surface stress is reduced when the radius of the indenter 

becomes larger and the present solution eventually converges to the classical solution. 

The influence of the residual surface stress ( s ) on the normalized contact 

pressure and surface displacement are investigated respectively in Figures 4.15 (a) and 

4.15 (b) with a  = 1 and h/a = 1. The ratios of the residual surface stresses at the top 

surface and interface are varied, i.e. 
1 2

s s  = 0.5, 1, 2, 4 whereas other material 

parameters associated with both upper layer and underlying half-space remain 

unchanged. It is obvious that the normal traction and vertical surface displacement are 

larger than the shear traction and radial surface displacement. Numerical results in 

Figure 4.15 show radial variation of normalized contact pressures and surface 

displacements in the z-direction under indentation with adhesive contact. Figure 4.15 

(a) indicates that the normal contact pressure from the present study is lower than the 

classical solution. The normal pressure significantly decreases by increasing the ratio 

of residual surface stresses. In addition, the numerical results shown in Figure 4.15 (b) 

reveal that the normalized vertical surface displacements outside the contact area 

obtained from the present study are higher than the classical solution due to the presence 

of the residual surface stress, and the layered half-space becomes stiffer with increasing 

the ratio
1 2

s s  . 

To study the influence of shear moduli in the layered medium, radial variations 

of normalized vertical contact pressure and vertical surface displacement with a  = 1 

and h/a = 1 for different values of µ1/µ2 are shown in Figure 4.16. It is evident from 

numerical results on contact pressure and vertical displacement shown in Figure 4.16 

that the present and classical solutions display similar behaviors for all values of µ1/µ2, 

and the surface energy influence renders the layered medium stiffer. Numerical results 

presented in Figure 4.16 (a) reveal that the normal contact traction under the surface 

energy effects is lower than the classical solution. Figure 4.16 (b) also shows that the 

vertical surface displacements outside the contact area obtained from the present study 

are higher than the classical solution since higher indentation force is required to 

produce the same indentation depth due to the existence of surface effects. 
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To demonstrate the size-dependent behavior, the final set of numerical solutions 

is concerned with the indentation force on a layered elastic half-space with surface 

energy effects. Figure 4.17 presents variations of normalized indentation force, P/Pc, 

with the normalized contact radius a  for different values of the layer thickness h/a. The 

dotted lines in the figure indicate the normalized indentation forces corresponding to 

the frictionless contact where the surface energy effects are considered while the dash 

line corresponds to the classical adhesive contact where the surface energy effects are 

ignored (i.e. s  = 
s   0). In addition, Pc indicates the indentation force on an elastic 

half-space ( /h a →  ) for the classical frictionless case. It is obviously seen from 

Figure 4.17 that the normalized indentation forces show a significant dependence on 

the thickness of the upper layer and the contact radius for both adhesive and frictionless 

contacts due to the influence of surface energy effects. The indentation force increases 

when the layer thickness decreases. This is physically realistic since the upper layer is 

softer than the underlying half-space the reduction in the upper layer thickness then 

renders the layered half-space stiffer. In addition, the indentation force decreases with 

increasing the contact radius converging to the classical one. Thus, size-dependent 

behavior is once again observed from the results shown in Figure 4.17 and it is 

confirmed that a larger indentation force is required for adhesive contact than that under 

frictionless contact to produce the same contact area. 

 

4.4 Conclusion 

The influence of surface energy effects on a layered elastic half-space under 

rigid indentation with consideration of frictionless and adhesive contacts is investigated 

in this chapter based on Gurtin-Murdoch theory of surface elasticity. The analytical 

solution of the mixed-boundary value problem of indentation problem is formulated 

with the displacement Green’s functions constructed from the fundamental solutions of 

a layered elastic medium with consideration of surface stresses derived in Chapter III. 

The unknow contact pressure distribution under an indenter of axisymmetric profiles is 

determined by using a discretization technique. The accuracy of the proposed solution 

scheme is confirmed by comparing with exiting solutions. Presented numerical results 

both frictionless and adhesive contacts indicate a significant influence of surface energy 
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effects on elastic fields in the layered medium, especially in the vicinity of the contact 

area. The presence of surface stresses renders the layered medium stiffer, and size-

dependent behavior is observed. In addition, the indentation force depends significantly 

on the layer thickness, the shear moduli in the layered medium, and the contact radius 

under the influence of surface stresses. The present solution can be used as a benchmark 

solution in the development of numerical techniques such as the finite element and 

boundary element methods for analysis of more complicated problems related to nano-

indentation on a layered elastic medium under the influence of surface energy effects. 
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(a) 

 

(b) 

Figure 4.1 A layered elastic half-space under axisymmetric indentation: (a) 

paraboloidal indentation and (b) flat-ended cylindrical indentation. 
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(a) 

 

(b) 

Figure 4.2 Comparisons of normalized contact pressure: (a) without surface energy 

effects and (b) with surface energy effects. 
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(a) 

 

(b) 

Figure 4.3 Radial variations of elastic fields under flat-ended cylindrical indenter with 

h/a = 1 and a  = 1 for different values of 
1 2/s s  : (a) normalized contact pressure and 

(b) normalized surface displacement. 
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(a) 

 

(b) 

Figure 4.4 Radial variations of elastic fields at different depths under flat-ended 

cylindrical indenter with h/a = 1 and a  = 1: (a) normalized vertical displacement and 

(b) normalized vertical stress. 
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(a) 

 

(b) 

Figure 4.5 Variations of normalized indentation force under flat-ended cylindrical 

indenter for various layer thicknesses with (a) contact radius and (b) ratio of shear 

moduli. 
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(a) 

 

(b) 

Figure 4.6 Radial variations of elastic fields under paraboloidal indenter with h/a = 1 

and a  = 1 for different values of
1 2/s s  : (a) normalized contact pressure and (b) 

normalized surface displacement. 
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(a) 

 

(b) 

Figure 4.7 Radial variations of elastic fields at different depths under paraboloidal 

indenter with h/a = 1 and a  = 1: (a) normalized vertical displacement and (b) 

normalized vertical stress. 
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(a) 

 

(b) 

Figure 4.8 Variations of normalized indentation force under paraboloidal indenter for 

various layer thicknesses with (a) contact radius and (b) ratio of shear moduli. 
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Figure 4.9 An adhesive contact between a rigid flat-ended cylindrical punch of radius 

a  and a layered elastic half-space. 
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(a) 

 

(b) 

Figure 4.10 Comparisons of normalized contact pressures and surface displacements 

for classical numerical solutions with existing solutions under adhesive contact of 

flat-ended cylindrical indenter: (a) normalized contact pressure and (b) normalized 

surface displacements. 
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(a) 

 

(b) 

Figure 4.11 Comparisons of normalized contact pressure and surface displacement for 

surface effects with existing solutions under frictionless contact of flat-ended 

cylindrical indenter: (a) normalized contact pressure and (b) normalized surface 

displacement. 
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(a) 

 

(b) 

Figure 4.12 Distribution of normalized contact pressure and vertical surface 

displacement profiles under flat-ended cylindrical indenter with h/a = 1 and a  = 1: (a) 

normalized contact pressure and (b) normalized vertical surface displacement. 
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(a) 

 

(b) 

Figure 4.13 Radial variations of elastic fields at different depths under flat-ended 

cylindrical indenter with h/a = 1 and a  = 1: (a) normalized displacements and (b) 

normalized stresses. 
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(a) 

 

(b) 

Figure 4.14 Radial variations of elastic fields under flat-ended cylindrical indenter 

with h/a = 1 for different contact radii a : (a) normalized contact pressure and (b) 

normalized surface displacement. 
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(a) 

 

(b) 

Figure 4.15 Radial variations of elastic fields under flat-ended cylindrical indenter 

with h/a = 1 and a  = 1 for different values of 
1 2

s s  : (a) normalized contact pressure 

and (b) normalized surface displacement. 
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(a) 

 

(b) 

Figure 4.16 Radial variations of elastic fields under flat-ended cylindrical indenter 

with h/a = 1 and a  = 1 for different ratio of shear moduli 1 2  : (a) normalized 

contact pressure and (b) normalized surface displacement. 
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Figure 4.17 Variations of normalized indentation force under flat-ended cylindrical 

indenter for various layer thicknesses, h/a versus contact radius, a . 
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INTERACTION BETWEEN CIRCULAR NANO-PLATE AND ELASTIC 

MEDIUM 

5.1 General 

In this chapter, a variational formulation of interaction problem is presented for 

the analysis of an elastic circular plate subjected to a concentrated or uniformly 

distributed loads resting on an isotropic elastic half-space under the influence of surface 

energy. The Gurtin-Murdoch surface elasticity theory is adopted to take into account 

the surface energy effects. The contact surface between the plate and the half-space is 

assumed to be smooth, and the deflected shape of the plate is represented by a power 

series of the radial coordinate. The undetermined coefficients in the series are 

determined through the minimization of the total potential energy functional of the 

plate-half-space system. Selected numerical results are presented to portray the 

influence of surface energy effects on interaction between an elastic circular plate and 

an elastic half-space. 

 

5.2 Basic Equations of Circular Nano-Plate 

Consider an elastic circular nano-plate of radius a subjected to axisymmetric 

vertical loading as shown in Figure 5.1. A nano-plate based on the Gurtin-Murdoch 

continuum model has an elastic surface (mathematically zero thickness) perfectly 

bonded to the bulk material. The displacement fields and the strain-displacement 

relationship can be expressed as 

( )
( );r z

dw r
u z u w r

dr
= − =    (5.1) 

( ) ( )2

2
;r r

rr

d w r dw rdu u z
z

dr dr r r dr
 = = − = = −    (5.2) 

The stress-strain relationship of the bulk material undergoing axisymmetric 

deformations can be expressed as 
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1

1 1 1 1

pl pl pl

rr rr zz

pl pl pl pl

E


 
   

   

 
= + + 

+ − − −  

   (5.3) 

1

1 1 1 1

pl pl pl

rr zz

pl pl pl pl

E
 

 
   

   

 
= + + 

+ − − −  

  (5.4) 

where {σrr, σθθ, σzz} denote the stress components; {ɛrr, ɛθθ} denote the strain 

components; {ur, uz} denote the displacement components of the bulk of the plate 

respectively. 

In the classical thin plate theory, the out of plane stress 
zz is neglected. 

According to Lim and He (2004); and Lu et al. (2006), the bulk stress zz is assumed to 

vary linearly through the plate thickness to satisfy the equilibrium conditions along the 

interface, and 
zz  can then be expressed as, 

( ) ( )
1

2
zz zz zz zz zz

pl

z

h
    + − + −= + + −    (5.5) 

where 
zz +  and 

zz −  are the stresses at the top and bottom surfaces respectively of the 

bulk of the plate. From the Gurtin-Murdoch theory of surface elasticity, the normal 

stress 
zz  can be rewritten in terms of surface stresses in Eqs. (3.5) to (3.8) as 

1

2

s s s s s s s s

zr zr zr zr zr zr zr zr
zz

pl

z

r r r r h r r r r

       


+ + − − + + − −      
= + − − + + + +   

      
  (5.6) 

2 2

2 2

2 2 1
2

s s

pl pls

zz pl

pl pl

zz d w dw d w dw

h dr r dr h dr r dr

 
 

   
= + = +    

  

  (5.7) 

where the superscript “s” is used to denote the quantities corresponding to the surface 

material; 
s

pl  is the residual surface stress (or surface tension) under unstrained 

conditions of the plate. In addition, the other normal stresses in terms of generalized 

displacement, w(r) can be expressed as 

2 2

2 2

21 1

1 1 1 1

s

pl pl pl pl

rr

pl pl pl pl pl

E zd w z dw d w dw
z

dr r dr h dr r dr

  


   

     
= − + − + +     

+ − − −      

  (5.8) 
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2 2

2 2

21 1

1 1 1 1

s

pl pl pl pl

pl pl pl pl pl

E zz dw d w d w dw
z

r dr dr h dr r dr


  


   

     
= − + − + +     

+ − − −      

  (5.9) 

where 
plE  and 

plv  are Young’s modulus and Poisson’s ratio of the plate material 

respectively; 
plh  is the thickness of the plate. 

 

5.3 Total Potential Energy of Circular Nano-Plate 

The total potential energy of an elastic circular nano-plate consists of the strain 

energies of the plate and the surface together with the potential energies of point force 

P and axisymmetric vertical loading p(r) as shown in Figure 5.1. The deflection of the 

plate in the z-direction denoted by w(r) can be represented by the following 

kinematically admissible form as  

( ) 2 2

0

0

ln ; 0
N

n

n

n

w r a r r r r a
=

= +       (5.10) 

where  

0 *8

P
a

D
=  and 

( )

3

*

212 1

pl pl

pl

E h
D

v
=

−
   (5.11) 

In addition, n  (n = 0, 1, …, N) denotes a set of generalized coordinates. The term 

2 lnr r  is incorporated in the deflection form, Eq. (5.10), to simulate the singular stress 

resultants at the plate origin due to the presence of concentrated force P. 

The strain energy UP of the plate contains two parts, i.e., the elastic strain energy 

stored in the bulk material (UB) and the elastic strain energy of the surface (US), which 

are expressed respectively as 

( )
1

2
B rr rr

V
U dV    = +    (5.12) 

( )
1

2
2

s s s s s s

S rr rr rz rzU d           


= + +     (5.13) 
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where V and  are the bulk volume and the surface area of the plate respectively. 

The expression of the strain energy UP of a thin circular nanoplate in terms of 

generalized coordinates 1 2, ,..., N    is written in the following matrix form: 

( )
2

2 2 2 2 2

0 1 0 13 ln 4 4
4

s

pl s

P pl

a
U a a D D a a a D D a


  

 
= + + + + +  

 

 

( ) ( ) ( ) 
22 2 2

0 1 0 12 ln 2 2 4 ln 2s s

pl pla a a D D a a a D D   + + + + + +p1 p2 p3Q Q Q α   

( ) 0 12 2 4 s

pla D D + + +p4 p5 p6Q Q Q α  

  ( ) 12 2
T s

plD D       + + +     
P1 P2 P3α K K K α   (5.14) 

The elements p

iQ  of order (N+1), and   
Pi

K  of order (N+1)×(N+1), are given by 

22 iia=P1

iQ    (5.15) 

22 iia=P2

iQ    (5.16) 

2 22

2 2

iia

i

+

=
+

P3

iQ    (5.17) 

( ) 23 2 ii a= −P4

iQ    (5.18) 

22 iia=P5

iQ    (5.19) 

( )

2 2 2

2

2

2 2

ii a

i

+

=
+

P6

iQ    (5.20) 

( )( )
2 2 24

2 1 2 1 1
2 2 2

i jij a
i j

i j

+ −
= − − +  + −

P1

ijK    (5.21) 

( ) 2 2 24 2 1

2 2 2

i jij j a

i j

+ −− 
=

+ −

P2

ijK    (5.22) 
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2 24

2 2

i jij a

i j

+
=

+

P3

ijK    (5.23) 

The total potential energy PI  of the plate contains two parts, i.e., the strain 

energy of the plate (UP) and the potential energy of external forces (W) as shown in 

Figure 5.1. In addition, the potential energy due to a vertical load p(r) as shown in 

Figure 5.1 is written as 

( ) ( )W p r w r d


= −     (5.24) 

In view of Eqs. (5.12), (5.13) and (5.24), the total potential energy PI  of nano-plate is 

given by, 

P PI U W= +    (5.25) 

( )
( )

( )

2 23 22 2 2

2 2 220

2 11 1

6 112 1

s
r plpl pl pl pl pl

P

plpl

E h hd w dw dw d w d w dw
I rdr

dr r dr r dr dr dr r dr

  




  −    
 = + − − +    

−−        
  

( ) ( )
2 2 22 2 2

2

2 20

1 1
2 2

2

r pls s s s s

pl pl pl pl pl pl

h d w dw dw dw d w
h rdr

dr r dr dr r dr dr
     

         
 + + + + + +       

          
  

( ) ( ) 
0

2
r

p r w r rdr+ −     (5.26) 

where 
s

pl  and 
s

pl  are surface Lamé constants for the elastic plate. 

The minimization of PI  in Eq. (5.26) together with the integration by parts leads to the 

governing equation for a circular nano-plate 

( )4 22 0s

plD w w p r −  − =    (5.27) 

where 

( )
( )

( )

3 2 2

2
2

2 6 112 1

s

pl pl pl pl pl pls s

pl pl

plpl

E h h v h
D

v


 


= + + −

−−
   (5.28) 

and 
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2 1 d d
r

r dr dr

 
 =  

 
   (5.29) 

The bending moment and shear force of circular nano-plate are given respectively by 

2

1

2r

Dd w dw
M D

dr r dr
= +    (5.30) 

2 2 s

r pl

d dw
Q D w

dr dr
= −  +    (5.31) 

where  

( )
( )

( )

3 2 2

1 2 2 6 112 1

s

pl pl pl pl pl pl pls s

pl pl

plpl

v E h h v h
D

v


 


= + + −

−−
   (5.32) 

Equations (5.27) to (5.32) are identical to the governing equation for a nano-plate 

derived by Liu and Rajapakse (2013) from the equilibrium of an infinitesimal plate 

element. This equation reduces to the classical Kirchhoff equation when the surface 

energy effects is completely neglected (i.e., 
s

pl , 
s

pl  and 
s

pl  are set to zero). 

 

5.4 Variational Formulation of Interaction Problem 

Consider an elastic circular nano-plate of radius a under axisymmetric vertical 

loading resting on an elastic half-space as shown in Figure 5.2 with the consideration 

of surface energy effects. For interaction problem, the circular plate under axisymmetric 

vertical loading is resisted by the normal contact traction acting on bottom surface of 

the plate. Let S denote the circular contact area between the plate and the supporting 

medium. The normal traction can be represented by a traction field Tz (r) acting on the 

circular surface S. The strain energy Uh of the elastic half-space can be expressed in the 

following form:  

( ) ( )
0

1
2

2

a

h zU rT r w r dr=       (5.33) 

Note that ( )zT r  can be expressed in terms of generalized coordinates n as follows: 
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( ) ( ) ( )0

0

*
N

z n zn

n

T r T r a T r
=

= +    (5.34) 

where Tzn (r) and T*(r) denote the tractions in the vertical direction applied over S such 

that the vertical displacements within S is equal to r2n and r2ln r, respectively. 

To determine the traction Tz (r), the circular contact area S is discretized into a 

number of Ne annular ring elements as shown in Figure 5.3. It is assumed that Tzn (r) is 

constant within each ring element. The unknown contact traction Tzn (r) is then 

evaluated by solving a flexibility equation based on the Green’s function of an elastic 

half-space with consideration of surface energy effects under axisymmetric vertical 

loading. The Green’s function can be expressed in the form of Hankel integral 

transform as (Intarit, 2012). 

( )
( )

( ) ( ) ( )1 1 0

0

2 4
,

2 2

i i o o iN h h h h
z i j

h h h h h h

r J r r J r J r
U r r d

      


      

     −   + +    
= +  

+ +   
   (5.35) 

( )
2 3

1
2 2

s

h h h h h

h h h h h

     
  

    

 + +
= +  + +  

+ + 
  (5.36) 

( )( ) ( )2 2 2s s

h h h h h h h       = + + +    (5.37) 

where h  and h  are Lamé constants of the elastic half-space; s

h  and s

h  are surface 

Lamé constants at the top surface of the elastic half-space; s

h  is the residual surface 

stress (or surface tension) under unstrained conditions at the top surface of the elastic 

half-space. In addition, ( )2i j jr r r= −   and ( )2o j jr r r = +   are inner and outer radii 

of the annular loading. 

The traction Tzn (ri) acting on the ith ring element (i = 1, …, Ne) is determined by solving 

the flexibility equation: 

     = 
N

z zn nU T w ; n = 0, …, N  (5.38) 

The elements 
N

zijU , zniT  and niw  of   
N

zU ,  znT  and  nw  respectively are given by 
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( ),N

z i jU r r=N

zijU    (5.39) 

( )zn iT r=zniT    (5.40) 

2n

ir=niw    (5.41) 

where ( ),N

z i jU r r  (i, j = 1, 2, …, Ne) denotes the Green’s function corresponding to 

vertical surface displacement of an elastic half-space with consideration of surface 

energy effects at the centre of the ith ring element due to a uniform annular normal 

load over the jth ring element.  In addition, the traction T *(ri) acting on the ith ring 

element (i = 1, …, Ne) is determined by solving Eq. (5.38) with 2 lnn i iw r r= . 

From Eqs. (5.10) and (5.34), Uh in Eq. (5.33) can be expressed as 

      2 * 3

0

1

ln
Ne

T

h j zj j j

j

U a r T r r
=

 = + +   h hα K α Q α   (5.42) 

The elements 
h

ijK  of   
hK , of order (N+1)×(N+1) is given by 

( ) ( ) ( )2 1

1
1

Ne
j

l l lz i
l

rT r r
−

−
=

=  h

ij
K ; 1 ≤ i, j ≤ (N+1)  (5.43) 

The elements h

iQ  of hQ  in Eq. (5.42) are given by 

( ) ( )* 2 1 3

0 1
1

ln
Ne

i

j zj j j j j jz i
j

a r T r r T r r r −

−
=

 =  +  
 h

iQ ; 1 ≤ i ≤ (N+1) (5.44) 

The total potential energy I of an elastic circular nano-plate-half-space system 

under the influence of surface energy consists of the strain energies of the nano-plate 

(UP) and the half-space (Uh) given by Eqs. (5.14) and (5.42), respectively, and the 

potential energies of point force P and uniformly distributed loading p0 as shown in 

Figure 5.2 which can be expressed in terms of the generalized coordinates i  (i = 0, 1, 

…, N) as 

( ) ( ) ( )
2

22 2 2 2 2 2 2 2

0 1 0 1 0 13 ln 4 4 2 ln 2 2
4

s

pl s s

pl pl

a
I a a D D a a a D D a a a a D D a


    

 
= + + + + + + + + 

 
 
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( )  ( ) 0 1 0 14 ln 2 2 2 4s s

pl pla a D D a D D   + + + + + +p p p p p p

1 2 3 4 5 6
Q Q Q α Q Q Q α  

  ( )   12 2
T s

plD D         + + + + +       
P1 P2 P3 h h

α K K K K α Q α  

( )2 * 3 2 2

0 0 0

1 0

ln 2 2 2
Ne N

n

j zj j j n

j n

a r T r r P p a n    +

= =

+  − −  +    (5.45) 

For an elastic nano-plate resting on the surface of an elastic medium, as shown in Figure 

5.2, the plate deflection is such that it satisfies the following boundary conditions along 

the edge of the plate at r = a: 

( ) 0rM a =  and ( ) 0rQ a =    (5.46) 

By using equations (5.30) and (5.31), the boundary conditions can be expressed as two 

linear equations in the generalized coordinates αn (n = 0, 1, 2, …, N): 

    =B α R    (5.47) 

where 

  0 1 ...
T

N  =α    (5.48) 

The elements 
ijB  and iR  of  B  and  R , of order 2×(N+1) and 2 respectively, are 

given by 

( )( ) ( )2 4 2 4

12 1 2 3 2 1 ;j jj j Da j D a− −= − − + −1jB  1 1j N  +     (5.49) 

( ) ( ) ( )
2 2 5 2 34 1 2 4 4 1 ;j s j

plj j Da j a− −= − − − + −
2j

B  1 1j N  +   (5.50) 

( ) ( )0 0 1 0 03 2 ln 2 lnD a a a D a a a= − + − +1R    (5.51) 

( )0
0 0

4
2 2 lns

pl

Da
a a a a a

a
= − +2R    (5.52) 

In order to satisfy the  boundary condition along the edge of the plate given by Eq. 

(5.47), the total potential energy defined by Eq. (5.45) can be rewritten as 
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         
1

2

T

I I     = + − −   B α R B α R    (5.53) 

where   is a penalty number associated with the constraint term. 

Finally, the generalized coordinates i  (i = 0, 1, …, N) are determined by using the 

principle of minimum potential energy, which required that 

0
i

I




=


; i = 0, 1, …, N   (5.54) 

The substitution of Eq. (5.53) in Eq. (5.54) yields the following system of linear 

simultaneous equation: 

    =K α F    (5.55) 

where  

  ( ) ( )
( ) ( )    

12

2

T T

T T Ts

pl

D D 

 

       = + + +       

       + + + + +       

P1 P1 P2 P2

P3 P3 h h

K K K K K

K K K K B B

  (5.56) 

  ( ) ( )

( )    

2 2

0 0 0 1

0 1

1 4 ln 2

2 2 4

TT i s

i pl

Ts

pl

P p a i a a D D

a D D

   

  

+= +  + − + +

− + + + −

p p p

1 2 3

p p p h

4 5 6

F Q Q Q

Q Q Q B R Q
 (5.57) 

in which 
ij  denotes a Kronecker delta. Note that the influence of penalty number  on 

numerical solution is within the range 1 ≤  ≤ 105 presented by Rajapakse (1988) to 

control the degree of accuracy. 

The solution of a linear simultaneous equation system given by Eq. (5.55) yields 

the solution of the generalized coordinates i  (i = 0, 1, …, N) for a given the nano-

plate-half-space system as shown in Figure 5.2. Thereafter, the nano-plate deflection, 

bending moment, and shear force can be obtained by back substituting the generalized 

coordinates into Eqs. (5.10), (5.30) and (5.31), respectively. 
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5.5 Numerical Results and Discussion 

A computer program based on a variational approach presented in this chapter 

has been developed to investigate the interaction problem between an elastic circular 

nano-plate and an isotropic elastic half-space as shown in Figure 5.2. The contact 

surface between the plate and half-space is assumed to be smooth, and the vertical 

displacement of the plate is represented by a power series of radial coordinate. The 

normal contact traction is expressed in terms of generalized coordinates through the 

solutions of the flexibility equations based on the Green’s functions for an elastic half-

space under uniform annular vertical loading and surface energy influence presented 

by Intarit (2012). The total potential energy of the nano-plate-half-space system 

consists of the strain energies of the plate, the surface, and the half-space, together with 

the potential due to the applied loading, given by Eq. (5.45). To obtain the solution of 

generalized coordinates, the principle of minimum potential energy is applied to the 

total potential energy of the nano-plate-half-space system with a constraint condition 

given by Eq. (5.54). 

The accuracy of the present solution scheme is confirmed by comparing with 

existing solutions. Figure 5.4 (a) shows the comparison of normalized deflection 

profiles of a circular nano-plate with a simply-supported edge under a uniform loading, 

p0, between the present solution and the solution proposed by Liu and Rajapakse (2013) 

for different number of generalized coordinates, N. The material parameters employed 

in the comparison are 
plE  = 90 GPa and 

pl = 0.23; and the surface material properties 

are 
s

pl  = 0.5689 N/m, 
s

pl  = 3. 4939 N/m, and 
s

pl  = -5.4251 N/m. In addition, the 

comparison of normalized deflection profiles of a circular nano-plate with a clamped 

edge under both a uniform load, p0, and a point load, P, between the present and existing 

solutions as shown in Figure 5.4 (b). It is clearly seen that very good agreement between 

the two solutions is obtained with N = 5. Figure 5.5 (a) and 5.5 (b) respectively show 

radial profiles of normalized contact traction and bending moment of a circular plate 

on an isotropic elastic half-space without surface stress effects, between the present 

solution with N = 8 and Ne = 40 and the solution proposed by Brown (1969)  for 

different values of relative plate stiffness, Kr, with 
pl  = 0.3. It is evident from Figure 
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5.5 that the present solution agrees very closely with Brown (1969) for all values of Kr. 

Note that the relative plate stiffness, Kr, is given as follows: 

( )21
pl pl

r h

h

E h
K

E a


 
= −  

 
   (5.58) 

where hE  and h  are Young’s modulus and Poisson’s ratio of the half-space, 

respectively. 

The influence of surface energy effects on interaction between an elastic circular 

plate under axisymmetric vertical loading and an elastic half-space is investigated in 

Figures 5.6 to 5.9. The following material parameters are employed in the numerical 

study: 
plE  = 107 GPa and 

pl  = 0.33 for the plate; and h  = 58.17 GPa and h  = 26.13 

GPa for the half-space. In addition, 
s

pl  = 0.6056 N/m, 
s

pl  = 4.4939 N/m, and 
s

pl  = 

2.7779 N/m for the surface of the plate; and s

h  = 1 N/m, s

h  = 6.8511 N/m, and s

h  = 

-0.376 N/m for the top surface of the half-space. Note that the broken lines in all figures 

presented in this section denote the classical solutions where surface stress effects are 

ignored (i.e. s = s = s  0). Figure 5.6 and 5.7 respectively display radial profiles of 

normalized vertical displacements and bending moments of a circular nano-plate 

resting on an elastic half-space under a uniformly distributed vertical load of magnitude 

p0 with a  = a/ = 10 for different values of relative plate stiffness, i.e., Kr = 0.1, 1 and 

10. Numerical results in Figure 5.6 and 5.7 indicate a significant influence of surface 

energy effects on both deflection and bending moment. It can be seen from Figure 5.6 

that the normalized deflection from the present study is lower than its classical 

counterpart for all values of relative stiffness Kr whereas the normalized bending 

moment under the influence of surface stresses shown in Figure 5.7 is always larger 

than the corresponding classical solution. Therefore, the presence of surface stresses 

renders the plate stiffer.  

Figure 5.8 shows variations of normalized central deflection of a circular nano-

plate under the uniform vertical loading with normalized radius a  for different values 

of relative stiffness Kr. It is evident from Figure 5.8 that under the influence of surface 

energy the normalized central deflection depends significantly on both normalized 
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radius and relative stiffness of the plate. Size-dependent behaviour due to the presence 

of surface stresses is thus clearly observed in the present solution whereas the classical 

elasticity solution is size-independent. Similarly, variations of normalized maximum 

bending moment of a circular nano-plate under the uniform vertical loading with 

normalized layer thickness, plh  where plh = 
plh /  is presented for different values of 

relative stiffness Kr as shown in Figure 5.9. It is clearly demonstrated that the presence 

of surface stresses render the plate stiffer, and the material behaviour becomes size-

dependent when the surface stresses are considered. In addition, the influence of surface 

energy effects is reduced with increasing value of a  and plh  , and the present solution 

eventually converges to the classical solution. 

 

5.6 Conclusion 

A variational solution scheme is presented in this chapter to study the interaction 

problem between an elastic circular nano-plate and an isotropic elastic half-space under 

the influence of surface energy by adopting Gurtin-Murdoch surface elasticity theory. 

The contact surface between the nano-plate and the half-space is assumed to be smooth, 

and the deflection shape of the nano-plate is represented by a power series of the radial 

coordinate. The generalized coordinates in the series are obtained from the 

minimization of the total potential energy functional of an elastic circular nanoplate-

half-space system, which consists of the strain energies of the plate, the surface, and the 

half-space, together with the potential due to the applied loading. The accuracy of the 

proposed solution scheme is confirmed by comparing with exiting solutions. Numerical 

results presented in this chapter indicate a significant influence of surface energy effects 

on the interaction problem, and the consideration of surface stresses renders the plate 

stiffer. In addition, the material behaviour becomes size-dependent when the surface 

stresses are taken into account. The proposed variational solution scheme can be used 

to study various interaction problems involving an elastic circular plate and an elastic 

medium with the presence of surface stresses for the applications related to nano-scale 

systems and soft elastic solids.  
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Figure 5.1 A circular nano-plate under axisymmetric vertical loading. 

 

  

Figure 5.2 A circular nano-plate on an elastic half-space under axisymmetric vertical 

loading. 
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Figure 5.3 Unit vertical load applied over an annular region on an elastic half-space. 
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(a) 

  
(b) 

Figure 5.4 Comparisons for deflection of a circular nano-plate: (a) simply supported 

edge and (b) clamped edge. 
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(a) 

  

(b) 

Figure 5.5 Comparisons for: (a) contact pressure and (b) bending moment of a circular 

plate on an elastic half-space without surface energy effects. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 89 

  

Figure 5.6 Radial profiles of normalized vertical deflection of a circular nano-plate 

resting on an elastic half-space under uniform vertical loading for different values of 

Kr with a =10. 

  

Figure 5.7 Radial profiles of normalized bending moment of a circular nano-plate 

resting on an elastic half-space under uniform vertical loading for different values of 

Kr with a =10. 
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Figure 5.8 Variations of normalized central deflection with a  of a circular nano-plate 

resting on an elastic half-space under uniform vertical loading for different values of 

rK .  

 

Figure 5.9 Variations of normalized maximum bending moment with plh of a circular 

nano-plate resting on an elastic half-space under uniform vertical loading for different 

values of rK . 
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CONCLUSIONS 

This dissertation presents a theoretical study of contact problems of an elastic 

medium with consideration of surface energy effects by adopting a complete Gurtin-

Murdoch theory of surface elasticity. A set of general solution for the displacement and 

stress within the bulk material is obtained by employing Love’s strain potential and the 

Hankel integral transform and the final explicit solution of arbitrary functions is derived 

in Chapter III for the solution of a layered elastic half-space subjected to axisymmetric 

normal and tangential surface loadings. The obtained solutions are employed as the 

required influence functions for axisymmetric indentation on a layered elastic medium 

with frictionless and adhesive contacts presented in Chapter IV. In addition, they are 

also employed in the analysis of interaction between an elastic circular nanoplate and 

an elastic half-space based on a variation formulation outlined in Chapter V. 

A computer program based on the above solutions has been developed to 

investigate the above contact problems with the influence of surface stress effects. The 

accuracy of the present solution scheme is confirmed by comparison with relevant 

existing solutions. An extensive parametric study is carried out in this dissertation and 

it indicates that the surface stresses have a significant influence on both displacement 

and stress fields of an elastic medium especially in the vicinity of the surface. Numerical 

results also confirms that unlike the classical elasticity solution the elastic medium 

becomes stiffer with size-dependent being observed under the presence of surface 

stresses. In addition, it is found that the influence of surface stresses on elastic fields 

becomes more significant when the radius of the indenter or the nanoplate is smaller. 

The present solution eventually converges to the classical solution when the radius 

becomes larger. 

The solution presented in this dissertation can be used as a benchmark solution 

in the development of numerical techniques such as the finite element and boundary 

element methods for analysis of more complex contact problems under the influence of 

surface energy effects. In addition, the present solution scheme can be extended to 

investigate contact problems involving multi-layered systems with appreciate influence 
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functions such as nano-coatings and nanoscale surface layers in electronic devices; 

biomaterial applications; advanced industrial materials; and communication devices for 

nano-scale systems.  
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