nsnunuaflaaifiadesludaysounsuiia

WILFTT TOANIBWUST

"371mﬁwuﬁf‘fﬁudmwﬁwaamiﬁﬂmmwsTﬂzg@]5ﬂ’%tytyﬁmﬂﬁ:umamqmﬁﬁwﬁ@
F1UITIEINTINABNAIADT NAITAAINTINABNAILADS
AMLEIAINTINAIFAS PRIBINIINANL S
In1sfinwn 2558
3 a
umﬁm’mmmﬂm%gmﬂuLﬁuﬂumﬁvﬁﬂgﬂxﬁiﬁ%@ﬂ%@%ﬁ%ﬁ%ﬂ%ﬁmﬂmﬁqﬁmapﬁmw (CUIR)
Lﬂmmu%sﬂmmﬁﬁmL%waﬁwmﬁwuﬁmﬂimwwﬂmsﬁm%wmﬁﬂ
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



DISCOVERING FREQUENT EPISODES IN TIME SERIES

Mr. Sura Rodpongpun

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2015

Copyright of Chulalongkorn University



Thesis Title DISCOVERING FREQUENT EPISODES IN TIME SERIES

By Mr. Sura Rodpongpun
Field of Study Computer Engineering
Thesis Advisor Assistant Professor Chotirat Ratanamahatana, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

............................. Dean of the Faculty of Engineering

(Associate Professor Supot Teachavorasinskun, Ph.D.)

THESIS COMMITTEE

............................. Chairman

(Professor Boonserm Kijsirikul, Ph.D.)

............................. Thesis Advisor

(Assistant Professor Chotirat Ratanamahatana, Ph.D.)

............................. Examiner

(Professor Prabhas Chongstitvattana, Ph.D.)

............................. Examiner

(Assistant Professor Sukree Sinthupinyo, Ph.D.)

............................. External Examiner

(Songpol Ongwattanakul, Ph.D.)



§32 IDANIHWUD: miﬁuwuLama@ﬁLﬁ@ﬁaﬂiuﬁauﬂaauﬂmnm. (DISCOVER-
ING FREQUENT EPISODES IN TIME SERIES) 8. IS INANUEWAN ¢ wel.

a3 1TAAY SauININTUY, 252 V.

& o

AsduwnutaRlaamiAataatiuiuilwlangnvmaiduatonin Soanlaaii Ao
1 {t:i a é’ a o > 1 1 :1! 1 ~ 6
nyuvasmgnsaiitieiulasdouduuidwlutiszazinamite  aglsianluland

o A o A& o a & % = o oA
ﬂqﬂﬂ’luﬂqiﬁqLﬂWIa(ﬂIu"ﬂE]N“aa%ﬂillL'Ja’]ﬂlsﬂu‘ﬂ']u'}]uﬁli\‘]%u ﬂ@vlwuﬂqillﬂﬁfyﬂﬂ@@l,ﬂq

v
dj 1 { dl =3

11073 Fegunanfigani Aan13NTayaoynIuAHMTuSaIaUUaITIMINITI UNud

U 9

a o

& o o ' o a A o & A ' o ' '
'ﬂzLﬂua’]ﬂUTaﬂTaNaqq@] 7]’]11/1LLUUEﬂﬂLﬂN@%ﬂH%HNﬂ?'\NLL@]ﬂ@]']\']ﬂ%‘ﬂ']\?@']uIﬂjﬁi']\‘]

U

o o 1 o s v

L & o q v =t % o !
VL@ "i]\‘i“{l’ll‘léiLﬂuﬂ’limﬂiuﬂ’liux‘lmm‘ugﬂ ﬂ’]ﬂ“ﬁﬂ’]i’i]@ﬂ@&lmﬂuElaala’lﬁiuﬂla&laﬂuﬂ‘i&l

U 9

o 1 [

nawuiswInhaliieluuuplle adrslsfaunsseanguiraudosdmsudays

9 U

cf

o A o o (%

aunsuIay  anvhilbiifelfgiananlddiogesgunguan Aaduaunan n1angy

o 1 o &

° ° o & v Y ' (% o 1 Al '
NOUYUBYRIMIVVBYNBUNINLIRTUY "L@umsgﬂmaaﬂmaawwhummwms n|aA

4

A o Ve @ ° o o & ' o A
Aamsdanguaeugasdmivdaysounsunamwalinasnslugluasndnglloiizue

| o

Vv o & \ o o A ac A o q o o o
&I’J']“lla&l"a“ll’ll,“ll’]i]uﬂuaﬂ’ldvli LLASAUAUNRD d']WJ’«i]EI“/IWEJ’]&I’]EJ’I&J“/I’IIﬁﬂ']‘S’%@ﬂa&Ia’I i

9

—

v =

HoudmMTUToy 8RN INIAUURIANNANY naullsunsndsiawzuuulidag

U 9

!
=)

A o | A L R o v a a o & a A e
LLﬂZazﬂﬂmﬂ&lﬂaﬂvluuﬂiziﬂﬁuﬂ@ %GVIWI%Lﬂ@LLUHEﬂNWﬂLﬂ%ﬂ?']&l'inlﬂu ANUIUANUDIW
=4 v } qu, Q 1 o Qs 1 ) Qa v 1 dl
Tﬂﬂvl,@LLﬂﬁfyﬁ']L%a']%I@ﬂLauaﬂ'ﬁ‘ﬂﬂﬂq&laqﬂﬂElaila'lﬁill"lla&lﬂﬂ%ﬂiuLQ@WLLUUIV]N LNB

U 9

a P

MysBuuUAdUssEntnanndu  laglawized19B93snsiibuanaiu  s1m190L8en

=t 7 o 6 Al

UeBuuugUnlenudey Tuvmefsziouuupildéeyld waaws Alavildsuisn

=

wasdayaanniunauuuswinadellilusduraamvgnisotldedolitssdnng - 39

°o 9 o o aa o a A a o o A ada [
ﬂWIWaqwqiﬂuquﬁﬂqiﬂuWULE]WIE‘T@I‘V]Lﬂﬂuaﬁla’lﬂiﬂﬂlay‘a?ﬂ(ﬂﬂwa% N1ﬂ3$ﬂﬂ@ﬂ°ﬁ1@

3

agdldsn  anldniiuinefwusitldszgndmslflawfinlniasids  wazms

! A ! A a a A A o a a b‘pfﬂlL A a o 6
‘Iﬁ'lﬂ'lL"DoaﬂjﬂTlGL‘WE]LWNﬂizﬁﬂﬁNﬂﬂladﬂﬁuﬂu’lLﬁ%@ I@]EJ'J‘YIEI’]‘HW%E'% AUNLUNRIND

o A

lagnsriinisnasesuugadoyaivannats  SINAANTIINNMINA8IRUENIUAIINT

U

U3e®NTN LAY SeENTHaNAV0 I3 TN1INUILEUD

Aok e FAINIINADNAINADT . ... ... ABUDTORFN oo,
a a a & A A A = @
F1VIT . ...... AFINITVADNNIGDT . ...... AeVaTe 8.1U3nw AN ... ...,

Insdnw ... 2558 ...



## 5371816121: MAJOR COMPUTER ENGINEERING
KEYWORDS: DATA MINING / SUBSEQUENCE CLUSTERING / TIME SERIES / FRE-
QUENT EPISODES

SURA RODPONGPUN : DISCOVERING FREQUENT EPISODES IN TIME SERIES.

ADVISOR : ASST. PROF. CHOTIRAT RATANAMAHATANA, PH.D., 252 pp.

Frequent episode discovery is one of the most challenging tasks. An episode is a set of
partially ordered occurrences of events in a period of time. However, in real-valued time se-
ries mining community, frequent episode discovery has not been addressed well. One of the
most difficult problems is that rather than a sequence of discrete events, time series is a se-
quence of real-valued data. A pattern can be varied in shape of consecutive data points, so that
events of the same type are difficult to identify. One can utilize Subsequence Time Series (STS)
clustering technique to identify events in the time series, so that frequent episode discovery
algorithm can be applied. However, the problem is that output of current STS clustering algo-
rithms cannot be used for the frequent episode discovery because of two main reasons. First,
the previously proposed STS clustering algorithms were claimed to be meaningless because the
outputs of STS algorithms will always converge to sinusoidal form. Second, some recent STS
clustering algorithms that claim to produce meaningful results fail to dispose of trivial subse-
quences. This leads to inflation and redundancy of the patterns. This thesis approaches the
problems by proposing a new STS clustering algorithm to effectively identify interesting events
in time series. More importantly, the proposed algorithm also discard trivial or inessential sub-
sequences. As a result of STS clustering, the patterns can be considered as discrete events,
similar to those used in general episode discovery algorithms. Moreover, this thesis extends the
proposed method to dynamic time warping (DTW) distance, shape-based averaging, and pro-
poses an optimization over the usage of DTW. Experiments show that the proposed framework

can perform the episode discovery from time series effectively and efficiently.

Department: ..... Computer Engineering ... ... Student’s Signature .....................
Field of Study: ....Computer Engineering.... Advisor’s Signature .....................

Academic Year: ............ 2015............



Acknowledgements

I would like to express my deep and sincere gratitude to my great thesis advisor, Asst.
Prof. Dr. Chotirat Ann Ratanamahatana, for her invaluable guidance, patience, and support
during my doctoral graduation. She is always a true example of greatness and excellence. She
inspires me to have motivation and courage to be better in so many ways. All of her support has

made me who I am today and I will forever be grateful.

I am deeply grateful to Prof. Dr. Boonserm Kijsirikul, Prof. Dr. Prabhas Chongstit-
vatana, and Asst. Prof. Dr. Sukree Sinthupinyo for being my dissertation committee, and giving
all valuable comments and suggestions. I also greatly appreciate Dr. Songpol Ongwattanakul

for being my advisor since my undergraduate study, and being my dissertation committee.

I also would like to thank Associate Professor Stephen James Redmond at Graduate
School of Biomedical Engineering, University of New South Wales, for giving me the opportu-

nity to earn priceless experience when I was a visiting researcher for a year in Australia.

I am in debt to all my teachers in my every school, especially Chulalongkorn University.
I really appreciate Dr. Vit Niennattrakul for giving me valuable support and guidance on how
to do great research and being a good graduate student. He is always my inspiration by his
commitment to excellence. I thank my friend Dararat for motivating me to be a graduate student.
I also thank my lovely friends Haemwaan, Thapanan, Pawan, Warissara, Navin, Sorrachai,
Phongsakorn, Thanapong, Supasate, Nareeporn, Warisa, Komate, Patoomsiri, Pittipol, Sirinoot,
Warawoot, Tanapoom, Kittipat, Kulit and other friends at the the Department of Computer

Engineering for valuable friendship and support.

I appreciate the financial support from the Thailand Research Fund and Chulalongkorn
University given through the Royal Golden Jubilee Ph.D. Program (PHD/0319/2551 to S. Rod-

pongpun) for giving me opportunity to contribute this dissertation to the research community.

Additionally, I thank my dearest wife, Chaviwan Rodpongpun, who is always by my side

and support me in every way both physically and mentally.

Lastly, with my deepest gratitude, this dissertation is dedicated to my beloved parents for

their endless love and support. This dissertation could not have been completed without them.

vi



Contents

Abstract (Thai) . . . . . . . . ... ... .
Abstract (English) . . . .. ... ... ... ...

Acknowledgements . . . . . . . . ... ... e

Contents . . . . . . . .

Listof Tables . . . . . . . . . . . . e

Listof Figures . . . . . . . . . . . e

Chapter

I

II

Introduction . . . . . . . . . .

1.1
1.2
1.3
1.4

Objectivesof thethesis . . . . . . . .. ... . .. ..
Scopesofthethesis. . . . . ... ... .. .. . ... . .
Researchmethodology . . . . . . . .. ... .. ... . .. ... . ...

Contributions of the thesis . . . . . . . . . . . . . . . e

Background . . . . ... ... ...

2.1
22
23
24

25
2.6
2.7
2.8
29

Frequent episode discovery . . . .. .. ... . .. ... . o
Rule discovery from frequentepisodes . . . . . . ... ... .. ... .. ... ...
Subsequence Time Series (STS) clustering . . . ... ... ... ... .......
Similarity measure . . . . . ... ...
2.4.1 Euclidean distance measure . . . . . . . . . . . ..ot e e
2.4.2 Dynamic Time Warping distance measure . . . . ... ... .. .......
2.4.3 DTW with global constraint . . . . . ... ...................
2.4.4 Lower-bounding function for DTW distance . . . . ... ... ... .. ...
Z-normalization . . . ... L.l e
Uniformscaling . . . .. .. ... .
Motif discovery . . . . . . . .o
Subsequence search in time series . . . . . . . ... .. ... ... ...
Time series averaging . . . . . . . v v v i e e e
2.9.1 Amplitude averaging . . . . . .. .. ...
2.9.2 Shape-based averaging . . . ... .. ... ... ...

III Time series frequent episode discovery framework . . . . . . ... ... ... ...

Page

v

vi

vii

xiii



viii

Chapter Page
3.1 Related work . . . . . . . . . . 17
3.1.1 Frequent episode discovery and related mining techniques . . . ... .. .. 17
3.1.2 Discovering of patterns in real-valued time series . . . . ... ... ..... 19

3.2 Discretization: converting real-valued time series to event sequence . . . . . . . . 22
3.3 Selective Subsequence Time Series (STS) clustering . . . . ... ... ....... 23
3.3.1 Definition and notation . . . . . . .. .. ... .o 25
3.3.2 Problem definition . . . . . . .. ... L 26
3.33 Clusteringmethod . . . . . ... ... ... . . 26
3.3.4 Time complexity analysis . . . . . .. .. ... ... . . 34

3.4 Frequent episode discovery from the event sequence . . . . . .. ... ....... 34
3.4.1 Frequency counting definitions . . . . . . ... .. ... .. .......... 35
3.4.2 Candidate generation . . . . .. ... .. .. ... 39

3.5 Experimental results . . . . ... ... L 41
3.5.1 Frequent episode discovery using SSTSC . . . . . ... ... ... ... ... 41
3.5.1.1 Stock Exchange of Thailand (SET) indexdata . . . . ... ... ... 41

3.5.1.2 Weather balloondata . . . ... ..................... 42

3.5.2 Usefulness of SSTSC . . . . . . . .. . 43
3.5.2.1 Syntheticdata . . . .. ... ... .. ... 43

3.5.2.2 Video surveillance problem . . . ... ... ... ... ... 43

3.5.2.3 Time series data extracted fromimages . . . . .. ... ... ..... 44
3524ECGdata. . . .. .. e 45

3.5.3 Meaningfulness of SSTSC . . . ... .. ... .. ... . .. .. ....... 45
3.5.4 Effectiveness of SSTSC . . . . . . .. . .. 55
3.5.4.1 Pattern-retrieval-based metrics . . . . ... ... ... ... ... 56

3.5.4.2 Cluster-accuracy-based metrics . . . ... ... ... ......... 57

3.5.4.3 Effectiveness evaluationresults . . . .. ... ... .. ... ..... 58

3.5.5 Comparison of SSTSC with the brute-force method . . . . ... ... .. .. 64

3.6 Conclusion . . . ... ... ... 65

IV Efficient subsequence search on streaming data based on time warping distance 66

4.1 Problem definition . . . . . . . . . . ... 67



ix

Chapter Page

42 Proposedmethod . . . ... ... .. . ... ... 68
4.2.1 Lower-bounding distance under Global constraint, Uniform Scaling,

and Normalization (LB_GUN) . . . ... ... ... ... ... ........ 68

4.2.2 Scaling Subsequence Matrix . . . ... .. ... ... .. oL 69

4.2.3 Meaningful Subsequence Matching . . . . ... ... ............. 70

4.3 Experimental results . . . . . ... . . ... ... 72

44 Conclusion . . ... .. ... 74

V  Conclusions . . .. ... ... ... 75

References . . . . . . . . . .. 88

VI Publications . . . . . .. .. ... 89

Appendices . . . ... 91

Appendices A Complete experimental results of the experiment in section 3.5.3 91

Appendices B Complete experimental results of the experiment in section

3.5.4 when scaling factorissetto1 .. ... .................... 120

Appendices C Complete experimental results of the experiment in section
3.5.4 when scaling factorissetto 1.2 . .. ... ... ............... 186

Biography . . . . . . . . .. 252



List of Tables

Table Page
3.1 SSTSCalgorithm . ... .. .. .. . . . e 31
3.2 Subsequence eXtraCtor . . . . . . . . . . e e e e e 31
3.3 Create Operation . . . . . . . . .ot i i it e e 32
34 Addoperation . . .. ... e e 32
3.5 Merge operation . . . . . .. ... e e e e e e e e e e 33

3.6 A unified view of the apriori-based algorithm for frequent episode discovery

(Acharetal.,2012) . . . .. .. . . e 37
3.7 Various frequency counts (Acharetal.,2012) . ... ... ... ... .. ....... 38
3.8 Conditions for TRANSIT=TRUE (Acharetal.,2012) . . . . ... ... ........ 38
3.9 Conditions for COPY-AUTOMATON=TRUE (Acharetal.,2012). .. ... ... .. 38
3.10 Conditions for JOIN-AUTOMATON=TRUE (Acharetal.,2012) ... ........ 38
3.11 Conditions for INCREMENT-FREQ=TRUE (Achar et al., 2012) ... ... ... .. 39
3.12 Conditions for RETIRE-AUTOMATA=TRUE (Achar et al.,2012) ... ... .. .. 39
3.13 Values taken by INC (Acharetal.,2012) . . ... .. ... ... .. ... . ...... 39

3.14 Summary of all evaluation metrics for each algorithms with given overlap thresh-

olds (p), scaling factor (f) of 1 and the number of clusters (k) is set to the number

of classesinthe dataset. . . . . . ... .. ... ... 59
3.15 Summary of all evaluation metrics for each algorithms with given overlap thresh-

olds (p), scaling factor (f) of 1.2 and the number of clusters (k) is set to the

number of classes inthe dataset. . . . . .. ... ... .. ... .. . . ... 60
3.16 Summary of all evaluation metrics for each algorithms with given overlap thresh-

olds (p), scaling factor (f) of 1 and the number of clusters (k) is set automatically

by the algorithms. . . . . . . ... .. ... 61
3.17 Summary of all evaluation metrics for each algorithms with given overlap thresh-

olds (p), scaling factor (f) of 1.2 and the number of clusters (k) is set automati-

cally by the algorithms. . . . . . .. ... ... ... . . ... 62
3.18 Number of cluster (k) chosen at the knee point of compression ratio-error line

from each dataset by each proposed algorithm. At the bottom of the table shows

exact match percentage and mean of absolute difference for each algorithm. . . . . . 64
4.1 MSM algorithm for optimal range query . . . . .. ... .. ... ... ... ... 71
4.2 MSM algorithm for optimal top-k query . . ... ... ... .. .. .......... 71



B.1

B.2

B.3

B4

B.5

B.6

B.7

B.8

B.9

Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is
1 and number of clusters (k) is set to the number of classes in each dataset . . . . . .
Precision from all algorithms on all datasets when the scaling factor (f) is 1 and
number of clusters (k) is set to the number of classes in each dataset . . .. ... ..
Recall from all algorithms on all datasets when the scaling factor (f) is 1 and
number of clusters (k) is set to the number of classes in each dataset . . .. ... ..
F1-score from all algorithms on all datasets when the scaling factor (f) is 1 and
number of clusters (k) is set to the number of classes in each dataset . . ... .. ..
AoR from all algorithms on all datasets when the scaling factor (f) is 1 and
number of clusters (k) is set to the number of classes in each dataset . . .. ... ..
AoD from all algorithms on all datasets when the scaling factor (f) is 1 and
number of clusters (k) is set to the number of classes in each dataset . . ... .. ..
Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1
and number of clusters (k) is set to the number of classes in each dataset . . . . . . .
Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is
1 and number of clusters (k) is chosen by the SSTSC algorithms . . . . . .. ... ..
Precision from all algorithms on all datasets when the scaling factor (f) is 1 and

number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... ... ..

B.10Recall from all algorithms on all datasets when the scaling factor (f) is 1 and

number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... .....

B.11F1-score from all algorithms on all datasets when the scaling factor (f) is 1 and

number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... ... ..

B.12AoR from all algorithms on all datasets when the scaling factor (f) is 1 and

number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... ... ..

B.13AoD from all algorithms on all datasets when the scaling factor (f) is 1 and

number of clusters (k) is chosen by the SSTSC algorithms . . . .. ... ... ... ..

B.14Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1

C.1

C2

C3

and number of clusters (k) is chosen by the SSTSC algorithms . . . . . ... ... ..
Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is
1.2 and number of clusters (k) is set to the number of classes in each dataset . . . . .
Precision from all algorithms on all datasets when the scaling factor (f) is 1.2
and number of clusters (k) is set to the number of classes in each dataset . . . . . . .
Recall from all algorithms on all datasets when the scaling factor (f) is 1.2 and

number of clusters (k) is set to the number of classes in each dataset . . ... .. ..

X1



C.4 Fl-score from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is set to the number of classes in each dataset . . ... .. ..
C.5 AoR from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is set to the number of classes in each dataset . . .. ... ..
C.6 AoD from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is set to the number of classes in each dataset . . .. ... ..
C.7 Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1.2
and number of clusters (k) is set to the number of classes in each dataset . . . . . . .
C.8 Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is
1.2 and number of clusters (k) is chosen by the SSTSC algorithms . . ... ... ..
C.9 Precision from all algorithms on all datasets when the scaling factor (f) is 1.2
and number of clusters (k) is chosen by the SSTSC algorithms . . . . . ... ... ..
C.10Recall from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is chosen by the SSTSC algorithms . . . .. ... ... ....
C.11F1 from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is chosen by the SSTSC algorithms . . . ... .. ... ....
C.12A0R from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... ... ..
C.13AoD from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... .....
C.14Excess from all algorithms on all datasets when the scaling factor (f) is 1.2 and

number of clusters (k) is chosen by the SSTSC algorithms . . . . ... ... ... ..

xii



List of Figures

Figure

1.1
1.2
1.3

1.4

3.1

3.2

33

34

35

3.6

3.7

3.8
39

SET index from June 26th 2015 to June 26th 2016 . . . . . ... ... .. ... ...
ECG morphology consists of P-wave, QRS complex, and T-wave. . . . . . ... ...
Time series recorded from SmartCane equipment (Wu et al., 2008; Niennat-
trakul, 2010). . . . . .. e e
Trivial patterns are clustered by 2STSC . . . . . . . . .. .. ... ... .. .. ...,
Undesired patterns will be forcedtobeinacluster . .. ... .............
Meaningful STS clustering achieved by ignoring some subsequences. . . .. .. ..
The search space consists of Create, Add, and Merge operations. . . . . ... .. ..
The optimal node can be determined by using motif discovery and subsequence
matching algorithms. . . . . .. ... ... ...
The stopping point or knee point can be found at the state that has minimum
value of summation of regression error between left and right linear regression lines.
(a) SET index data from 2011 to 2015 with frequent patterns marked (output
from SSTSC), (b) Occurrences of frequent episodes of size4. . . . ... .. ... ..
(a) Temperature data from a weather balloon with frequent patterns marked (out-
put from SSTSC), (b) Occurrences of frequent episodes of size 2. . . . .. ... ...
top) A sequence of CBF dataset. botfom) Cluster centers of each class. . . . . .. ..
top) Gun-Point data extracted from a video surveillance camera. bottom) Cluster

centersof each class. . . . . . . . . e

3.10 top) A sequence of data extracted from image of faces and leaves. bottom) cluster

centersof each class. . . . . . . . . . . . e

3.11 top) ECG sequences with abnormal heartbeats. bottom) Cluster centers from the

proposed algorithm. . . . . . .. ...

3.12 SMMs of Buoy1 dataset when number of clusters (k) is 3 and the length of sliding

window (w)isvaried. . . . . . . . . . ... e

3.13 SMMs of Fortune5004 dataset when number of clusters (k) is 3 and the length of

sliding window (w)isvaried. . . . . . .. ... . . ... . ... .

3.14 SMMs of Buoy|1 dataset when number of clusters (k) is varied and the length of

sliding window (W) is 64. . . . . . . . . L

3.15 SMMs of Fortune5004 dataset when number of clusters (k) is varied and the

length of sliding window (w)is64. . . ... .. ... .. ... .. ..

xiii

Page

22

24

29

29

30

42

46

47



3.16 Cluster representatives of buoyl dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=32. . . . . ... ... ... .. .. ... .. ....

3.17 Cluster representatives of buoyl dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw =64 . . . ... ... ... ... ... .. .....

3.18 Cluster representatives of buoyl dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=128. . ... ... ... ... .. .. ... .. ...

3.19 Cluster representatives of buoyl dataset from variations of 2STSC (left) and

SSTSC (right) withk=5andw=64. . . . . ... ... ... .. .. ... ... .....

3.20 Cluster representatives of buoyl dataset from variations of 2STSC (left) and

SSTSC (right) withk=7andw=064. . . . . ... ... ... .. .. .. .......

3.21 Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)

and SSTSC (right) withk=3andw=32. ... ... .. .. .. ... .. .......

3.22 Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)

and SSTSC (right) withk=3andw=064. . ... ... ... ... .. ... .. ....

3.23 Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)

and SSTSC (right) withk=3andw=128.. . . . ... ... ... ... . ... ....

3.24 Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)

and SSTSC (right) withk=5andw=64. . ... ... ... ... .. .........

3.25 Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)

and SSTSC (right) withk=7andw=64. . ... ... ... ... .. ... .. ....

3.26 The proposed algorithm (shown in blue) comparing with the brute-force method.

4.1

4.2
43
4.4
45
4.6
4.7
Al
A2

A3

Subsequence search without normalization in ECG data. Many subsequences

with similar shape to the query are left undetected. . . . ... ... ..........
DTW distance calculations filtered out by MSM with varying global constraints. . .
DTW distance calculations filtered out by MSM with varying scaling ranges. . . . .
MSM outperforms SPRING at every scaling range in terms of AoR. . . . ... ...
MSM outperforms SPRING at every global constraint value in terms of AoR . . . .
MSM outperforms SPRING at every scaling range in terms of AoD . . . . ... ...
MSM outperforms SPRING at every global constraint value in terms of AoD . . . .
TSDMA datasets used in the experiments in section 3.5.3. . . . ... ... ... ...
SMMs of AEM2 dataset when number of clusters (k) is 3 and the length of

sliding window (w)isvaried. . . . . ... .. ... ... . ...
SMMs of AEM2 dataset when number of clusters (k) is varied and the length of

sliding window (W) is 64. . . . . . . . . . . e

Xiv

51

66
73
73
73
74
74
74
91



A4

AS

A.6

AT

A8

A9

SMMs of Buoy1 dataset when number of clusters (k) is 3 and the length of sliding
window (w)is varied. . . . . . . . . . ... e
SMMs of Buoy1 dataset when number of clusters (k) is varied and the length of
sliding window (W) is 64. . . . . . . . ..
SMMs of CBF dataset when number of clusters (k) is 3 and the length of sliding
window (W)isvaried. . . . . . . . ... e e e
SMMs of CBF dataset when number of clusters (k) is varied and the length of
sliding window (W) is 64. . . . . . . . . . . ..
SMMs of ERP dataset when number of clusters (k) is 3 and the length of sliding
window (w)is varied. . . . . . . . ...
SMMs of ERP dataset when number of clusters (k) is varied and the length of

sliding window (W) is 64. . . . . . . . . . e

A.10SMMs of Field4 dataset when number of clusters (k) is 3 and the length of sliding

window (wW)is varied. . . . . . . . ... e

A.11SMMs of Field4 dataset when number of clusters (k) is varied and the length of

sliding window (W) is 64. . . . . . . . . e

A.12SMMs of Fortune5004 dataset when number of clusters (k) is 3 and the length of

sliding window (w)isvaried. . . . . ... .. ... ... . ... . ...

A.13SMMs of Fortune5004 dataset when number of clusters (k) is varied and the

length of sliding window (W) is 64. . . . . . . .. .. ... .. ... .

A.14SMMs of MITDBX108 dataset when number of clusters (k) is 3 and the length

of sliding window (w)isvaried. . . ... . ... ... .. .. ... ... . ... ...

A.15SMMs of MITDBX108 dataset when number of clusters (k) is varied and the

length of sliding window (W) is64. . . . . . . . . . . . ... . ...

A.16SMMs of TOR96 dataset when number of clusters (k) is 3 and the length of

sliding window (w)isvaried. . . . . . .. . ... ... ...

A.17SMMs of TOR96 dataset when number of clusters (k) is varied and the length of

sliding window (W) is 64. . . . . . . . . . e

A.18Cluster representatives of AEM?2 dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=32. . . . . ... ... .. .. ... ...

A.19Cluster representatives of AEM2 dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=64. . . . .. .. ... .. ... .. ... .. ....

A.20Cluster representatives of AEM?2 dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=128. . . .. ... ... .. .. ... .. .. .....

XV

93

94

95

96

101



A.21Cluster representatives
SSTSC (right) with k =
A.22Cluster representatives
SSTSC (right) with k =
A.23Cluster representatives
SSTSC (right) with k =
A.24Cluster representatives
SSTSC (right) with k =
A.25Cluster representatives
SSTSC (right) with k =
A.26Cluster representatives
SSTSC (right) with k =
A.27Cluster representatives
SSTSC (right) with k =
A.28Cluster representatives
SSTSC (right) with k =
A.29Cluster representatives
SSTSC (right) with k =
A.30Cluster representatives
SSTSC (right) with k =
A.31Cluster representatives
SSTSC (right) with k =
A.32Cluster representatives
SSTSC (right) with k =
A.33Cluster representatives
SSTSC (right) with k =

A.34Cluster representatives

of AEM?2 dataset from variations of 2STSC (left) and
Sandw=064. . . . ... L
of AEM?2 dataset from variations of 2STSC (left) and
Zandw =064 . . ...
of buoyl dataset from variations of 2STSC (left) and
Jandw =32. . . . ..
of buoyl dataset from variations of 2STSC (left) and
Jandw=064. . . . ...
of buoyl dataset from variations of 2STSC (left) and
Jandw =128, . . . . ..
of buoyl dataset from variations of 2STSC (left) and
Sandw=064. . . . ...
of buoyl dataset from variations of 2STSC (left) and
Zandw =064 . . ...
of CBF dataset from variations of 2STSC (left) and
Jandw =32. . . ...
of CBF dataset from variations of 2STSC (left) and
Jandw=064. . . .. ...
of CBF dataset from variations of 2STSC (left) and
Jandw =128, . . . . ..
of CBF dataset from variations of 2STSC (left) and
Sandw=064. . . .. ..
of CBF dataset from variations of 2STSC (left) and
Zandw =064 . . ...
of ERP dataset from variations of 2STSC (left) and
Jandw =32. . . ..
of ERP dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw=64. . . . .. ... ... .. .. ... .. .. .....

A.35Cluster representatives

of ERP dataset from variations of 2STSC (left) and

SSTSC (right) withk=3andw =128 . . ... ... ... ... .. . .. ...

A.36Cluster representatives

of ERP dataset from variations of 2STSC (left) and

SSTSC (right)y withk=5andw=64. . . . .. .. ... .. ... . ... .. ....

A.37Cluster representatives

SSTSC (right) with k =

of ERP dataset from variations of 2STSC (left) and
Zandw=64. . .. ... . ...

Xvi

103

106

108



A.38Cluster representatives of Field4 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw=32. . . . .. .. ... .. ... . ... . ....
A.39Cluster representatives of Field4 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw =64 . . . . ... ... .. .. .. . .. .. ....
A.40Cluster representatives of Field4 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw =128 . . ... .. ... ... .. .. . .. ...
A.41Cluster representatives of Field4 dataset from variations of 2STSC (left) and
SSTSC (right) withk=5andw=64. . . . .. ... ... ... .. .. . ... ....
A.42Cluster representatives of Field4 dataset from variations of 2STSC (left) and
SSTSC (right)y withk=7andw=064. . . . ... ... ... . ... . . .. . .....
A .43Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=32. .. ... ... .. ... .. ... .. ....
A.44Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=064. . ... ... ... ... .. ... .. ....
A.45Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=128.. . . . ... ... ... ... . ... ....
A.46Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)
and SSTSC (right) withk=5andw=64. . ... ... ... ... .. .........
A.47Cluster representatives of Fortune5004 dataset from variations of 2STSC (left)
and SSTSC (right) withk=7andw=64. . ... ... ... ... .. ... .. ....
A .48Cluster representatives of MITDBX108 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=32. .. ... ... .. ... .. ... .. ....
A.49Cluster representatives of MITDBX108 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=64. . ... ... ... ... ... .........
A.50Cluster representatives of MITDBX108 dataset from variations of 2STSC (left)
and SSTSC (right) withk=3andw=128.. . . .. .. ... ... .. .. ... ....
A.51Cluster representatives of MITDBX108 dataset from variations of 2STSC (left)
and SSTSC (right) withk=5andw=64. . ... ... ... ... . ..........
A.52Cluster representatives of MITDBX108 dataset from variations of 2STSC (left)
and SSTSC (right) withk=7andw=64. . ... ... ... ... .. ... .. ....
A.53Cluster representatives of TOR96 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw=32. . . . ... .. ... .. . .. ... ...
A.54Cluster representatives of TOR96 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw=64. . . . .. .. ... ... .. . ... .. ....

Xvii

111



A.55Cluster representatives of TOR96 dataset from variations of 2STSC (left) and
SSTSC (right) withk=3andw =128 . ... ... ... .. ... . ... . ....
A.56Cluster representatives of TOR96 dataset from variations of 2STSC (left) and
SSTSC (right) withk=5andw=64. . . . . ... ... .. .. .. . .. .. ....
A.57Cluster representatives of TOR96 dataset from variations of 2STSC (left) and
SSTSC (right) withk=7andw=064. . . . .. ... ... ... .. ... .. . .....
B.1 ItalyPowerDemand dataset: (a) Input time series labeled with classes of planted
data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L,
E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . .. ... .. .......
B.2 SonyAIBORobotSurfacell dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z,
E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . ... ... ....
B.3 SonyAIBORobotSurface dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z,
E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . ... ... ....
B.4 DistalPhalanxOutlineCorrect dataset: (a) Input time series labeled with classes
of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z,
E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . ... ... .. ...
B.5 MiddlePhalanxOutlineCorrect dataset: (a) Input time series labeled with classes
of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z,
E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . .. ... ... ..
B.6 PhalangesOutlinesCorrect dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z,
E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . .. ... ... ...
B.7 ProximalPhalanxQOutlineCorrect dataset: (a) Input time series labeled with
classes of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC
with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . .
B.8 DistalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled with
classes of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC
with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . .
B.9 MiddlePhalanxOutlineAgeGroup dataset: (a) Input time series labeled with
classes of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC
with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . .

Xviii

118

119

135

136

137

138

139

140

141

142

143



B.10ProximalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled with
classes of planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with

E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively.. . . . . .

B.11TwoLeadECG dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-

SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . ... .. ... ... ...

B.12MoteStrain dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... .. ... ... ...

B.13ECG200 dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... .. ... ...

B.14CBF dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... ..

B.15Two_Patterns dataset: (a) Input time series labeled with classes of planted data.

(b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-

SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . ... ... ... ......

B.16 ECGFiveDays dataset: (a) Input time series labeled with classes of planted data.
(b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-

SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . ... ..... ... ...

B.17ECG5000 dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... ... .....

B.18 Gun_Point dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . .. ... .. ... .. ... ..

B.19wafer dataset: (a) Input time series labeled with classes of planted data. (b),

(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . ... ... ... ... ... ...

B.20ChlorineConcentration dataset: (a) Input time series labeled with classes of

planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-

Z,E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . .. ... ...

Xix

145

150



B.21Wine dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... ... .....

B.22 Strawberry dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . .. ... ... ... ... ..

B.23 ArrowHead dataset: (a) Input time series labeled with classes of planted data.

(b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-

SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . ... ... .. .. ....

B.24Trace dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... .. ... ... ... ...

B.25ToeSegmentation1 dataset: (a) Input time series labeled with classes of planted

data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L,

E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . .. .. ... ... ..

B.26Coffee dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... ... .....

B.27 ToeSegmentation2 dataset: (a) Input time series labeled with classes of planted

data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L,

E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . .. ... ... .....

B.28FaceFour dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,

E-SA-L, D-AA-Z and D-SA-Z, respectively. . . . . . ... ... ... ... .....

B.29yoga dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . ..

B.30Ham dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . .. L

B.31Meat dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . . ..

XX



xxi

B.32Beef dataset: (a) Input time series labeled with classes of planted data. (b), (c),

(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . . .. e e 166
B.33FordA dataset: (a) Input time series labeled with classes of planted data. (b), (c),

(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . .. 167
B.34FordB dataset: (a) Input time series labeled with classes of planted data. (b), (¢),

(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . ... 168
B.35ShapeletSim dataset: (a) Input time series labeled with classes of planted data.

(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . . . . .. 169
B.36BeetleFly dataset: (a) Input time series labeled with classes of planted data. (b),

(c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . ... 170
B.37BirdChicken dataset: (a) Input time series labeled with classes of planted data.

(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . . . . . . 171
B.38Earthquakes dataset: (a) Input time series labeled with classes of planted data.

(b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . .. .. . 172
B.39Herring dataset: (a) Input time series labeled with classes of planted data. (b),

(c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L, respectively. . . . . . . . . e 173
B.400liveOil dataset: (a) Input time series labeled with classes of planted data. (b),

(c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L, respectively. . . . . . . .. 174
B.41Car dataset: (a) Input time series labeled with classes of planted data. (b), (c),

(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . .. L 175
B.42Lighting?2 dataset: (a) Input time series labeled with classes of planted data. (b),

(c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L, respectively. . . . . . . .. 176



B.43Computers dataset: (a) Input time series labeled with classes of planted data.

(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . . . .. . . e

B.44LargeKitchenAppliances dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively. . . . . . ... .. ... . L L L

B.45RefrigerationDevices dataset: (a) Input time series labeled with classes of

planted data. (b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively. . . . . . . ... ... ... o

B.46ScreenType dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . . . . .

B.47SmallKitchenAppliances dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively. . . . . .. ... ... L

B.48WormsTwoClass dataset: (a) Input time series labeled with classes of planted

data. (b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-

Z and E-SA-L, respectively. . . . .. ... .. ... ...

B.49 Worms dataset: (a) Input time series labeled with classes of planted data. (b), (¢),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . ..

B.50StarLightCurves dataset: (a) Input time series labeled with classes of planted
data. (b), (c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-

Z and E-SA-L, respectively. . . . .. ... .. ... ...

B.51Haptics dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L,

respectively. . . ..

C.1 ItalyPowerDemand dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

Xxii

177

180

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. 201

C.2 SonyAIBORobotSurfacell dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . . . ...



C3

C4

C5

C.6

C.7

C.38

C9

SonyAIBORobotSurface dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . ...

DistalPhalanxOutlineCorrect dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . . . ...

MiddlePhalanxOutlineCorrect dataset: (a) Input time series labeled by classes
of planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L, respectively. . . . . . . ..

PhalangesOutlinesCorrect dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . ..

ProximalPhalanxOutlineCorrect dataset: (a) Input time series labeled by classes
of planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . ...

DistalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled by classes
of planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . . ...

MiddlePhalanxOutline AgeGroup dataset: (a) Input time series labeled by classes
of planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L, respectively. . . . . . . ..

C.10ProximalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled by

classes of planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output
from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and

E-SA-L,respectively. . . . . . .. ... e

xxiii

210



C.11TwoLeadECG dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.12MoteStrain dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.13ECG200 dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.14CBF dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

C.15Two_Patterns dataset: (a) Input time series labeled by classes of planted data

with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.16 ECGFiveDays dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.17ECG5000 dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.18Gun_Point dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.19wafer dataset: (a) Input time series labeled by classes of planted data with scaling

factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . ... ... ..

C.20ChlorineConcentration dataset: (a) Input time series labeled by classes of planted

data with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.21 Wine dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

XX1V

211

212

213

214

215

216

217

218

219

220

221



C.22Strawberry dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.23 ArrowHead dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.24Trace dataset: (a) Input time series labeled by classes of planted data with scaling

factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

C.25ToeSegmentation] dataset: (a) Input time series labeled by classes of planted

data with scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with

XXV

222

223

224

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. 225

C.26Coffee dataset: (a) Input time series labeled by classes of planted data with scal-
ing factor f'= 1.2. (b), (c¢), (d) and (e) are output from SSTSC with scaling factor

f=1.2by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . . ... ..

C.27ToeSegmentation2 dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with

226

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. 227

C.28FaceFour dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.29yoga dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . ... ... ..

C.30Ham dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

C.31Meat dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

C.32Beef dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

228

229

230

. 231

232



C.33FordA dataset: (a) Input time series labeled by classes of planted data with scal-
ing factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling factor

f=12by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . ... ...

C.34FordB dataset: (a) Input time series labeled by classes of planted data with scal-

ing factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling factor

f=12by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. .. ..

C.35ShapeletSim dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.36BeetleFly dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.37BirdChicken dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.38Earthquakes dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.39Herring dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.400liveOil dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.41Car dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f =

1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively. . .. ... ...

C.42Lighting2 dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.43Computers dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

XXVi

233

234

235

236

237

238

239

240

241

242

243



C.44LargeKitchenAppliances dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . ...

C.45RefrigerationDevices dataset: (a) Input time series labeled by classes of planted

data with scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.46ScreenType dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.47SmallKitchenAppliances dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from
SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-

SA-L,respectively. . . . . . ...

C.48 WormsTwoClass dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.49Worms dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.50StarLightCurves dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c¢), (d) and (e) are output from SSTSC with

scaling factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

C.51Haptics dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling
factor f = 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.

XX Vil

245

246

248

249

250

251



CHAPTER1

INTRODUCTION

In the age of information, time series data is one of the most ubiquitous. Time series are
the data that are recorded over time. More specifically, they are in a sequence manner. Time
series can be from many sources, such as stock market data recorded over a period of time,
or heart rate data that come from a wearable heart rate monitor. Figure 1.1 shows the Stock
Exchange of Thailand (SET) index from Google Finance (Google Inc., 2016). Time series data
mining is a research area that is actively interesting. Many attempts have been made in trying
to solve time series mining problems, such as classification (Mueen et al., 2011), clustering
(Zakaria et al., 2012), indexing (Camerra et al., 2010), anomaly detection (Kumar et al., 2005),

rules discovery (Das et al., 1998), and trend analysis (Drusinsky, 2003; Li-ping and Mei, 2009).

Figure 1.1: SET index from June 26th 2015 to June 26th 2016

One of the most challenging tasks in time series data mining is to discover frequent pat-
terns in data. Frequent patterns is essential for other tasks such as association rule discovery
(Das et al., 1998) and prediction (Alvarez et al., 2011; Yaik et al., 2005). Frequent episode
discovery is a task to find frequent occurrences of events from sequential data (Achar et al.,
2012). More specifically, an episode is partially ordered occurrences of events in a certain time
period, and the episode that occurs often is a frequent episode. The first proposed frequent
episode discovery algorithm was from (Mannila et al., 1997). After that many new defini-
tions of frequent episodes were proposed by many authors (Achar et al., 2012; Casas-Garriga,
2003; Huang and Chang, 2008; Laxman et al., 2007; Mannila et al., 1997; Meger and Rig-

otti, 2004). Many approaches use frequent episodes discovery for other applications such as



forecasting and prediction (Martinez-Alvarez et al., 2009), manufacturing (Unnikrishnan et al.,
2009), telecommunication (Mannila et al., 1997), network security (Wang et al., 2008), biology
(Bougata et al., 2006; Patnaik et al., 2008), finance (Ng and Fu, 2003), chiller management
(Patnaik et al., 2011), and etc.

Most of the proposed frequent episode discovery algorithm are based on an event of sin-
gle value of discrete data, such as in transactional or temporal database (Achar et al., 2012;
Mannila et al., 1997). On the other hand, instead of focusing on a single value, shape of subse-
quences in the stream can be patterns of interest. In most cases, local patterns or shapes in time
series can be very useful. For example in sign language recognition (Yang et al., 2010; Ong and
Ranganath, 2005), patterns to be recognized have to be a segment of hand gestures instead of a
single point in the recorded data. In that case, it is reasonable to recognize shape occurrences
as events. Surprisingly, there was no attempt that applied frequent episode discovery based on
shapes of real-valued time series effectively. An attempt in (Sang Hyun et al., 2001) approaches
the problem to predict data trend. However, the trend prediction is very limited and cannot be
applied to complex shapes. For this reason, general frequent episode discovery algorithms are

not capable to find frequent patterns from real-valued time series effectively.

As an illustration, ECG morphology (Sivaraks, 2014) consists of patterns of P-wave, QRS
complex, and T-wave. Each pattern has its own characteristic or shape. In this case, a single
data point in ECG cannot tell anything. If we take this simple example, ECG, as an input for the
frequent episode discovery algorithm. A meaningful answer can be the frequent patterns which

are P-wave, QRS complex, and T-wave, as shown in Figure 1.2.
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Figure 1.2: ECG morphology consists of P-wave, QRS complex, and T-wave.

However, it is not obvious to know the unknown patterns in a real-valued time series.
The frequent episodes in this ECG example can be performed more easily if the template of

patterns has already been known before running the algorithm. For unknown time series without



predefined patterns, identifying the interesting patterns in the data is very challenging. For
example, given a motion data recorded from an equipment for elderly people (Wu et al., 2008),
it would be better if frequent complex patterns can be identified to further help understand
the people’s behavior. Figure 1.3 shows data from SmartCane (Wu et al., 2008), a monitoring

device to record walking behavior of elderly people.
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Figure 1.3: Time series recorded from SmartCane equipment (Wu et al., 2008; Niennattrakul, 2010).



There are many attempts proposed to solve this problem of finding unknown interesting
patterns. The most well known method is applying Time Series Subsequence (STS) Clustering
to extract sub-patterns in a time series. Some research works attempt to use other data dis-
cretization techniques (Camerra et al., 2010) to make time series discrete and then perform the
clustering. However, there are studies stated that most STS clustering algorithms are meaning-
less (Keogh and Lin, 2005) due to the fact that most STS Clustering algorithms return output
that are not related to the input. More specifically, despite different characteristics of the time
series input, the output cluster centers will always be in a form of sine waves. Therefore, the
algorithms that use STS clustering as a subroutine (Yairi et al., 2001; Jin et al., 2002; Das et al.,
1998; Li et al., 1998; Cotofrei and Stoffel, 2002) will also fail to produce their correct outputs,
especially in rule discovery algorithms. On the other hand, frequent patterns or rule discovery
algorithms with other discretization techniques (Sarker et al., 2005; Pradhan and Prabhakaran,
2009b; Li et al., 2006; Wan et al., 2007; Lutsiv, 2007) cannot perform well enough due to
the limitation of the discretization itself. To emphasize, many parameters have to be chosen.
Also, some characteristics of the data would be lost after discretization, and sometimes, similar

subsequences can be different after the discretization.

The latest work by Niennattrakul (Niennattrakul, 2010) proposed an STS clustering al-
gorithm called 2STSC. The 2STSC algorithm shows that meaningful STS clustering results can
be achieved. Niennattrakul explained that the reason of meaningless results are from trivial
match subsequences. For that reason, he proposed an STS clustering algorithm using Dynamic
Time Warping (DTW) as a distance measure to better group the same patterns together. More-
over, shape-based averaging methods are proposed and used in his STS clustering algorithm to

average the trivial subsequences while keeping the shape of the patterns.

However, one of the problems is that the algorithm clusters all of the subsequences from
a sliding window method. Because all of the trivial patterns are clustered, the patterns will
be inflated and redundant. In fact, some subsequences such as noises, outliers or some trivial
patterns should not be clustered. For instance, in sign language recognition, transitions between
consecutive signs, called movement epenthesis (Yang et al., 2010; Ong and Ranganath, 2005),
have to be discarded. As a result, it is impossible to identify interesting events in time series
due to the fact that every single subsequence is assigned to a cluster. Figure 1.4 illustrates that

the trivial patterns are clustered by 2STSC (Niennattrakul, 2010).
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Figure 1.4: Trivial patterns are clustered by 2STSC

The challenges of discovering frequent episodes in real-valued time series can be sum-

marized as follows.

1. Frequent episode discovery from real-valued time series based on shape of the patterns is
not well addressed. The reason is that instead of considering shape of the patterns, most
of current frequent episode discovery algorithms consider every single discrete value to

be an event.

2. STS clustering algorithms can be used to identify interesting patterns in time series. How-

ever, most of the approaches fail to produce meaningful results.

3. Despite producing meaningful results by STS clustering algorithms, subsequences in time
series can be trivial. Identifying interesting patterns while discarding the trivial ones is

challenging.

This thesis proposes a new frequent episode discovery framework that uses a new STS cluster-
ing algorithm, called Selective Subsequence Time Series Clustering (SSTSC), to identify inter-
esting patterns while ignoring trivial ones. More importantly, the proposed SSTSC can identify
patterns while maintaining meaningful results. The proposed SSTSC also allows flexibility in
terms of input parameters, such as allowing pattern length to be variable, and automatically sug-
gesting total number of clusters. Moreover, the proposed framework is intentionally designed
to be divided into common subtasks, so that it is easy for further optimization. As a result
of identifying interesting patterns based on their shapes, it can effortlessly adopt the existing

frequent episode discovery algorithms (Mannila et al., 1997; Laxman et al., 2007; Achar et al.,



2012) to find the occurrences of frequent time series patterns. The proposed framework is eval-
uated by experimenting on both real world data and annotated semi-synthetic data to evaluate

the effectiveness of the algorithm.

Beside the proposed framework, this thesis explores possibilities of using Dynamic Time
Warping (DTW) distance and a shape-based averaging technique to improve effectiveness of
the framework. Also, this thesis proposes an optimization technique to the application of DTW
distance in the framework by designing a bounding technique to reduce execution time of sub-

sequence search using DTW distance.

Next is the summary of the objectives, scopes, research methodology, and contributions.

1.1 Objectives of the thesis

This thesis aims to design a frequent episode discovery framework for real-valued time

series data. The following are objectives of this thesis.

e To design a new Subsequence Time Series (STS) clustering algorithm to identify interest-
ing patterns in the real-valued time series, and using the patterns as events for the frequent

episode discovery.

e To avoid overly-identified patterns in STS clustering algorithm, because identifying trivial

patterns can cause inflation and redundancy of the patterns.

e To explore the use of Dynamic Time Warping (DTW) Distance and shape-based averaging

scheme to improve effectiveness of the proposed STS clustering algorithm.

e To optimize the performance of using DTW distance in the framework.

1.2 Scopes of the thesis

The following are the scopes of this thesis.

e This thesis focuses on frequent episode discovery algorithm for time series data, whose
frequent events are determined based on interesting patterns discovered from the new STS

clustering algorithm.
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e The following performance measurements are used to evaluate the performance of the

algorithms.

— Shape-based Meaningfulness Measurement (SMM) (Niennattrakul, 2010)
— Rand index
— Precision, Recall, and F-Measure

— Frequent patterns visualization

Datasets used in this thesis are from the UCR time series data archive (Keogh et al., 2011),

and some medical datasets are from PhysioNet (Goldberger et al., 2000).

Research methodology

Study and research on general topics related to time series data mining.

Survey on potential topics of the thesis including classification, clustering, indexing, sub-

sequence matching, and motif discovery.
Review literatures related to frequent episode discovery on real-valued time series.

Research and identify problems along with their causes related to frequent episode dis-

covery algorithm on real-valued time series.

Design a framework for identifying interesting patterns for frequent episode discovery in

real-valued time series.

Explore the usage of Dynamic Time Warping distance and shape-based averaging to im-

prove effectiveness of the designed framework.

Design a new subsequence matching algorithm to improve efficiency of the use of DTW

in the framework.
Evaluate proposed framework and algorithm performance.

Compose the thesis.

Contributions of the thesis

This is the first work to address frequent episode discovery problem on real-valued time

series effectively.



e The proposed framework is shown to be able to be applied in real world applications.

e This thesis proposes a new frequent episode discovery framework. The following are

details of the proposed framework.

— The framework includes a new STS clustering algorithm for identification of inter-

esting patterns, while trivial patterns are discarded.
— The framework uses a compression based objective function to perform clustering.
— The framework allows variability in length of the patterns.
— The framework provides the best cluster number parameter suggestion.

— The framework is suitable for frequent episode discovery and other applications such

as rule discovery and prediction.

e The proposed framework is intentionally designed to be divided into common subtasks,

so that it is designed to be manageable for further optimization.

e This thesis proposes effectiveness improvements to the previously proposed STS cluster-

ing method by utilizing DTW distance, and shape-based averaging technique.

e This thesis proposes efficiency improvements on using DTW in a subsequence search

subtask.



CHAPTER 11

BACKGROUND

In this section, background, definition and notation of frequent episode discovery and
time series subsequence clustering algorithms along with their relevant topics used in this thesis

are explained.
2.1 Frequent episode discovery

Frequent episode discovery is a task to find frequent occurrences of events from sequen-
tial data (Achar et al., 2012). More specifically, an episode is partially ordered occurrences of
events in a certain time period, and the episode that occurs often is a frequent episode. The
frequent episode discovery algorithms have first been proposed by H. Mannila, et al. (Man-
nila et al., 1997). Variation of the episode discovery later proposed by many authors (Achar
et al., 2012; Laxman et al., 2007), mostly concerns about different definitions of frequency of
episode. There is a study (Achar et al., 2012) that simplifies various frequent episode discovery
algorithms to a unified apriori-based algorithm. Next is the detail of general frequent episode

discovery algorithm (Mannila et al., 1997; Achar et al., 2012).

An event sequence of length n can be written as D = ((E1,t1), (E2,t2), ..., (En, tn)),
where E; is the i'" event occurring in the sequence, each F; is a symbol from a finite set of
alphabets X, and ¢; is the occurrence time of E;. The sequence is ordered so that, ¢; < ¢;for

all 4.
For example, the following sequence is an event sequence with 10 events:

((A,1),(4,2),(C,3),(B,3),(A,6),(A,7),(C,8),(B,9),(D,11),(C,12)) (2.1)

Definition 2.1 (Episode) An N-node episode o, can be defined as a triplet, (Vo, <a,ga),
where V,, = {v1,v9,...un} is a set of N nodes, <,is a partial order on V, and go, : Vo — X

is a mapping that associates each node in o with an event-type from ..

When the <, is a total order, « is a serial episode, while « can be a parallel episode if the order



is empty. In this thesis, because the patterns in the time series cannot overlap with each other,

only serial episode will be considered.

For example, consider a 3-node episode V,, = {v1,v2,u3}, ga(v1) = A, ga(ve) =

B, ga(v3) = C, with vy <, v2 <, v3. The episode can be denoted by (A — B — ().

Definition 2.2 (Occurrence) An occurrence of episode o in the event sequence D is a map
h: Vo — {1,...,n} such that go(v) = Ejy) for all v € Vo, and for all v,w € Vi with

U <a W th) < thw)-

In the example event sequence (2.1), the events (A, 2), (B, 3), and (C, 8) construct an occur-
rence of (A — B — (). Note that the occurrence of the events in the sequence need not be

contiguous.

Definition 2.3 (Subepisode) An episode 3 = (Vz,<g,gg) is a subepisode of a = (V,, <4
, Ja), denoted by B = o if there exists a 1 — 1 mapping fgo : Vg — Vi such that (i) gg(v) =
9a(fsa(v)) for all v € Vi, and (ii) for all v, w € Vg with v <g w, we have fgo(v) <o fga(w)
in V.

In other words, an episode [ is a subepisode of « if every event of the same type in 3 appears
in « in the same order. For example, given an episode « = (A — B — (), (A — C) is
a subepisode of «, while (C' — B) is not. If 3 is a subepisode of «, every occurrence of «

contains an occurrence of S (Mannila et al., 1997).

The key objective of frequent episode discovery is to find all frequent episodes. The
frequent episode is an episode that has frequency of occurrence higher than a user-defined
threshold. There are many attempts to define different episode frequencies (Casas-Garriga,
2003; Huang and Chang, 2008; Iwanuma et al., 2004; Mannila and Toivonen, 1996; Mannila
et al., 1997; Meger and Rigotti, 2004) along with algorithms to discover the frequent episode

efficiently.

A span is a general term used in literatures. Given an occurrence h of an N-node episode
o and V,, = {v1,v2,...on}, the span is equal to (t4(yy) — th(v,)). In other words, the span is
a constraint that every event in an episode has to appear within a specific period of time. Con-

sequently, the frequency of an episode is obtained by counting only the episode’s occurrences
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that have their span lower than a user-specified limit (Achar et al., 2012).

An apriori-style level-wise method is the most popular method of frequent episode dis-
covery (Achar et al., 2012). Considering the fact that an episode can be frequent if its subepisode
is frequent, the method uses a “candidate generation” step to create candidates (potential fre-
quent episodes) of size k by combining frequent episode of size k — 1. The next step is “fre-
quency counting” that counts the frequencies of all candidates by a chosen definition of fre-

quency, and then determines frequent candidates.
2.2 Rule discovery from frequent episodes

Rule discovery is one of the well-known data mining tasks. In general association rule
mining (Schluter and Conrad, 2011), rules can be obtained from a transactional database. Let
X and Y be two itemsets, the basic association rule is in a form of X = Y, which means when
X occurs in a transaction, therefore, with high probability, Y will occur in the same transaction.
For example, in the market basket analysis, customers who buy a keyboard are most likely to
buy a mouse too. When time involves with the data, the mentioned basic association rule above
is unnecessary. Temporal rule mining (Das et al., 1998) is then introduced. The simple temporal
rule is written as X =7 Y, which means when event X happens, then it is most likely to see

Y happens within time 7.

The more complex temporal rule is called sequential rules or sequential patterns pro-
posed in (Agrawal and Srikant, 1995; Schluter and Conrad, 2011). This form of rules de-
scribes sequentially occurrence of events. For example, customers who buy Harry Potter
Vol. 1-6 will most likely buy Harry Potter Vol.7. This kind of rules can be described as
X1, X2, X3, ..., X, =T Y. In other words, if events X1, X2, X3, ..., X,, happen within time

window V, then Y should happen thereafter within time 7.

Other variations of basic or temporal association rules is proposed according to some
specific applications. The quantitative association rule (Martinez-BallesterosF et al., 2011) is
rules in a form of X;(a) A X2(b) = Y. This type of rules is used when attributes X; and X»

reach the threshold a and b, then Y will happen sequentially.

Another type of rules is Cyclic/calendar-based association rules (Li et al., 2001), which
is used when cyclical events occur. For instance, sandwiches and milk will be bought together

every morning. This type of rules can be written as X =, Y, which means X and Y will
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happen together every [ unit of time in the o unit of time.

To be more sophisticated, when rules can explain events from different transactions, inter-
transactional association rules are introduced (Morchen and Ultsch, 2004). Consider a circum-
stance when stock X is steep rising together with stock X5 in the same day, stock Y would be
rising in the next day with high probability. Note that this type of rule can be written the same

as the basic or temporal association rules, while applying for events from different transactions.

For the rules from frequent episodes, episode rules can be obtained from the results of
the frequent episode discovery (Mannila et al., 1997). In this case, given an event sequence
D, frequency fr of an episode is simply counted by how many span windows w in a set of all

windows TV have an occurrence of the episode. Formally, fr(a, W) = Hwew")"ov(ff'u rsinw|

For example, given an episode &« = (A — B — (') and its subepisode 5 = (A — B),
arule (A — B) = (C) can be obtained. Suppose fr(5,W) = 4.2%, which means /5 can
be found in 4.2% of windows, and fr(a, W) = 4.0%. It can be estimated that after seeing a
window with A and B, C will follow in the same window with a chance of 0.95. Formally,

an episode rule is 5 = «,such that 5 < «. The confidence of the episode rule is the fraction

Ir(8,W)
fric,W)”

In other words, the confidence can be described as the conditional probability of the

occurrence of « in a window, given that 5 occurs in the window.

However, the rule discovery is an application example of this thesis. It is not in the scopes

of this thesis, since the scopes only cover frequent episode discovery level.

2.3 Subsequence Time Series (STS) clustering

In this section, explanation of Subsequence Time Series (STS) clustering will be pro-

vided. First, definitions of time series and subsequences are defined as follows:

The algorithm takes real-valued time series as an input. It will begin with the definition

of time series.

Definition 2.4 (Time Series) A time series T of length m is an ordered sequence of real value

data, where T' = (t1,to, ..., ty,).

The proposed approach takes a sequence of time series 7" as an input and extracts it to a set of
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subsequences.

Definition 2.5 (Subsequence) A subsequence of length n of time series T s

Sim = (tistit1, -y titn—1), where 1 <i <m—n+1, n <m.

Suppose there is a time series 7' of length m, STS clustering clusters the subsequences
S = {Sinll <i<m—n+1,n < m} of the time series 7. In other words, STS clus-
tering is the whole time series clustering that takes every subsequence as individual time series.
Therefore, general clustering algorithms such as k-means clustering or hierarchical clustering
can be applied. However, consecutive subsequences can be trivial. More specifically, for the
subsequences that have overlap region, the overlapping part will be of the same value. Applying
general clustering algorithms to the STS clustering problem can cause poor or meaningless re-
sult (Keogh and Lin, 2005). For this reason, STS clustering algorithms need to take the problem

of meaninglessness into account.
2.4 Similarity measure

Most time series mining algorithms require a similarity measure or a distance metric to

measure how similar a pair of time series (or subsequences) are.
24.1 Euclidean distance measure

To measure distance between two subsequences, the Euclidean distance that has been widely

used in time series domain is considered. The distance is shown below.

—

n—
DiSt(X@n, ij) = (ﬂfi—&—k - xj+k)2 (22)
k=0

where X, , is a subsequence of length ¢ started at position p
2.4.2 Dynamic Time Warping distance measure

Dynamic Time Warping (DTW) distance measure (Keogh and Ratanamahatana, 2005) is a well-
known shape-based similarity measure for time series data. It uses a dynamic programming
technique to find an optimal warping path between two time series. Suppose we have two time

series sequences, a sequence X of length n and a sequence Y of length m. The distance is
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calculated by the following equation.

D(Xl...nfla Yl...mfl)
D(X1.n,Y1..m) = d(@n,ym) + min < D(X1.n, Vi.m_1) (2.3)

D<X1...n—1; Yl...m)

where D(X1. ., ) = D(Q,Y1..;m) = 00, D(@P, () = 0, and @ is an empty sequence. Any

distance metric can be used for d(x;, y;), including L1-norm, i.e., d(z;, y;) = |z; — y;|.
2.4.3 DTW with global constraint

A global constraint efficiently limits the optimal path to give a more suitable alignment.
Recently, an R-K band (Ratanamahatana and Keogh, 2004), a general model of global con-
straints, has been proposed. R-K band represents a global constraint by a one-dimensional
array R, i.e., R = (1,72, ..., 74, ..., T ), Where n is the length of time series, and ri is the height
above the diagonal in the y-axis and the width to the right of the diagonal in the x-axis. Each r;

value is arbitrary, making the R-K band an arbitrary-shaped global constraint.
2.44 Lower-bounding function for DTW distance

Although DTW outperforms many other distance measures, it is known to require huge com-
putational complexity. Therefore, L Bk¢oqn has been proposed to speed up similarity search.
LBreogh(Q,C) between the query sequence @ = (q1,42,-.-, ¢, ---,¢n) and a candidate se-
quence C' = (cq, ¢, ..., i, ..., ¢ ) can be computed as follows.

lei —ug|  sif e > u;
n

LBKeogh(Q7 C) :Z ‘lz — CZ" sif e <l 2.4
i=1
0 ; otherwise
where u; = max{qi—r,, ..., Gitr, fand l; = min{q;—r,, ..., ¢i+r, yare envelope elements calcu-

lated from a global constraint R = (71,72, ..., 4, .., Tn).

2.5 Z-normalization

The two time series sequences are compared using any similarity measures; all the data

should first be normalized. Z-normalization (Han et al., 2006) that makes the value of mean
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and standard deviation of a time series to be zero and one will be used. Given a subsequence
Tin = (tistit1, -, tign—1) Whose mean is 4 and standard deviation is o. The normalized time

. . / ! 4l / ! t—p
series is T}, = (£, 5, 1, sty 1), Where ), = 2,
2.6 Uniform scaling

Many research works show that uniform scaling technique can improve performance in
terms of accuracy (Fu et al., 2008; Yankov et al., 2007). Specifically, a subsequence T’ =
(t1, ..., ti, ... ,tm) can be shrunk/stretched, by specifying a scaling factor f > 1, to a new time

series T/ = (tﬁ,...,t;,...,t%),where te =trjmm)s Im/fl1 <n < |m-fl.

In this thesis, input time series can be extracted to subsequences of different lengths.
In detail, STS clustering algorithm in section 3.3 takes 2 parameters, w and f, the window
length and the scaling factor, respectively. Subsequences of length from [w/f] to |w - f| are

extracted, then uniform scaling is used to make them the same length of w before clustering.
2.7 Motif discovery

A subsequence motif (Tang and Liao, 2008; Frith et al., 2003; Li et al., 2012; Mueen
et al., 2009; Yingchareonthawornchai et al., 2013; Yankov et al., 2007) is the most similar
pair of subsequences in time series data. Many research works have proposed motif discovery
algorithms, trying to improve performance in terms of speed and accuracy. In this thesis, MK
algorithm in (Mueen et al., 2009), which is considered the fastest algorithm to find a pair of

motifs by using the Euclidean distance, will be utilized.
2.8 Subsequence search in time series

Subsequence matching algorithm (Wu et al., 2005; Niennattrakul et al., 2009; Rodpong-
pun et al., 2011) is usually used as a subroutine in many data mining tasks. By giving a query
sequence, we can retrieve a subsequence, which is the most similar to the query, from a longer
time series. In this thesis, the Euclidean and DTW distance are used as a distance measure to

compare the query sequence with all the extracted subsequences
2.9 Time series averaging

In the clustering part of this thesis, an averaged time series sequence of each cluster needs

to be calculated. This section describes averaging methods used in this thesis.
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2.9.1 Amplitude averaging

Amplitude averaging method (Niennattrakul, 2010) calculates a mean time series by av-
eraging every pair of points or dimensions of two time series of the same length. Given two
time series of length n, A = (ay, a9, ..., a;, ...,a,) and B = (b1, ba, ..., b;, ..., by ), a mean time

series C' = (¢, c2, ..., Cj, ..., €y ) 18 calculated by ¢; = “’JT“”, forall: =1,2,....n.

In addition, for the input sequences that have different weights, for example A has weight

w4, and B has weight wp, the mean time series C' can be calculated by ¢; = %, for all

1=1,2,...,n.

Therefore, a mean time series X = (x1,x2, ..., ;, ..., T, ) can be computed from a set

of m time series of length n, T = {1}, T3, ..., T}, ..., T}, }, with different weights wr, by z; =
> wr;ti
TeT

S ors ,foralli =1,2,...nand j =1,2,...,m.

TeT

2.9.2 Shape-based averaging

Unlike the amplitude averaging, shape-based averaging method, called CDTW (Niennat-
trakul et al., 2012), averages pairs of data points according to a warping path of DTW distance
between two time series. When calculating DTW distance, a path matrix is created to store
an index of the adjacent element that has minimum cumulative distance, and a warping path is
traced back from the last element to the first element (Niennattrakul, 2010). An averaged time

series is then computed along the warping path.

Given a path W = (wy,ws, ..., wy, ..., wy), where wy, = (iy, jx) is k' coordinate in

the DTW’s optimal path of two sequences A and B. Therefore, a position c;% of a data point
walktwWs gk
watwp
wa-aq, +wp-bj,
watws

in a new averaged sequence C'’ is determined by C; = , and an amplitude ¢ of a
T Y

data point in a new sequence C’ is determined by C; = , where w4 and wp are
Y

the weights of sequences A and B, respectively.

Consequently, the length of the sequence C” can be equal to or longer than the length of
original sequences. For this reason, re-interpolation is applied. In (Niennattrakul et al., 2012),
CDTW averaging method uses a cubic-spline interpolation (Burden et al., 1997) to re-sample

the averaged time series C” to be the same length of A and B.
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CHAPTER III

TIME SERIES FREQUENT EPISODE DISCOVERY
FRAMEWORK

This chapter provides a complete detail of the proposed time series frequent episode

discovery framework, but before going to the algorithm, related work will be discussed next.
3.1 Related work

The related work section will be divided into two topics. First, related works about
frequent episode discovery and other related mining techniques will be explained. This part in-
cludes frequent episode discovery algorithms, other related frequent pattern mining algorithms
in time series, and related association rule discovery algorithms. Second, a topic specifically
about techniques to transform real-valued time series to event sequences, which mainly focus
on subsequence time series clustering techniques and some discussion on motif discovery, will

be described.
3.1.1 Frequent episode discovery and related mining techniques

The frequent episode discovery algorithms have been active since the first work proposed
by H. Mannila, et al. (Mannila et al., 1995). Variations of the frequent episode discovery al-
gorithms are proposed by many authors (Achar et al., 2012; Laxman et al., 2007). In (Mannila
et al., 1997), window-based, and minimal occurrence-based frequency counting methods are
proposed with optimized counting algorithms. Head frequency and total frequency definitions
(Iwanuma et al., 2004) are proposed along with counting methods to reduce the redundancy of
frequent episodes in (Mannila et al., 1997). There are a non-overlapped, and non-interleaved
frequency introduced in (Laxman, 2006) to have constraints that the frequent episodes should
not be overlapped or interleaved. Other frequency definition is distinct occurrence-based (Ma-

hesh Joshi and Kumar, 1999) that do not allow an event to be in multiple episodes.

There are many frequent episode discovery algorithms that are proposed for various types
of data scheme. A work from (Srivatsan Laxman, 2012) proposes an episode mining algorithm

for dynamic event streams. The work provides approximation algorithm to discover frequent



episodes from streaming data. Another type of data is uncertain sequence data, which is the
data that has probability of occurrence (Wan et al., 2013b,a). The uncertain data needs to take

the probability of event occurrences into account.

In spite of that, there are many researches on frequent episode discovery. Most of the
works are based on input event sequence to be discrete. In other words, an event is considered
to be only one data point of known type. However, it will be a problem if it needs to consider
more complex real-valued patterns or shapes, instead of one discrete data point as events in the
sequence. To do so, all of the above mentioned frequent episode discovery algorithms cannot

be used. This thesis then proposes to solve this problem.

Some research works use frequent episode discovery for other applications such as pre-
diction or forecasting, such as in (Martinez—Alvarez et al., 2008) and (Martinez—Alvarez et al.,
2009), the authors propose algorithms to forecast electricity price time series by discretizing
real-valued time series to event sequences, and then discover frequent episodes for prediction.
However, these works are proposed to perform segmentation on electricity price to a period of
a day, and also reduce the dimension of the price in a day to a specific set of event types. For
this reason, the problem can be considered to be discovering frequent episodes on a single value
in time, which is beyond the scope of this thesis that the data are real-valued and do not have

predefined segments.

Another type of research that is closely related to frequent episode discovery is associa-
tion rules discovery. Other than mining rules from discrete event sequences (Qin and Shi, 2006),
there are works proposed for real-valued time series. The most mentioned technique for discov-
ering association rules from time series is proposed by G. Das, et al. (Das et al., 1998). After
extracting an input time series to subsequences, a traditional k-means clustering algorithm is ap-
plied to the set of all subsequences. Accordingly, set of temporal association rules are obtained
from those clustered subsequences by using Apriori algorithm (Agrawal and Srikant, 1994).
Also, variations of the method by G.Das, et al. are proposed (Pradhan and Prabhakaran, 2009b;
Lutsiv, 2007). In the same manner, many attempts utilize fuzzy approach to mine rules from
time series (Wang and Chen, 2009; Pradhan and Prabhakaran, 2009a). However, symbolization
is needed to convert real-valued time series data to discrete subsequences, and many threshold
parameters need to be determined to obtain association rules. A well-known discretization tech-
nique, SAX (Warasup and Nukoolkit, 2006), is utilized to discretize the input time series to be

a set of symbols. Subsequently, an apriori-like algorithm is applied to acquire association rules
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from the discretized subsequences. As mentioned above, this type of discretization makes time
series lose their characteristics, and also, many parameters are required to achieve an optimal
results. The latest work from (Shokoohi-Yekta et al., 2015) proposes an algorithm to discover
meaningful rules in time series. The algorithm finds a motif in the time series, and then uses
an MDL technique for an objective function to find an optimal split point in the motif pattern
that gives an optimal rule. This approach works well with real-valued time series; However,
there are limitations when the rule needs to be in a form of A = B only. Also, even though the
authors propose maxlag value to allow some gap between A and B, the motif that is a baseline
to find the rule cannot have the maxlag value. For this reason, this work (Shokoohi-Yekta et al.,
2015) does not solve the same problem of this thesis, which is to discover frequent episodes

that are constructed from important shapes or patterns in time series.

This thesis proposes a new subsequence time series clustering algorithm to identify im-
portant patterns in the time series while discarding trivial patterns to avoid pattern inflation and
redundancy. In other words, the real-valued time series is transformed to an event sequence,
and then any frequent episode discovery algorithms can be applied to find frequent episodes.

Next subsection will discuss about related works according to STS clustering method.

3.1.2 Discovering of patterns in real-valued time series

One may consider motif discovery techniques (Frith et al., 2003; Li et al., 2012; Mueen
etal., 2009; Tang and Liao, 2008; Yankov et al., 2007) for discovering important patterns in time
series. However, in time series mining community, most proposed motif discovery algorithms
focus on finding one pattern at a time. More specifically, motif discovery algorithms find a pair
of subsequences that are most identical based on a distance measure. Although some methods
can find more than one pattern (Mueen et al., 2009; Yingchareonthawornchai et al., 2013),
the motif discovery algorithms focus on finding the motif patterns without identifying all the
subsequences that are similar to the motif patterns. For this reason, subsequence time series
(STS) clustering technique is more relevant to identifying all important patterns and their labels

(clusters).

In time series mining communities, clustering task has always been receiving much at-
tention. However, most works focus on clustering individual time series whereas clustering
subsequences of a single long time series, the problem considered in this thesis, is not well re-

solved for using with frequent episode discovery. The most referenced work is the one that uses
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STS clustering as a subroutine for rule discovery (Das et al., 1998). The proposed work from
Das et al. uses k-means clustering with all subsequences from an input time series to discretize
to real-valued time series to discrete events. All of the subsequences are extracted by using
a simple sliding window method. After obtaining the discretized sequence, a rule discovery
algorithm is applied. Another work (Oates, 1999) proposes an algorithm to identify distinctive
subsequences in real-valued time series. However, the method proposed by (Oates, 1999) is in-
applicable to single time series problem (Zolhavarieh et al., 2014). Oates also proposes another
method called PURUSE (Oates, 2002) to find recurring patterns in time series. The work has
two approaches that are a supervised learning and an unsupervised learning. Experiments are
based on data from utterances, and data from robotic sensors. A study by Frith et al. (Frith et al.,
2003) proposes a model to find clusters of motifs in DNA sequences using maximal log like-
lihood ratios. They also propose methods that has higher efficiency, which are Cister, Comet,

and cluster-buster.

Surprisingly, it has been discovered that the STS clustering methods used in previous
works are meaningless (Keogh and Lin, 2005). Because the algorithm tries to cluster every sin-
gle extracted subsequences, their output turns out to always be in sine waves regardless of what
the input sequence looks like. For this reason, the authors claim that the other methods that use
STS clustering as a subroutine will fail to produce their meaningful results as well. This work
by Lin et al. (Lin et al., 2003) also proposes a new measurement to measure meaningfulness of

STS clustering algorithm.

After the meaninglessness claim, there are approaches proposed by many authors. A
study by (Chen, 2005) is the first attempt to solve the meaninglessness problem. The study
comes to conclusions that the subsequences can be significant, and the distance measure in
delay space can lead to meaningful result. A work from (Denton et al., 2009) proposes kernel-
density-based method for clustering of time series subsequence. The work shows that noise
elimination with the proposed kernel-density-based clustering can be significant in the cluster-
ing application (Zolhavarieh et al., 2014). Another work proposes a new cluster shape distance
to be used with STS clustering (Goldin et al., 2006). The approach defines a shape by a sorted
list of the pairwise Euclidean distance between their centroids. The authors also provide two
algorithms related to the proposed new distance measure that matches cluster centroids. First
algorithm creates smaller fingerprints while the second approaches with higher accuracy. How-
ever, this work only shows the effectiveness with only one dataset of 10 sequences. A work

from (Kumar et al., 2006) proposes WaveSim and adaptive WaveSim transform, which are a
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perspective of wavelet transform. The algorithm uses a hierarchical tree based method for
STS clustering using the proposed WaveSim transform. Chen (Chen, 2007a) proposes another
work for the STS clustering to achieve meaningful result. The method restricts the cluster-
ing space to extend over the visited region by the time series data in the subsequence vector
space. The author claims that the method can achieve the meaninglessness problem. Another
work from Chen (Chen, 2007b) provides an alternative distance measure that is Euclidean dis-
tance in the delay vector space. The work advises that the STS clustering can be meaningful.
However, results of the study are limited given certain barriers (Zolhavarieh et al., 2014). A
theoretical analysis of the STS clustering is proposed by (Fujimaki et al., 2008). The analysis
is based on a frequency-analysis viewpoint, and provides mathematical background about how
STS clustering algorithms generates output as sine waves. The authors also propose a cluster-
ing method, Phase Alignment STS clustering, using phase alignment preprocessing. Another
interesting work from (Denton et al., 2009) proposes a clustering algorithm that uses frequent
occurring subsequences to create clusters. Subsequences can be frequent if their occurrences
are more frequent than an expected value of a random chance. The algorithm performs on both
pattern-based clustering, and kernel-density-based clustering. An algorithm called CONTOUR
proposed by (Wang et al., 2009) improves efficiency over discovering discriminating subse-
quences. The approach uses pruning techniques to make the algorithm more efficient. Li et
al. (Li et al., 2012) propose a method of clustering using numerosity reduction and grammar
induction based algorithms. However, for long time series, many iterations may be needed to
achieve effective results (Zolhavarieh et al., 2014). Yang approaches STS clustering (Yang and
Wang, 2014) by proposing a method using phase shift weighted spherical k-means algorithm.

The proposed method only shows output example from only one dataset.

To summarize, the meaninglessness problem of the STS clustering is analyzed by many
authors (Fujimaki et al., 2008; Id¢, 2006; Ohsaki et al., 2009). It now comes to a conclusion
that clustering every subsequence extracted by moving a fixed sliding window leads the cluster
centers to converge to a form of sine waves. However, those algorithms (Chen, 2005; Den-
ton et al., 2009) require a fixed value of number of clusters k£ and length of subsequences w,
which are not suitable in real world problems. A comprehensive review of most STS clustering

algorithms and their relevant algorithms is also reported by (Zolhavarieh et al., 2014).

Niennattrakul proposes a new STS clustering algorithm based on shape-based averaging
technique (Niennattrakul, 2010), called 2STSC, which is proven to be meaningful. However,

the drawback of the algorithm is that every single subsequence of a time series is clustered.
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Therefore, when doing rule discovery, a lot of consecutive subsequences are inflated. As a
result, it is very difficult to find the rules with a lot of trivial patterns. Moreover, parameters
also needed to be predefined, i.e., the number of clusters k£ and length of subsequences w. In
this case, it can be seen that results of the algorithm would be very sensitive to the parameters
as shown in Figure 3.1. A simple CBF example shows that even the cluster number £ is set to
3, which is a desirable class number for the CBF data, some subsequences that lie between two
major patterns are forced to be clustered. Hence, those undesirable patterns are assigned to a

cluster. This then conducts a cluster center to be incorrect and misleading.

W Undesired pattern

Desired patterns

Input

Figure 3.1: Undesired patterns will be forced to be in a cluster

Recently, Rakthanmanon proposes a new STS clustering algorithm (Rakthanmanon et al.,
2012) that uses MDL technique to acquire patterns into clusters. It is important to note that some
of the similar ideas proposed in (Rakthanmanon et al., 2012) was independently developed in
parallel to this thesis work (in section 3.3.3), which is published in (Rodpongpun et al., 2012).
This is to declare the originality of this thesis, and to emphasize the impact and contributions of

the methods proposed in this thesis.

3.2 Discretization: converting real-valued time series to event sequence

There are a lot of techniques to discretize real-valued time series. Due to the fact that
it needs to convert a time series to an event sequence where the events are significant patterns
in the time series. Subsequence Time Series Clustering (STSC) algorithm (Zolhavarieh et al.,
2014) is the most suitable solution, because the algorithm clusters subsequences into groups
where each group consists of similar pattern subsequences. Then, it is easy to mark each clus-
tered subsequence as an event based on its clusters. However, most STSC are claimed to be

meaningless. There are some attempts to solve the meaninglessness issue (Niennattrakul, 2010;
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Chen, 2007b). The intuition is that we do not need to assign every single subsequence to be
events. The consecutive subsequence can be trivial. Especially, when the sampling rate of the
data is high, there are a lot of consecutive subsequences that have similar pattern. Therefore,
the pattern will be inflated and we cannot get a meaningful result when performing a frequent
episode discovery. An algorithm called Selective Subsequence Time Series Clustering (SSTSC)
(Rodpongpun et al., 2012) is proposed in this thesis to perform subsequence clustering the way
we need. The SSTSC discards some trivial subsequences and clusters only significant ones.
For this reason, this thesis proposes this method as a discretization technique to convert a real-

valued time series to an event sequence.

Next section will provide details of the proposed algorithm.

3.3 Selective Subsequence Time Series (STS) clustering

Time series clustering (Chen, 2005; Denton et al., 2009; Lai et al., 2010; Keogh and Lin,
2005; Wang et al., 2006) is one of the most popular tasks in time series data mining commu-
nity (de A. Aradjo, 2011; Lee and Tong, 2011; Li and Guo, 2011; Weng and Shen, 2008a,b;
Niennattrakul et al., 2012). Most algorithms generally perform whole time series clustering
(Wang et al., 2006; Lai et al., 2010). More specifically, those algorithms try to group individual
time series instances to a set of clusters. On the other hand, Subsequence Time Series (STS)
clustering (Chen, 2005; Keogh and Lin, 2005; Denton et al., 2009), which will be considered
in this thesis, has been gaining more popularity. STS clustering algorithm discovers clusters of
interesting subsequences within a single time series data stream. This algorithm can be used
as a subroutine of other data mining tasks, such as rule discovery (Yairi et al., 2001; Das et al.,
1998; Jin et al., 2002), indexing (Li et al., 1998), classification (Cotofrei and Stoffel, 2002), and

anomaly detection (Yairi et al., 2001).

Unfortunately, it has been demonstrated that these STS clustering algorithms produce
meaningless results (Keogh and Lin, 2005). Because most algorithms use a sliding window to
extract subsequences and try to cluster them all, the resulting cluster centers turn out to be some
forms of sine waves regardless of the original shape of the patterns in the input data. Therefore,
every algorithm that uses this meaningless STS clustering as a subroutine will in turn fail to

produce meaningful results as well.

The cause of producing sine waves as outputs has been analyzed by many authors (Fu-
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jimaki et al., 2008; Idé, 2006; Ohsaki et al., 2009). They have shown that clustering of every
single subsequence leads to meaningless outputs. In fact, some subsequences such as noises
or outliers should not be clustered. For instance, consider a speech recognition problem, non-
speech segments in a source data has to be determined and removed. Similarly, in sign language
recognition, transitions between consecutive signs, called movement epenthesis (Yang et al.,
2010; Ong and Ranganath, 2005), has to be discarded. It is shown in Figure 3.2 that meaningful
STS clustering can be achieved by ignoring some subsequences. The ECG data from (Gold-
berger et al., 2000) demonstrate that it is not necessary to include some trivial subsequences in

a cluster.

Four cluster centers

w

/LEN/\(AMﬂ A\ﬂJM/\ka Fo Y = [/xﬁ

3 1 3 1 3 1 1

Figure 3.2: Meaningful STS clustering achieved by ignoring some subsequences.

This thesis proposes a new STS clustering framework called Selective Subsequence Time
Series Clustering (SSTSC), which performs subsequence clustering to produce meaningful
cluster centers. This thesis will show that the cluster centers from the proposed algorithm
do represent the actual patterns within the input data, instead of producing sine waves. In
essence, this thesis adopts an idea of data encoding to determine proper clusters by clustering
only important subsequences. Some subsequences that are not significant will be discarded.
On the other hand, because it is hard to exactly specify a window size of the subsequences, the
proposed approach allows window size to be varied. The appropriate sliding window size, w,
depends on types of data and application requirement. In practice, a user only needs to roughly
estimate a value of w, and then the proposed algorithm will determine an appropriate value.
However, due to the flexible window length w, the members of clusters could be of different

lengths. Moreover, different types of data need different predefined number of clusters k, so the
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proposed algorithm automatically determines an appropriate number of clusters depending on

characteristics of input data.

The rest of this chapter is organized as follows. Section 3.3.1 will define some definition
and notation, followed by problem definition in section 3.3.2 Details of the proposed approach
are described in section 3.3.3. Section 3.4 summarizes the frequent episode discovery method
that will be used. Section 3.5 shows essential experiments in various domains including real
and semi-synthetic data. Finally, conclusion and discussion about future research direction

according to the proposed STS clustering algorithm are discussed in section 3.6.

Next will be details of the proposed approach called Selective Subsequence Time Series

Clustering (SSTSC) framework. Firstly, it begins with stating the problem definition.
3.3.1 Definition and notation

As mentioned in the chapter 1, this thesis adopts an idea of simple data encryption to

determine proper clusters by emulating the clusters as a codebook.

Definition 3.1 (Codebook) A codebook is a data structure used to store codewords, represent-
ing repeating parts in an input data. The input data can be compressed by substituting the

repeating parts with smaller codeword symbols.

In this thesis, it emulates cluster centers as the codewords used to represent their member subse-
quences. Performance of the encoding can be measured by using Compression ratio and Error

defined below.

Definition 3.2 (Compression Ratio) Compression ratio is a ratio of the data size between be-
fore and after compression, including an overhead of construction of a codebook and codeword

symbols.

For example, given a 16-charecter string S = “ABCDEFGHIJKLMNQOP”. Suppose that
substrings “ABC” and “H1J” are similar, we can substitute them with a symbol z, therefore
the encoded string S’ = “cDEFGxKLMNOP”. In this case, we can eliminate 6 charac-
ters (“ABC” and “HIJ”), but a codeword of size 3, and two x’s must be created; thus, the

compression is 6 — (3 4 2) = 1 character, and the compression ratio R = % =0.94.
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Definition 3.3 (Error) Error is a summation of distances from cluster centers to their cluster

members.

For example, the two substrings “ABC” and “H I.J”, which are mentioned in the previous def-
inition, are grouped into a cluster C, then a codeword (a cluster center) C is created. The Error

of creating a cluster from those substrings is £(C) = Dist(C,“ABC”) + Dist(C,“HI.J”).
Next is a problem definition of the proposed STS clustering algorithm.
3.3.2 Problem definition

Input of the proposed algorithm is a single time series data. The problem is to first de-
termine a number of clusters n, and then to group subsequences into proper clusters; some
subsequences can be discarded without being assigned to any cluster. The subsequences
are extracted using a sliding window approach. The sliding window can be varied in a
range specified by a user. For example, it is demonstrated by using a 16-character string
S =“ABCDEFGHIJKLMNOP” as an input. We use a sliding window w of size 3, and

a scaling factor f = 1.5; therefore, the length of the subsequences is varied from 2 to 4. The

subsequences are extracted into a set S’ = {“AB”,“BC”,...,“OP”, “ABC”, “BCD”, ...,
“NOP”,“ABCD”,“BCDE",...,“MNOP”}. The algorithm should produce a set of clus-
ters C = {C4,...,Cj,...,Cy}. Each cluster consists of its members and a cluster center:

C; = {ti,, tiy, ., ti,, Ci}, where t;, is the j'* member of the i cluster, and the C; is the

cluster center of the i cluster.
3.3.3 Clustering method

To form clusters from a set of subsequences, we must iteratively pick one subsequence
and assign it to a cluster. However, in the first place, we do not have any predefined cluster yet,
and we must make a decision as follows. Intuitively, we can choose two subsequences which
are the most similar, to create the first cluster, then the first cluster center is produced. As a
result, we can choose other subsequences, which are the most similar to the already created
cluster, to be added to the existing cluster; therefore, the cluster center is then updated. Nev-
ertheless, it is better to create a new cluster if there exist two subsequences that are similar to
each other more than to the existing cluster center. Moreover, if there are two clusters that can
be grouped together, we can decide to merge them to create a new cluster. Thus, we define

three operations for producing clusters from a set of subsequences; those are Create, Add, and
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Merge to iteratively select two subsequences to create a new cluster, to assign a subsequence to

an existing cluster, and to merge two clusters into a new cluster, respectively.

The proposed approach iteratively selects an operation, which are Create, Add, and Merge
to produce a set of clusters. Accordingly, this thesis adopts an idea of data encoding as a
heuristic function to choose an optimal operation in each step of clusters construction. This
thesis emulates a set of cluster centers as a codebook, where each cluster center is a codeword
used to encode the input time series. Some subsequences from the input time series, which
are members of a cluster, will be substituted by a small codeword symbol. Error of a cluster
is determined by a summation of Euclidean distance from the codeword, which is the cluster

center, to their member subsequences.

m
E(Cy) = Dist(ti,, C:) (3.1)
j=1
where m is a number of members in the i*" cluster.
Increased error AE is obtained after a cluster update.
AE = Eafter - Ebefore (32)
Compression ratio R is determined by calculating data reduction of the original subse-
quence including overhead from codeword construction and codeword symbol substitution.

In detail, Compression ratio and Increased Error for each operation are described below.

1. Create: Create a new cluster C' from two subsequences P of length u, and ) of length v.
A new codeword C of length w is obtained by merging P and Q. The length of input time
series [ is reduced by u 4 v. The overhead is added by the codeword construction and the

substitution of P and @) by two of a codeword symbol “z” of size 1.

AE = E(C) (3.3)

R=[(u+v)— (w+2)]/I (3.4)
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2. Add: Update an existing cluster C' to a new cluster C’ by adding a subsequence P of
length u, and update the codeword C to C’. This operation reduces the length of input

TP L)

time series [ by u. The overhead is added by substituting P by “x” of size 1.
AE =E(C") - E(C) (3.5)
R=(u—-1)/1 (3.6)

3. Merge: two clusters C; and C; are merged into a new cluster C’. A codeword of length w
is reduced.

AE = E(C") — [E(C)) + E(C))] (3.7)

R=w/l (3.8)

The problem can be considered as a search space consisting of nodes of the three operations,
which is illustrated in Figure 3.3. The proposed approach uses greedy method to iteratively
select a node that has minimal /ncreased Error. To do this, as shown in Figure 3.4, this thesis
applies MK motif discovery algorithm (Mueen et al., 2009) to discover a pair of subsequences,
which has minimal Euclidean distance, to be the best node for the Create operation. To search
for the optimal Add node, all codewords are used as queries for the subsequence matching
algorithm to locate the best subsequence to be added to an existing cluster. The optimal Merge
node can be determined by searching all nodes, due to its small number of nodes. Note that
the subsequences can be of different lengths, so this thesis uses a uniform scaling technique
to make them the same length w before applying the motif discovery and the subsequence

matching algorithms.
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Start

[ABC]+[DEF] [ABC]+[EFG] [KLM]+[NOP]

[ABC,EFG]+[HIJ]  [ABC,EFG]+[IUK] [ABC,EFG]+[NOP] [HU]+[KLM]  [HUJ+[LMN] [KLM]+[NOP]

. Create

B Add [ABC,EFG]+[NOP] [ABC,EFG]+[HIJ,KLM]

A\ Merge / /

Figure 3.3: The search space consists of Create, Add, and Merge operations.

. Create .--
B Add R

A Merge H N

Subseguence
.:. Matching AﬁA
‘.‘ l\? ® - A/ A AA

Brute Force

Figure 3.4: The optimal node can be determined by using motif discovery and subsequence matching
algorithms.

To determine a proper number of clusters, we must choose a state of creating clusters
that provides large compression ratio while producing less error. From the compression-error
plot shown in Figure 3.5, it is obvious that there is a knee point in the graph where errors are
dramatically increased. It means applying an operation after that point will lose the clustering

accuracies. Thus, we return clusters in that state as a result of the algorithm.

The knee point (Salvador and Chan, 2004) can be determined by scanning along the
compression ratio-error curve point by point. For each point, calculate two linear regression
lines: one from all the points on the left side of the point and another one from all the points on

the right side of the point. The knee is the point where the summation of errors from the two
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lines is minimum.

To find that point, this thesis determine linear fitting function to the compression-error
graph and choose a point that gives minimum residual value to the fitting function as shown in
Figure 3.5. Consider a special case that a user want to specify the number of clusters k, the
proposed algorithm can effortlessly handle it by choosing a latest state that has the number of

clusters equal to the one specified by the user.

300
250
Rght regression line
200 | S
. 150 -
o
Y 100 |  Left regression line Knee point\
ol \ )
O I .’./—‘/"_/.—.-/),
_50 Il 1 Il 1 L L )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Compression Ratio

Figure 3.5: The stopping point or knee point can be found at the state that has minimum value of sum-
mation of regression error between left and right linear regression lines.

Table 3.1 illustrates the main algorithm. The algorithm starts by extracting subsequences
from the input sequence by running SUBSEQUENCEEXTRACTOR function. After that, it enters
a loop to iteratively select an operator to create clusters until there is no subsequence left. The
Create, Add, and Merge operations are applied, then the best one, which gives minimum error,
is selected in each iteration. Every cluster construction state is kept in a list P for determining
the best state later. After breaking the loop, a proper cluster state will be chosen by using

STOPPINGSTATE function.
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Table 3.1: SSTSC algorithm

Function [C'] = SSTSC(T, w, )

1. S = SUBSEQUENCEEXTRACTOR(T, w, f)
2. while there is an operation left

3. [C'[1],8'[1]] = CREATECluster(C', S)

4. [C'[2],8[2]] = UPDATECLUSTER(C, S)
5. [C'[3],5[3]] = MERGECLUSTERS(C, S)
6. m = ARGMINERROR(C")

7. C =C"[m]

8. S =5'[m]

9. P.add(C)

10.  return P.at(STOPPINGSTATE(P))

Details of SUBSEQUENCEEXTRACTOR function are shown in Table 3.2. The function
extracts subsequences of length varied from w,,;;, t0 Wy,az, and makes it the same length by
using UNIFORMSCALING function. Consequently, the extracted subsequences are normalized

by Z-NORMALIZE function, and they are stored in a list of subsequences S.

Table 3.2: Subsequence extractor

Function [S] = SUBSEQUENCEEXTRACTOR(T, w, f)
Wmaz = |_’LU : fJ
| =LENGTH(T)
for i = wmin : Wnax
forj=1:1
t = UNIFORMSCALING(S[j : j + i — 1))
Z-NORMALIZE(t)
t.start =j
tend=j+i—1
S.add(t)
return S

WA kW=

—_— —
—_ O

Table 3.3 shows CREATECLUSTER function in details. It starts by executing MOTIFDIS-
COVERY to find a motif pair. After that, a cluster is created from the motif pair, and the motif

pair and the subsequences that overlap with them are removed from the list of subsequences .S.
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Table 3.3: Create operation

Function [C”, S’] CREATECLUSTER(C, S)

[l1, 2] = MOTIFDISCOVERY(S)

C.C = AVERAGE(S[l1], S[l2])

C.addMember(S[l1])

C.addMember(S[l3])

C.add(C)

remove S[l;] and S[l2] and subsequences
that overlap S[l;] and S[l3] from S

7. returnC, S

AN

Table 3.4 explains details of UPDATECLUSTER function. Every cluster center of all cre-
ated clusters is used as a query sequence for SUBSEQUENCEMATCHING function. The function
returns a subsequence from S that is the most similar to the query. The subsequence that pro-
duces the least error is chosen to be added to the cluster that holds cluster center that was used
as the query. The cluster center of that cluster are updated by averaging the old cluster center
and the subsequence resulted from the subsequence matching function. After that, the resulted

subsequence and its overlapping subsequences are removed from 5.

Table 3.4: Add operation

Function [C’, S'] = UPDATECLUSTER(C, S)
1 for i = 1:C.numberO fCluster()

2 C=CJi]

3 t = SUBSEQUENCEMATCHING(S, C.C)
4. C.C = AVERAGE(C.C, S[t])

5. C.addMember(S[t])
6

7

8

9

iferrorpsp > C.error()
¢'=C
IBSF =1
) errorgsp = C.error()
10. =t
I1. Cligpsp]=C"
12.  remove S[t'] and subsequences
that overlap S[t'] from S
13.  return C, S

The last operation, the Merge operation, are described as the MERGECLUSTERS function
shown in Table 3.5. All combination pairs of the existing clusters are examined, then a pair that

gives minimum error will be merged.

To create a cluster center, when performing Create, Add, and merge operations, am-

plitude averaging approach is used to average two sequences. Given subsequences P =
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Table 3.5: Merge operation

Function [C”, S’] = MERGECLUSTERS(C, S)

1. n = number of clusters in C

2. fori=1:n-1

3. forj=i+1:n

4. C, = CJi]

5. C1 = Clj] _ _
6. C1.C = AVERAGE(C:.C , C5.C")
7. add all members of C5 to Cy

8. if errorggp > Cy.error()

o. c'=0Cy

10. lh =1

11. lo=3j

12. Cll]=C"

13. C’.remgve(lg)
14. returnC, S

(P1y s Diy -oyPn) and Q@ = (q1, .., Gi, .., qn), @ new subsequence C' = (cq,...,Cj, ..., Cp) 1S

produced by ¢; = %, where w,, and w, are weights of P and @), respectively.

As discussed in the chapter 1, the proposed framework is intentionally designed to be
divided into common subtasks, so that it is designed to be manageable for further optimiza-
tion. The illustrated framework is based on Euclidean distance. However, in some situations
(Rodpongpun et al., 2011) patterns or shapes in the stream can be locally warped. In this case,
DTW distance can be used to increase the overall effectiveness of the patterns identification.
For this reason, it is possible to replace Euclidean distance with DTW distance, such as in error
calculation, in subsequence search, or in the motif discovery phase. However, the optimized
algorithm for the Euclidean distance in the subsequence search or motif discovery cannot be
used because the DTW distance is not a distance metric (Keogh and Ratanamahatana, 2005).
This thesis also proposed an optimization for subsequence search algorithm that uses DTW as

distance measure. The details is provided in chapter 4.

Moreover, in the same situation when the patterns or shapes in the stream can be locally
warped, Euclidean distance will not work very well. Shape-based averaging method (Niennat-
trakul et al., 2012; Niennattrakul, 2010) can be used instead of amplitude averaging to maintain
the characteristics of the patterns. The experiment in section 3.5 will demonstrate the use of the

shape-based averaging compared with the amplitude averaging.
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3.3.4 Time complexity analysis

Given a time series input I' of length m, and a user specific window length w, time

complexity of the algorithm using Euclidean distance can be calculated as follows.

For the Create operation, suppose a motif discovery algorithm takes O(M ) time. Since
all subsequences cannot be overlapped, the number of clusters to be created is at most O(2>).

Therefore, time taken by all Create operations is at most O(22).

For the Add operation, time complexity of the subsequence search is O(mw). Each
Add operation needs to take all cluster centers into account, and the number of clusters is at
most O(%). The maximum number of clustering steps is the same as the number of maximum
clusters, which is O(%}). Therefore, the time complexity of all Add calculations is at most

O(mw - M. M) = (™),

w

For the Merge operation, considering a cluster that has been created by merging s clusters
so far, there is at most O(s) member subsequences in that cluster. A calculation of error in that
cluster can be done in O(ws) time. The number of clusters is at most O(%), so the number of
clusters of size s is at most O(%). The maximum number of clustering steps is also O(%).
Since number of s can be at most O(’), the time complexity of all Marge operations is at most

Ows - (#£)°- ™) = O(2) = O(=),

ws w w?s

Therefore, the total time complexity is O (22 + %3 + %2) =O(Mm 4 %3) Recall that
this thesis uses MK motif discovery algorithm (Mueen et al., 2009), whose time complexity is

O(mw), so the total time complexity will be O(%S)
3.4 Frequent episode discovery from the event sequence

In this section, a detail of frequent episode discovery algorithm will be explained. Af-
ter applying SSTSC explained in chapter 2, it is straightforward to assign every occurrence of
the member in the same cluster to be the same event type, then we have a discrete event se-
quence. Hence, general frequent episode discovery algorithm can be applied directly. Next is

an explanation of how the frequent episode discovery algorithms works.
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3.4.1 Frequency counting definitions

As described in section 2.1, there are many episode frequency definitions proposed
in the literatures. A study in (Achar et al., 2012) summarizes and proposes a unified view
of the apriori-based algorithm for frequent episode discovery, so examples and definitions
in this section will mostly recall from (Achar et al., 2012). Recall that the event sequence

D = ((F1,t1), (Ea,t2), ..., (En, ty)). The example event sequence is:

<(A7 1)’ (A’ 2)7 (C7 3)7 (B7 3)7 (A7 6)’ (A’ 7)7 (C7 8)7 (B’ 9)7 (D7 11)7
(C,12),(A,13), (B, 14), (C, 15))

3.9

Definition 3.4 (Window-based frequency) (Mannila et al., 1997) A time interval [ts,tc] is a
window on an event sequence D, where ts and t. are integers such that ts < t, and t. > t.
(te — ts) is the window width of [ts,t.]. Given a user-defined window width T, the window-
based frequency f of o, in D is defined as the number of minimal windows of « in D. Note that

situations when ts < t1 or t, > t, can be occurred.

For example, in the event sequence (3.9), there are 5 windows of width 5 that contain an

occurrence of (A — B — (), which are: [7,12], [10, 15], [11, 16], [12, 17], and [13, 18].

Definition 3.5 (Minimal Occurrence-Based Frequency) (Mannila et al., 1997) The time-
window of an occurrence, h, of « denoted as [th(vl),th(vg)} A minimal window of « is a
time-window that contains an occurrence of o, such that no proper subwindow of it contains
an occurrence of a. A minimal occurrence is an occurrence in a minimal window. The minimal
occurrence-based frequency f,; of a in D is defined as the number of minimal windows of o

in D.

For example, in the sequence (3.9), there are 3 minimal windows of an episode (A — B — ()

that are [2, 8], [7,12], and [13, 15].
Definition 3.6 (Head Frequency) (Iwanuma et al., 2004) Given a window width k, the head
frequency fr(a, k) of «is the number of windows of width k that contain an occurrence of o

starting at the leftmost of the window.

Definition 3.7 (Total Frequency) (Iwanuma et al., 2004) Given a window width k, the total
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frequency of a, given by fioi(v, k), is defined as follows.

ftot(a7 k) = ?ﬁigfh(ﬂ, k)

Given a window width of 6, the head frequency f3(7y,6) of y = (A — B — C) in (3.9)
is 4. The total frequency of v, fiot(7, k), in (3.9) is 3 because the head frequency of (B — C)
in (3.9) is 3.

Definition 3.8 (Non-Overlapped Frequency) (Laxman et al., 2005) The non-overlapped fre-
quency fnoof o in D is given by the cardinality of a maximal non-overlapped set of occur-
rences of o in D. Two occurrences hi and ho of « are defined as non-overlapped if either
thy(on) < tho(vr) OF thy(on) < thy(v)- A set of occurrences is defined to be non-overlapped if
every pair of occurrences in the set is non-overlapped. A set H of non-overlapped occurrences
of ain D is maximal if |H| > |H'
of ain D.

, where H' is any other set of non-overlapped occurrences

If no event of one occurrence appears in between events of the other, the two occurrences
are non-overlapped . The notion of a maximal non-overlapped set is required because there can
be many sets of non-overlapped occurrences of an episode with different cardinalities (Laxman,
2006). For example, the non-overlapped frequency of v in (3.9) is 2. ((4,2),(B,3),(C,8))

and ((A,3), (B, 14), (C,15)) is a maximal set of non-overlapped occurrences.

Definition 3.9 (Non-Interleaved Frequency) (Laxman, 2006) Two occurrences hy and hsy of
« are defined to be non-interleaved if either ty,(, ) 2 th, (v,,,):0 = 1,2,...; N = Lortp ;) =
tho(vsen):d = 1,2,...;, N — 1. If every pair of occurrences in the set H is non-interleaved, a
set of occurrences H of o in D is non-interleaved. A set H of non-interleaved occurrences of

ain D is maximal if |H| > |H'

, where H' is any other set of non-interleaved occurrences of
a in D. The non-interleaved frequency fn; of « in D is given by the cardinality of a maximal

non-interleaved set of occurrences of o in D.

For example, given an episode (A — B — (), the occurrences ((A4, 2), (B, 3), (C,8))
and ((4,3),(B,9),(C,12))are non-interleaved (but overlapped) occurrences in D. Together
with ((A,13), (B, 14), (C, 15)), these are occurrences from a set of maximal non-interleaved

occurrences of (A — B — C) in (3.9), hence f,; = 3.
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Definition 3.10 (Distinct Occurrence-Based Frequency) (Mahesh Joshi and Kumar, 1999)
Given an N-node episode «, the hy and ho are two occurrences of o, and they are defined
to be distinct if hi(v;) # ha(vj)Vi,j = 1,2,..., N, i.e., the range of their corresponding maps
do not intersect. In other words, if two occurrences of an episode do not share any event in the
data stream, they are distinct. A set of occurrences is distinct if every pair of occurrences in it
is distinct. A set H of distinct occurrences of « in D is maximal if |H| > |H'|, where H' is any
other set of distinct occurrences of o in D. The distinct occurrence-based frequency f; of ain

D is the cardinality of a maximal set of distinct occurrences of v in D.

The three occurrences that are said to be the maximal non-interleaved occurrences of

(A — B — C)in (3.9) are the same as in the maximal set of distinct occurrences in (3.9).

Table 3.6 shows unified apriori-based algorithm for frequent episode discovery (Achar

etal., 2012).

Table 3.6: A unified view of the apriori-based algorithm for frequent episode discovery (Achar et al.,
2012)

SERIALEPISODECOUNTER
Input: Set Cy of N-node serial episode, event stream D = (X1, 1), ..., (X, tm)

Output: Frequency of episodes in C'ir

1. forall « € Cy do
2. Initialize an automaton of « waiting in the start state.
3. Initialize frequency of « to ZERO.
4. for: = 1tomdo
5. for each automaton, A, ready to accept event-type E € X; do
6. « :=candidate associated with A;
7. j := state which A is ready to transit into;
8. if TRANSIT then
9. if COPYAUTOMATON then
10. Add Copy of A to collection of automata.
11. Transit A to state j
if Jan earlier automaton of « already in state j (before t;) but not waiting

12.

forany E¥ € X; then
13. if JOIN-AUTOMATON then
14. Retain A and retire earlier automaton
15. if A reached final state then
16. Retire A.
17. if INCREMENT-FREQ then
18. Increment frequency of o by INC
19. if RETIRE-AUTOMATON then
20. Retire all automaton of « and create a state ‘0’ automaton.

There are boolean variables in the Table 3.6 that are TRANSIT, COPY-AUTOMATON,
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JOIN-AUTOMATON, INCREMENT-FREQ, and RETIRE-AUTOMATON. Their choices are
specified in Tables 3.8, 3.9, (3.10), 3.11, and 3.12, respectively regarding to the frequency

counting method listed in the Table 3.7.

Table 3.7: Various frequency counts (Achar et al., 2012)

WB Windows Based

MO Minimal occurrences based

MO-X Minimal occurrence with expiry-time constraints
NO Non-overlapped

NO-I Non-overlapped innermost

NO-X Non-overlapped with expiry-time constraints

NI Non-interleaved

DO Distinct occurrences based

AO All occurrences based

HD Head frequency

Table 3.8: Conditions for TRANSIT=TRUE (Achar et al., 2012)

WB, MO,
MO-X, HD, Alwayvs
NO, NO-X, Y
NO-I, AO
If there does not exist an earlier automaton of « already in target state j
NI L o
(before current time ¢;) but not waiting for any F € ¥;
DO No other earlier earlier automaton for o waiting in same state can transit on an

event-type E € ¥,

Table 3.9: Conditions for COPY-AUTOMATON=TRUE (Achar et al., 2012)

WB, MO,
MO-X, HD, o

NI, NO-X, Only if A is in start state
NO-I, DO

NO Never

AO Always

Table 3.10: Conditions for JOIN-AUTOMATON=TRUE (Achar et al., 2012)

WB, MO,

MO-X, Always
NO-X, NO-I
DO, AO, HD,
NO, NI

Never
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Table 3.11: Conditions for INCREMENT-FREQ=TRUE (Achar et al., 2012)

MO, NO, NI,

DO, AO, Always

NO-I

WB, NO-X, If time difference between first and last state transitions is less than T'x
MO-X, HD (window width for WB, expiry time for others)

Table 3.12: Conditions for RETIRE-AUTOMATA=TRUE (Achar et al., 2012)

Eg:lNO X, Always

WB, MO,

MO-X, HD, Never

NI, DO, AO,

MO-X

Table 3.13: Values taken by INC (Achar et al., 2012)

WB If (first window which contains current minimal occurrence also contains the

previous minimal occurrence), then
INC = Time diff. between start of last window containing the current

minimal occurrence and the start of last window which contains previous
minimal occurrence.
Else
INC = Time difference between the first and last window containing the
current occurrence + 1.

Other counts INC=1

3.4.2 Candidate generation

The previous part illustrates the frequency counting of different frequency definitions.
This section explain the detail of candidate generation step according to each frequency count-
ing definition. Generally, the candidate generation step exploits a necessary condition that an
I-node episode can be frequent if its (I — 1)-node subepisodes are frequent. In other words, the
frequency counting definitions must satisfy anti-monotonicity property that is the frequency of

an episode cannot exceed frequency of any of its subepisodes (Achar et al., 2012).

The window-based (Mannila et al., 1997), non-overlapped (Laxman et al., 2005), and
total (Iwanuma et al., 2004) frequency countings is known to satisfy the anti-monotonicity
property. Also, the distinct occurrence-based frequency can be verified to hold the same (Achar

et al., 2012). Consequently, for these frequencies, the /-node episode candidates can be gener-
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ated when all of their subepisodes of size (I — 1) are frequent. On the other hand, the head,
minimal, and non-interleaved frequency countings do not satisfy the anti-monotonicity, which
means that subepisodes can be less frequent. However, they can satisfy the anti-monotonicity
with some more restricted constraint. Next are some definitions from (Achar et al., 2012) to

better explain about the more restricted constraint of anti-monotonicity.

Definition 3.11 (Prefix Subepisode) (Achar et al., 2012) Given an N-node episode a[1] —
al2] = ... = a[N], its K-node prefix subepisode is a[l] — «a[2] — ... = ofK], for K =
1,2, ..., (N — 1),

Definition 3.12 (Suffix Subepisode) (Achar et al., 2012) Given an N-node episode o[l] —
af2] = ... = a[N], its (N-K)-node suffix subepisode is o[K + 1] — o[K + 2] — ... = a[N],
for K =1,2,... (N —1).

Definition 3.13 (Contiguous Subepisode) (Achar et al., 2012) A K-node subepisode o of
is a contiguous subepisode if a1 = (afi] — afi + 1] — ..ali + (K — 1)] for some i =

1,2,...,(N— K +1).

Under the head frequency, as illustrated in (Iwanuma et al., 2004), only the subepisodes
that consist of «[1] are as frequent as «. Therefore, to generate /-node candidates, all of their
subsequences that have 1] needs to be frequent. For this reason, the head frequency has some
limitations that some (I — 1)-node suffix subepisodes can be relatively low in frequency. For
example, given an event stream of 500 of A’s followed by a B and a C, there will be 500
occurrences of an episode (A — B — C) but only one occurrence of its subepisode (B — C).
In this case, it will be a problem when frequent episodes have to be causative influences (Achar

etal., 2012).

Similar to head frequency, the non-interleaved and the minimal occurrences (windows)
occurrences also do not satisfy anti-monotonicity property. However, the anti-monotonicity
holds with the (N — 1)-node suffix and prefix subepisodes. The proof of the anti-monotonicity
property of minimal and non-interleaved occurrence-based frequency counting is in (Achar
et al., 2012); it is concluded that for the minimal window or non-interleaved frequency, all
of contiguous subepisodes have frequency at least equal to the episode. Note that, for the non-

contiguous subepisodes, they will have distinct occurrences at least equal to the frequency of the
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minimal or non-interleaved occurrences. Consequently, to perform frequent episode discovery
under minimal and non-interleaved frequency, an /-node candidate can be generated if and only
if its prefix and suffix subepisodes of size (I — 1) are frequent. The candidate generation step
will combine two /-node episodes « and 3 from the set of frequent serial episodes at level [ if
the (I — 1)-node suffix subepisode of o matches the (I — 1)-node prefix subepisode of 3. The
result of the combination is an episode («[l] — [[2] — ... — «[l] — Sl]). For example,
there are two frequent 3-node episodes: (B — A — D),and (A — D — C). Atlevel 4, a
4-node episode candidate (B — A — D — (') can be generated. Candidates at each level
will be stored in a lexicographical order, so the episodes having the same (N — 1)-node prefix
subepisode will be together as a block (Mannila et al., 1997). For this reason, extracting their
(N — 1) suffixes, and then find a block that has a matching of (N — 1) prefixes can be done.
This type of candidate generation technique is proposed in (Orlando and Foscari, 2004; Patnaik

et al., 2008; Srikant and Agrawal, 1996) as mining under gap/inter-event time constraints.
3.5 Experimental results

This section provides experimental results of the proposed framework on various aspects
including visualization of the frequent episodes discovered from real-world data, validation of

the effectiveness, meaningfulness, and efficiency of the proposed SSTSC algorithm.
3.5.1 Frequent episode discovery using SSTSC

This part will provide experiments of the proposed frequent episode discovery frame-
work on various real-world time series. The objective of this part is to visualize the discovered
frequent episodes based on the proposed SSTSC algorithm. The quantitative evaluations will

provide later in section 3.5.4.
3.5.1.1 Stock Exchange of Thailand (SET) index data

For a stock index data, knowing how many significant patterns and how they occur is
important. However, it is difficult for people to identify those patterns by just looking at a
graph. This experiment applies the proposed frequent episode framework to 5-year SET index
data (Market Statistics, 2016). The data is recorded at every end of the day except close days
from January 1%t 2011 to December 31" 2015. Firstly, SSTSC is applied with window length
set to 30, so we will get patterns of length 30 days. Scaling factor is set to 1 for simplicity.

The results of the SSTSC algorithms is shown with color marked patterns in Figure 3.6 (a).
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Secondly, a frequent episode discovery is applied with non-overlapped frequency constraint.
The result in Figure 3.6 (b) shows occurrences of a frequent episode consisting of 4 events,
which is (A — C' — C' — B) with expiry time constraint set to 365 days. As a result, a user can
visualize the frequent patterns in the stock data more easily. Moreover, it is possible to use
the result for a prediction purpose. In this case, we get a rule that if an (A — C' — C) pattern
occur, with high possibility, B will occur within 365 days. In this situation, (A — C' — C) and

(A — C — C — B) have equal frequency, which is 3, so the confidence level is 1.
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Figure 3.6: (a) SET index data from 2011 to 2015 with frequent patterns marked (output from SSTSC),
(b) Occurrences of frequent episodes of size 4.

3.5.1.2 Weather balloon data

In this experiment, the proposed framework is applied on Radiosonde Atmospheric Tem-
perature Products for Assessing Climate (RATPAC) dataset (Free et al., 2005), which is weather
data recorded from hydrogen-filled balloons carrying radiosonde up in the air. The data used in
this experiment is monthly mean temperature at 850 mb pressure level. The output from SSTSC
(window length is set to 12 months) is shown in Figure 3.7 (a), where the patterns of the same
group is highlighted with the same color. Figure 3.7 (b) shows frequent episodes of size 2 with

non overlapped frequency count, and 365 expiry constraint. The result illustrates possibility of
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using the proposed framework for weather analysis and forecasting.
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Figure 3.7: (a) Temperature data from a weather balloon with frequent patterns marked (output from
SSTSC), (b) Occurrences of frequent episodes of size 2.

3.5.2 Usefulness of SSTSC

This part demonstrates that the proposed SSTSC can be useful by visualizing the clus-
tering results in many types of data domains, i.e., synthetic dataset, data extracted from video

surveillance system and images, and real ECG data sequence.

3.5.2.1 Synthetic data

This is an experiment on the Cylinder-Bell-Funnel (CBF) dataset from the UCR time
series archive (Keogh et al., 2011). It has been shown that most STS clustering algorithms fail

to produce meaningful result from this very simple dataset.

This experiment randomly selects data from each class, then concatenates them to a single
time series, as shown in Figure 3.8. The cluster results are illustrated as colored subsequences
in Figure 3.8. The result shows that the key characteristics of each class are clustered correctly,

and the cluster centers can represent the shape of their member subsequences.

3.5.2.2 Video surveillance problem

In this experiment, it will apply the proposed algorithm on the video surveillance domain,
which is the gun problem (Keogh et al., 2011). The time series data are captured from the

centroid of each actor’s right hand performing two actions: Gun-Draw and Point. The motion
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Figure 3.8: top) A sequence of CBF dataset. bottom) Cluster centers of each class.

of the two classes of action are very similar and difficult to distinguish.
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Figure 3.9: top) Gun-Point data extracted from a video surveillance camera. bottom) Cluster centers of
each class.

The result of the proposed method, as illustrated in Figure 3.9, shows that all subse-
quences of motions are clustered correctly to their classes. Furthermore, the cluster centers

from the proposed method can preserve the important features and shapes in the data.

3.5.2.3 Time series data extracted from images

This experiment shows the result from clustering data extracted from images, which are
created by tracing the local angles from the centroid of an image to its perimeter. The input time
series is made by choosing the dataset that has different complexities (Batista et al., 2011). The
datasets used here are Face-all and OSU-Leaf (Keogh et al., 2011), which are extracted from

human faces with various expressions on the face, and from different species of leaf images.
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Figure 3.10: fop) A sequence of data extracted from image of faces and leaves. bottom) cluster centers
of each class.

Figure 3.10 shows that the proposed algorithm can cluster subsequences of the data even
when the data has different complexity values. The subsequences of face data are grouped in a
cluster, which is shown in red, and the leaf subsequences are separated into two subclasses that

have the same shape.

3.5.2.4 ECG data

In this experiment, it is to run the algorithm on a medical dataset, which is an ECG data
(Goldberger et al., 2000). Figure 3.11 shows that the beats are of different shapes. If we can
separate the beats into clusters, the heart diseases will be diagnosed easier. From the result in
Figure 3.11, three groups of heartbeats are clustered. The normal beats are clustered within
the same group as shown in green. The abnormal beats, as shown in red, are clustered into
the same group. And the blue cluster contains the beats that have minor anomalies, and are

clustered separately.

3.5.3 Meaningfulness of SSTSC

As discussed in the beginning that the work from Niennattrakul (Niennattrakul, 2010),
called Shape-based Subsequence Time Series Clustering (2STSC), can achieve meaningfulness
of STS clustering results. This section will evaluate the proposed SSTSC algorithm compar-
ing with the 2STSC in terms of meaningfulness. To maintain fairness, the datasets used in
this experiment are from TSDMA (Niennattrakul, 2010), the same as what were used in (Ni-
ennattrakul, 2010). The metric used to evaluate the meaningfulness is also the same as what

was used in (Niennattrakul, 2010), which is the Shape-based Meaningfulness Measurement

45
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Figure 3.11: top) ECG sequences with abnormal heartbeats. bottom) Cluster centers from the proposed
algorithm.

(SMM). The SMM is introduced by the idea that the clustering results are meaningful when
the cluster results can represent subsequences in the input time series. Given an input time se-
ries T = (ty1,t2,...,t,) of size n, a set S = {51, S, ..., Sn—w+1} Of all subsequences can be
extracted by using a sliding window of length w. A set of output C = {C1,Cs,...,Cy} of k
clusters can be calculated using an SSTSC algorithm where each cluster C; = (M, R) consists
of a set of cluster members Ml = {S;|S; € S} and a cluster representative R = (71,72, ..., Ty).
AsetR = {Ry, Ry, ..., R} is a set of all cluster representatives. SMM is calculated as a sum-
mation of minimum distances from each subsequences to the cluster representatives. The SMM

value can be defined as follows.

IS w

SMM(S,C) = (3.10)

E
; min(Distance(S;, R;)),VR; € R

where Distance(S;, R;) is a DTW distance between S; and R;.

The experiment is performed by various STS clustering algorithms including methods
proposed in (Niennattrakul, 2010) comparing with the methods proposed in this thesis. The
algorithms from (Niennattrakul, 2010) are 2STSC with variations of averaging method: Cubic-
Spline Dynamic Time Warping (CDTW) and Iterative Cubic-Spline Dynamic Time Warping
(ICDTW), and variations of hierarchical clustering methods: Complete Linkage (CL) and Av-
erage Linkage (AL). The algorithms proposed in this thesis are SSTSC with variations of dis-
tance measures: Euclidean (EUC) and Dynamic Time warping (DTW) distance, and variations
of averaging methods: Amplitude averaging (AA) and Shape-based Averaging (SA). The shape-

based averaging method used in this thesis is CDTW.



Variations of parameters, i.e., the number of clusters k and the length of sliding window

w are used to illustrate the meaningfulness of the results of all eight STS clustering algorithms.
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Figures 3.12 and 3.13 illustrate SMMs of Buoy1 and Fortune5004 datasets when the number of

clusters k is 3 and the sliding window length w is varied to be 32, 64, and 128. Figures 3.14 and

3.15 show SMMs of Buoy1 and Fortune5004 datasets when the number of clusters k is varied

to be 3, 5, and 7, and the sliding window length w is 3.
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Figure 3.12: SMMs of Buoy1 dataset when number of clusters (k) is 3 and the length of sliding window

(w) is varied.
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Figure 3.13: SMMs of Fortune5004 dataset when number of clusters (k) is 3 and the length of sliding

window (w) is varied.
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Figure 3.14: SMMs of Buoyl dataset when number of clusters (k) is varied and the length of sliding

window (w) is 64.
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Figure 3.15: SMMs of Fortune5004 dataset when number of clusters (k) is varied and the length of sliding
window (w) is 64.

The SMMs results show that despite the SMM measure includes all subsequences, which
can be trivial or ineffective to include in clustering results, the algorithms proposed in this thesis
can give comparable meaningfulness comparing with algorithms proposed in (Niennattrakul,
2010). The objectives of this thesis is not only achieving meaningfulness of the result, but
also the quality of identified patterns without inflation and redundancy. The evaluation for that

objective is provided in section 5.4.

For visualization purposes, Figures 3.16, 3.17, 3.18, 3.19, and 3.20 show cluster repre-
sentatives of Buoy1 dataset with variations of w and k. In the same way, Figures 3.21, 3.22,
3.23, 3.24, and 3.25 show cluster representatives of Fortune5004 dataset with variations of w

and k.

Note that datasets details and SMMs values of all datasets are reported in Appendix A.
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Figure 3.16: Cluster representatives of buoyl dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 32.
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Figure 3.17: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 64.
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Figure 3.18: Cluster representatives of buoyl dataset from variations of 2STSC (left) and SSTSC (right)

withk =3 and w = 128.
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Figure 3.19: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)

with k= 5and w = 64.
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Figure 3.20: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)

withk =7 and w = 64.
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Figure 3.21: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC

(right) with k = 3 and w = 32.
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Figure 3.22: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 64.

2
1
0
-1 0
-2
-3 ‘ ‘ ‘ ‘ ‘ ‘ -2 ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120 20 40 60 80 100 120

2STSC: CDTW + CL SSTSC: EUC + AA
0 0
-1
-2 . . . . . . -2 ) . . . . .
20 40 60 80 100 120 20 40 60 80 100 120
2STSC: CDTW + AL SSTSC: EUC + SA
1k 2
of
-3¢ ‘ ‘ ‘ ‘ ‘ ‘ -2 ‘ ‘ ‘ ) ‘ ‘
20 40 60 80 100 120 20 40 60 80 100 120
2STSC: ICDTW + CL SSTSC: DTW + AA
. 2
0 0
-2 . . . . . . -2 . . . . . .
20 40 60 80 100 120 20 40 60 80 100 120
2STSC: ICDTW + AL SSTSC: DTW + SA

Figure 3.23: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 128.
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Figure 3.24: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 5 and w = 64.
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Figure 3.25: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 7 and w = 64.
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3.5.4 Effectiveness of SSTSC

The objective of this thesis is to propose an STS clustering algorithm that can effectively
identify interesting patterns, so that frequent episode discovery from real-valued time series
can be achieved. To evaluate the proposed SSTSC algorithm in terms of effectiveness, it is
important to examine on how well the STS clustering can identify interesting patterns, and
also discard insignificant ones. For this reason, the datasets are required to be completely
annotated, so semi-synthetic stream datasets are introduced to simulate time series that have
significant and unimportant patterns together. The stream datasets are made from the UCR
Classification/Clustering archive (Keogh et al., 2011) by combining training data sequences
and synthesized random walk sequences together. A stream is initialized with a random walk
sequence, and then it is repeatedly appended with a training data sequence and a random walk
sequence until a specific number of the training data n is reached. The stream finally ends
with a random walk sequence. To smooth the stream, before concatenation, each sequence is
offset by the last value of the stream. The training data sequences used to construct the stream

are randomly selected equally from each class in the training data. A number of training data
20

sequences to be selected for each class is m = [?], where c is a number of total classes in
the dataset. Therefore, the total number of training data sequences n for all dataset will be at
least 20. The length of all random walk sequences is set to 0.5 - w, where w is the length of the
training data sequences. The total number of datasets used in this experiment is 53. The detail

of each dataset are provided in Appendix B

Recall that the algorithms proposed in this thesis are SSTSC with variations of distance
measures: Euclidean and Dynamic Time Warping (DTW) distance measures, and variations
of averaging methods: amplitude averaging and shape-based averaging. In this experiment,
other than the Z-normalization technique, a level-normalization is added to be a variation of
each algorithm to examine the difference between two normalization techniques. Given a sub-
sequence T, = (t;,tit1,...,ti+n—1) Whose mean is p. The level-normalized time series is
T, = (tistiy1s s ti 1), Where ¢}, = tx — p. In the experiment, SSTSC algorithms with
Euclidean distance and scaling factor f = 1 is applied on all of the 53 datasets, while SSTSC
algorithms with Euclidean distance and scaling factor f = 1.2 is applied on 51 datasets that are
subset of all datasets. SSTSC algorithms with DTW distance is applied on 28 datasets that are
subset of all datasets. Although, datasets are discarded for some algorithms due to computa-

tional resource limitation, the selected datasets still cover various domains of data.



The evaluation metrics used in this section are divided into two groups, and are explained

next.

3.5.4.1 Pattern-retrieval-based metrics

Pattern-retrieval-based metrics are used to evaluate how well the STS clustering algo-
rithms can retrieve the annotated patterns regardless of classes or labels of the retrieved patterns.
This type assessments is important in terms of how well the algorithms can collect significant
patterns without over identification. The following are matrices of this type used in the evalua-

tion in this chapter.

Accuracy on Retrieval (AoR), and Accuracy on Detection (AoD): AoR reflects quality of an algo-
rithm in terms of how well it can collect expected patterns in a data stream; on the other hand,
AoD reflects quality of the returned results (Rodpongpun et al., 2011). Given a time series .5,
a set of expected pattern sequences F, and a set of retrieved sequences R. Firstly, an overlap-
ping subsequence is defined. Let S[t; : t.] be the subsequence starting at ¢4 and ending at ..

Overlapping subsequence Oy, where X = Sfa : bl and Y = S[c : d], and overlap percentage

[Ox.v|

Pxy are defined as Oxy = S[min{a,c} : min{b,d}] and Pxy = e Al {ac T

respectively. Both AoR and AoD can be defined over overlapping subsequence O x y and over-

lapping percentage Px y as

{O)(,y‘P)Qy > p,X < R,Y € E} ’

!
AoR =
|E|

(3.11)

> {Pxy|Pxy >p,X € R)Y € E}
[ {Oxy|Pxy >p, X €R)Y € E}|

AoD = (3.12)

where p is a threshold of Py y that defines a sequence in R as a discovered sequence.

Excess Rate (ER) determines the ratio of overly-identified patterns Ix y over all retrieved sub-
sequences R, where the overly-identified subsequences are the subsequences that has overlap-

ping percentage Px y lower than the threshold p. The ER is formally denoted as

[ {Ixy|Pxy <p,X € R,Y € E}|

ER =
R

(3.13)
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3.54.2 Cluster-accuracy-based metrics

Cluster-accuracy-based metrics are used to evaluate how accurate the STS clustering
algorithms can identify types of the patterns comparing with pre-annotated classes. This type
of assessments is important in terms of how well the algorithms can distinguish the retrieved

patterns.

Rand Index (RI) is a widely used metric for evaluating clustering algorithms (Rand, 1971). It
measures similarity of two set of clusters and provide value in range [0, 1]. Given a set of n
objects G = {g1, 92, ..., gn } and suppose that U = {u1,u1, ..., u,} is the pre-annotated cluster
and V' = {vy,v1,...,v, } is a cluster labeled by a clustering algorithm of objects in GG such that
iél ui:G:jLilej anduiﬂugzﬁzvjﬁvg-forl <i#i <yandl<j+#j <z From
a number of all combinations of pairs (g) from the given set, results can be represented in four

different types of pairs:
a - objects in a pair that are given the same label in U and the same label in V;
b - objects in a pair that are given the same label in U but the different label in V;
¢ - objects in a pair that are given the different label in U but the same label in V;
d - objects in a pair that are given the different label in U and the different label in V;

The RI is denoted by RI(U, V) = 4+ .

Precision  is denoted by Precision(U,V) = ;% (Manning et al., 2008).

Recall is denoted by Recall(U,V) = (Manning et al., 2008).

_a_
a+b

Fl-score is denoted by F1(U, V) = 2xPrecisionxficcall (\fapping et al., 2008).

Precision+ Recall

Note that, for all cluster-accuracy-based metrics, the set of objects to be calculated G
contains only objects with overlapping percentage Py y higher than the threshold p. The non-

retrieved objects are discarded in the calculation because it will affect the value of the number
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of agreement (a and d) and disagreement (c and d), so that the value of cluster-accuracy-based

metrics can be misinterpreted.
3.5.4.3 Effectiveness evaluation results

This section provides results of each proposed algorithms by varying the overlap thresh-
old p to be 40% and 80%. The 80% overlap threshold is a very extreme criteria in a medical

domain (Sivaraks, 2014), while the 40% is more relaxed.

Due to space limitations, in all tables, variations of the proposed SSTSC algorithms are

denoted as follows.
E-AA-Z: SSTSC with Euclidean distance, amplitude averaging, and Z-normalization.
E-AA-L: SSTSC with Euclidean distance, amplitude averaging, and level-normalization.
E-SA-Z: SSTSC with Euclidean distance, shape-based averaging, and Z-normalization.

E-SA-L: SSTSC with Euclidean distance, shape-based averaging, and level-

normalization.
D-AA-Z: SSTSC with Euclidean distance, amplitude averaging, and Z-normalization.
D-SA-Z: SSTSC with Euclidean distance, shape-based averaging, and Z-normalization.

Mean pu, standard deviation ¢, minimum and maximum values of each evaluation metric
on each dataset when the number of clusters k is set to the number of classes in the dataset,
and the scaling factor f of 1 are shown in Figure 3.14. Similarly, Figure 3.15 shows the results
when the scaling factor f is set to 1.2. In the same way, mean y, standard deviation o, minimum
and maximum values of each evaluation metric on each dataset when the number of clusters &
is suggested by the SSTSC algorithms, and the scaling factor f of 1 are shown in Figure 3.16,

and the scaling factor f of 1.2 are shown in Figure 3.17.



Table 3.14: Summary of all evaluation metrics for each algorithms with given overlap thresholds (p),

scaling factor (f) of 1 and the number of clusters (k) is set to the number of classes in the dataset.

Algorithm E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
p 40% 80% | 40% 80% | 40% 80% | 40% 80% | 40% 80% | 40% 80%
p| 060 064|060 061|058 057|058 058|055 05 | 05 060
rR|C 012 019|011 015|010 020|012 012 | 011 014 | 012 019
min[ 045 033 | 043 038 | 045 000|038 039|045 033|047 017
max| 094 1.00 | 082 100| 082 100| 08 082 | 09 09 | 090 1.00

p| 046 049 | 046 046 | 044 046 | 045 046 | 045 051 | 049 0.54

pre | © 015 025|012 016|015 021 | 013 013 012 021 | 011 o018
min[ 0.08 000 | 019 000 [ 010 000 | 015 015 | 015 0.00 | 0.30 017

max| 089 1.00 | 070 100| 079 100| 079 079 | 0.89 100 | 089 1.00

p| 05 057|057 057|055 056|061 060|061 059 | 063 0.68
Rec| © 017 028|015 020 | 017 025 | 016 017 | 017 019 | 015 020
min[ 010 000 | 023 000 | 013 000 | 019 019 | 015 0.00 | 040 031

max| 090 1.00 ( 082 100| 082 100| 090 1.00| 090 09 | 090 1.00

p| 05 052|051 050|049 050|051 051|051 052 054 058
] 015 025|013 017 | 015 022 | 013 013 | 012 016 | 011 017
min| 009 0.00 | 021 0.00 [ 012 000 | 018 018 | 015 000 | 0.34 029
max| 090 1.00 [ 073 100| 080 100 | 080 080 | 090 09 | 090 1.00

p| 08 06604 07|08 067|095 07|09 07|09 077
Aorl © 017 035|011 028 | 015 034|009 026 | 009 027 | 007 028
min| 055 0.05 | 060 010 [ 050 010 | 0.70 020 | 061 017 | 0.78 0.19

max| 1.00 1.00 [ 1.00 1.00| 1.00 1.00 | 1.00 1.00 [ 1.00 1.00 | 1.00 1.00
p|08 09 |09 09% |08 09|09 09%]|08 09%/| 08 096
AoD| © 013 004|011 003|013 003|010 003 | 010 003 | 010 0.03
min| 0.62 085 | 060 086 [ 064 085 | 065 090 | 067 0.89 | 066 090
max| 1.00 1.00 [ 1.00 1.00| 1.00 1.00| 1.00 1.00 (| .00 100 | 1.00 1.00
p|o014 035|007 02| 014 035|007 02| 009 026 | 008 0.26

Er| © 017 036|012 030|017 035 | 012 027|011 028 | 010 029
min| 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
max| 050 0.95) 045 091 | 050 091 ) 039 083 | 042 084 | 027 083
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Table 3.15: Summary of all evaluation metrics for each algorithms with given overlap thresholds (p),
scaling factor (f) of 1.2 and the number of clusters (k) is set to the number of classes in the dataset.

Algorithm E-AA-Z E-AA-L E-SA-Z E-SA-L
p 40% 80% | 40% 80% | 40% 80% | 40% 80%
n| 05 05205 055|054 05|05 052
RI | 010 015|010 011 | 008 014 | 009 0.12
min{ 044 000 | 033 028 | 043 036 | 037 0.00
max| 081 083 | 084 084 | 074 100 | 073 0.77
p| 042 043 | 042 042 | 041 044 | 040 040
Pre. | 010 018|011 013 | 012 018 | 011 013
min| 0.21 0.00 [ 014 000 | 011 013 | 013 0.00
max| 058 100 | 064 070 | 068 1.00 | 052 054
p|o54 053 |05 054|054 061]| 05 053
Rec.| © 014 024|017 020 | 016 021 | 018 020
min| 0.28 0.00 [ 0.7 000 | 017 019 | 015 0.00
max| 082 100 08 1.00| 088 1.00 | 090 0.85
M| 047 045 | 047 046 | 046 050 | 047 045
fle 011 016 | 012 015| 012 0.16] 012 014
min| 0.26 000 | 015 000 | 013 017 | 014 0.00
max| 064 075 | 067 080 | 067 1.00| 062 0.65
H| 092 066|095 075|092 067|095 079
AOR | 015 030|011 025|013 027 | 012 026
min| 045 010 [ 040 015| 035 015 | 045 0.00
max| 1.00 1.00 | 1.00 1.00| 1.00 1.00| 1.00 1.00
M| 08 09|08 09|08 09|08 0091
o | 009 003|007 003|008 003|009 0.13
AoD|
min| 064 082 | 066 085(| 065 085 | 060 0.00
max| 097 099 | 096 099 [ 095 100 | 098 1.02
p| 021 042 014 031|020 040 | 011 025
er| © 018 030 016 027 | 017 028 | 015 0.28
min| 0.00 0.00 [ 0.00 0.00 | 0.00 0.00 | 0.00 0.00
max| 064 092 | 069 088 | 071 088 | 061 1.00




Table 3.16: Summary of all evaluation metrics for each algorithms with given overlap thresholds (p),

scaling factor (f) of 1 and the number of clusters (k) is set automatically by the algorithms.

Algorithm E-AA-Z E-AA-L E-GA-Z E-SA-L D-AA-Z D-SA-Z
p 40% 80% | 40% 80% | 40% 80% | 40% 80% | 40% 80% | 40% 80%
p| o061 062|062 063 | 061 060 | 062 063 | 058 060 | 060 0.64

R |C 011 019|011 O015(011 024|011 015| 009 014 | 010 018
min[ 042 000 | 045 031 | 035 000 | 034 017 | 045 033 | 048 017
max| 084 1.00 ( 0.88 100| 083 100| 084 1.00| 082 09 | 08 1.00

p| 05 051|052 051|051 055|054 057|054 061|053 0.62

pre| © 019 030|017 021|019 029 | 021 025|019 027 | 018 024
min[ 018 000 | 019 000 [ 013 0.00 | 000 000 | 022 0.00 | 0.24 017
max| 091 1.00 (| 084 100| 09 1.00| 1.00 1.00 | 097 100 | 1.00 1.00

M| 04 043|041 042 | 037 045 | 035 041 | 042 048 | 047 0.55
Rec.| © 019 029|018 022|020 030|022 025|025 024|024 026
min[ 0.06 000 | 011 000 [ 0.07 0.00 | 00O 000 [ 006 0.00 | 012 0.14
max| 1.00 1.00 (| 0.84 100| 084 100| 090 1.00| 084 100 ]| 1.00 1.00

p| 04 043|043 044|038 046 | 038 043 | 040 048 | 045 053

] ° 015 025|014 018|015 026|017 020 | 015 017 | 024 020
min| 009 0.00 | 0.16 0.00 | 012 000 | 000 000 | 010 000 | 0.18 0.8
max| 072 1.00 [ 073 100| 072 100| 078 1.00 | 0.61 086 | 067 1.00

p| 08 065|093 07 |08 063|091 07| 092 072|093 073
Aorl @ 015 035|011 030|017 037] 012 030 | 009 028 | 007 027
min| 050 0.05 | 060 010 [ 040 000 | 060 005 | 061 017 | 0.75 019
max| 1.00 1.00 [ 1.00 1.00| 1.00 1.00 | 1.00 1.00 [ 1.00 1.00 | 1.00 1.00
p|08 09 |08 09% |08 09|08 09%]|08 09%]| 08 096
AoD| © 014 004 | 012 004|014 004 | 012 003 011 003 | 011 003
min| 0.63 085 | 060 086 [ 061 084 | 063 089 | 066 0.89 | 066 089
max| 1.00 1.00 [ 1.00 1.00| 1.00 1.00| 1.00 1.00 (| 1.00 100 | 1.00 1.00
p|o014 036|007 023|014 038 008 024 | 009 027 | 008 027

Er| © 017 036|012 031|018 038|013 031|011 030 | 010 031
min| 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
max| 052 095 [ 045 091 | 050 100 | 043 09 | 042 084 | 029 083
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Table 3.17: Summary of all evaluation metrics for each algorithms with given overlap thresholds (p),
scaling factor (f) of 1.2 and the number of clusters (k) is set automatically by the algorithms.

Algorithm E-AA-Z E-AA-L E-SA-Z E-SA-L
p 40% 80% | 40% 80% | 40% 80% | 40% 80%
n| 062 057|061 060|061 059 | 060 059
RI | 011 024|010 016 | 0112 020 | 010 0.17
min| 033 0.00 [ 045 000 | 040 000 | 044 0.00
max| 084 100| 0.8 1.00| 082 1.00| 082 1.00
p| 05 052|049 050 (053 051|050 051
Pre. | 020 031|021 027|022 030 ]| 02 030
min| 0.19 000 [ 011 000 | 015 000 | 013 0.00
max| 1.00 1.00 | 1.00 1.00| 1.00 1.00| 1.00 1.00
M| 027 033]032 037|024 031|024 028
Rec.| © 012 024|020 027|015 023 ]| 014 0.20
min| 0.09 0.00 [ 0.03 000 | 0.04 0.00 | 003 0.00
max| 070 1.00| 090 1.00| 070 1.00| 0.63 1.00
M| 034 03703 037|030 03| 029 032
Fle 011 022|016 020| 013 022 | 012 0.18
min{ 0.13 000 | 0.04 000 | 006 0.00 | 006 0.00
max| 053 1.00| 075 1.00| 060 1.00| 055 1.00
p| 08 060|093 070 08 062 092 074
AOR | 021 034|013 02| 018 031 ]| 014 030
min| 015 0.00 [ 0.40 005| 029 010 | 040 0.00
max| 1.00 1.00 | 1.00 1.00| 1.00 1.00| 1.00 1.00
p| 08 08|08 08 |08 08|08 091
c| 009 003|009 003|009 003|010 0.13
AoD|
min| 0.62 082 | 064 083 | 061 0.84| 060 0.00
max| 094 098 | 094 09 [ 094 097 | 0.98 0.98
pm| 02 044|011 032|020 043 | 010 027
er| © 023 035|016 031|021 032 ]| 016 031
min| 0.00 0.00 [ 0.00 0.00 | 0.00 0.00 | 0.00 0.00
max| 081 1.00| 069 09 | 074 091 | 0.64 1.00

Visualization of the results and the values of all evaluation metrics on each dataset with a
scaling factor f of 1 are provided in Appendix B, and with a scaling factor f of 1.2 are provided

in Appendix C.

The results show that the proposed algorithms can identify most of the planted patterns,
and also be able to distinguish the class of the retrieved patterns. Moreover, table 3.15 and table
3.17 demonstrate that the proposed algorithms are able to handle variable size of patterns with
a flexible scaling factor parameter f, while maintaining effective results. The algorithms with
DTW distance and shape-based averaging can perform well in the datasets that have a lot of
locally warping patterns in the same class. However, the algorithms that use DTW as a distance

measure consume a lot of computational time. An optimization to a subsequence matching
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subtask that use DTW is proposed in chapter 4.

Equally important, the proposed algorithms also provide suggestion of number of clus-
ters k, and the results of the algorithms that use the suggested parameter £ show comparable
effectiveness comparing with that when k is manually fixed to be the same as number of planted
classes. Table 3.18 provides number of clusters & chosen at the knee point of compression ratio
- error line from each dataset by each proposed algorithm. The bottom of the table shows exact
match percentage and mean of absolute difference for each algorithm. The results show that the
numbers of exact matches of suggested number of cluster & to the number of planted classes are
acceptable considering that the algorithms have to cluster so many subsequences mixed with
important and trivial ones, and also have to decide a reasonable point where the clusters of

patterns are proper.



Table 3.18: Number of cluster (k) chosen at the knee point of compression ratio-error line from each
dataset by each proposed algorithm. At the bottom of the table shows exact match percentage and mean
of absolute difference for each algorithm.

k in k_chaosen by each Algorithm
Dataset constructed f=1 f=12
datasets ||[E-AA-Z|E-AA-L| E-SA-Z | E-SA-L |[D-AA-Z| D-SA-Z|E-AA-Z|E-AA-L | E-SA-Z | E-SA-L

ItalyPowerDemand 2 3 4 3 5 2 2 6 4 6 6
SonyAlBORobotSurfacel | 2 5 5 8 7 10 8 9 8 9 10
SonyAlBORobotSurface 2 6 3 6 3 7 3 7 5 10 3
DistalPhalanxOutlineCorrect 2 4 2 2 2 2 3 5 5 5 5
MiddlePhalanxOutlineCorrect 2 2 2 2 2 4 3 6 5 4 5
PhalangesOutlinesCorrect 2 4 4 4 5 2 2 4 4 4 5
ProximalPhalanxOutlineCorrect 2 2 3 2 2 2 2 5 4 5 5
DistalPhalanxOutlineA geGroup 3 3 3 3 3 3 4 5 6 4 5
MiddlePhalanxOutlineA geGroup 3 3 3 3 3 5 5 3 4 3 3
ProximalPhalanxOutlineA geGroup 3 2 2 2 2 2 2 5 4 4 4
Twol eadECG 2 3 3 4 3 2 8 5 4 5 6
MoteStrain 2 5 5 7 7 5 5 9 5 8 7
ECG200 2 4 4 3 4 6 6 5 4 8 3
CBF 3 3 4 7 9 6 6 7 5 10 9
Two_Patterns 4 2 4 4 8 10 7 9 7 1 10
ECGFiveDays 2 4 4 4 4 10 3 4 8 4 8
ECG5000 5 6 6 7 4 7 5 6 5 8 5
Gun_Point 2 5 5 5 5 3 3 4 4 4 5
wafer 2 7 6 8 8 8 6 4 6 4 8
ChlorineConcentration 3 6 5 6 2 6 6 7 7 8 9
Wine 2 2 2 2 2 3 3 4 7 6 6
Strawberry 2 5 5 6 6 2 3 4 4 2 3
ArrowHead 3 2 3 3 5 4 3 5 5 8 5
Trace 4 5 5 6 5 2 2 4 3 4 6
ToeSegmentationl 2 7 6 9 8 10 6 7 8 9 9
Coffee 2 3 3 4 4 6 5 4 5 6 4
ToeSegmentation2 2 6 5 7 7 9 6 8 6 10 10
FaceFour 4 5 6 7 8 2 4 7 5 11 9
yoga 2 5 4 6 5 - 7 6 9 7
Ham 2 4 2 4 6 - 7 6 9 9
Meat 3 2 3 3 4 - 6 4 6 4
Beef 5 4 4 3 3 - 6 5 6 7
FordA 2 4 4 10 10 - 6 4 11 11
FordB 2 2 5 8 10 - 5 8 10 10
ShapeletSim 2 2 3 6 10 - 2 3 2 2
BeetleFly 2 5 7 7 10 - 7 9 8 11
BirdChicken 2 7 6 7 7 - 9 8 10 8
Earthquakes 2 2 2 2 4 - 2 3 2 11
Herring 2 3 2 3 3 - 5 4 5 4
OliveQil 4 4 4 4 4 - 7 6 6 5
Car 4 4 4 5 5 - 5 4 5 5
Lighting2 2 2 2 2 8 - 2 5 8 7
Computers 2 6 4 7 6 - 9 6 8 6
LargeKitchenA ppliances 3 8 5 9 7 - 11 5 12 4
RefrigerationDevices 3 2 3 5 10 - 5 5 13 13
ScreenType 3 2 5 2 2 - 5 6 6 9
SmallKitchenA ppliances 3 3 6 9 6 - 9 4 9 7
WormsTwoClass 2 5 5 2 11 - 5 8 2 11
Worms 5 3 4 2 6 - 6 6 9 10
StarLightCurves 3 5 5 6 5 - 6 6 5 5
Haptics 5 6 4 7 5 - 7 4 7 4
CinC_ECG_torso 4 8 6 10 9 - - - - -
HandOutlines 2 4 4 4 4 - - - -

Exact match percentage (%) 2453 | 2830 | 2453 | 1509 | 2500 | 2143 9.62 5.77 11.54 5.77

Mean of absolute difference 177 153 2.62 3.08 2.82 2.00 3.16 275 4.16 4.10

3.5.5 Comparison of SSTSC with the brute-force method

This section will demonstrate the performance on searching through the search space.
Figure 3.26 illustrates the result of the proposed algorithm comparing with the brute-force
method tested on the ECG data used in section 3.5.2.4. It contains roughly 6000 possible

paths of the input time series of length 1400 data points and a window size of 100. The result

64



65

of the proposed method is shown in a thick blue line. The main goal is to maintain error while
maximizing the compression ratio. As shown in Figure 3.26, the proposed algorithm can search
through the search space closely following the optimal path by examining just 1 out of 6000

possible paths.
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Figure 3.26: The proposed algorithm (shown in blue) comparing with the brute-force method.

3.6 Conclusion

In this chapter, a frequent episode discovery framework for real-valued time series, which
is the main objective of this thesis, is proposed. The main concept of the framework is to identify
interesting patterns in a real-valued time series sequence, so that the frequent episode discovery
algorithms can be applied. A new Subsequence Time Series (STS) clustering named Selective
Subsequence Time Series Clustering (SSTSC) is introduced to transform real-valued patterns
to sets of events based on their shapes. The proposed SSTSC is designed to identify signif-
icant patterns while discarding trivial ones to minimize pattern inflations and redundancies.
More importantly, the proposed method can maintain the meaningfulness of the clustering re-
sults, which means the clustering outputs truly represent characteristics of the time series input.
The proposed algorithm also allows different lengths of member subsequences. As a result,
the introduced framework assures the efficiency and effectiveness of the proposed algorithm
by experimenting on various data domains. Additionally, the proposed method can perform

clustering by requiring only a few parameters where users can easily and flexibly adjust.



CHAPTER 1V

EFFICIENT SUBSEQUENCE SEARCH ON STREAMING DATA
BASED ON TIME WARPING DISTANCE

Due to the age of data explosion, analysis of data stream in real time is crucial in many
data mining tasks including classification, clustering, anomaly detection, and pattern discovery.
Commonly, these tasks require a subsequence matching algorithm as an important subroutine.
Recently, SPRING (Sakurai et al., 2007), a breakthrough subsequence matching algorithm for
data stream under Dynamic Time Warping (DTW) distance (Ratanamahatana and Keogh, 2005)
has been proposed. SPRING can report an optimal subsequence in linear time. More specifi-
cally, it incrementally updates DTW distance, for each new streaming data point, only in time
complexity of the query sequence’s length. After the proposal of SPRING, many authors (Athit-
sos et al., 2008; Niennattrakul et al., 2009; Peng et al., 2008) have introduced fast algorithms
to improve performance of subsequence matching. This thesis claims that all of those past
research works (Athitsos et al., 2008; Niennattrakul et al., 2009; Peng et al., 2008; Sakurai
et al., 2007) are meaningless because the query sequence and candidate sequences from the
data stream were not normalized. Normalization (Han et al., 2006) is essential to achieve ac-
curate and meaningful distance calculation, as it normalizes the data to have similar offset and

distribution, regardless of the distance measure used, especially for DTW distance measure.
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Figure 4.1: Subsequence search without normalization in ECG data. Many subsequences with similar
shape to the query are left undetected.

Unfortunately, as mentioned above, current subsequence matching algorithms concern

mostly about speed enhancement, but neither on accuracy nor meaningfulness. Figure 4.1 illus-
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trates subsequence searching in ECG data (Goldberger et al., 2000). Many subsequences with

similar shape to the query are missed by the search without normalization.

However, there is an effort to resolve this problem by trying other approaches; the latest
one devises some hardware (Sart et al., 2010) to accelerate the computation time. The authors
propose two techniques, i.e., GPUs and FPGAs, to speed up subsequence matching using DTW
with normalization. They have shown that GPUs and FPGAs can help speed up the search
significantly. However, it is not practical in real world problems; implementation is hardware

dependent, and some systems are not flexibly adjusted to the problem.

This thesis introduces a novel subsequence matching algorithm called MSM (Meaning-
ful Subsequence Matching) for data stream under DTW distance. MSM consists of two new
ideas. First, this thesis introduces a multi-resolution lower bound, LB_GUN (Lower-Bounding
distance function under Global constraint, Uniform scaling, and Normalization) combining
with the well-known LB_Keogh (Keogh and Ratanamahatana, 2005) lower-bounding function.
LB_GUN is a new lower-bounding distance function extended from LB_Keogh. Second, SSM
(Scaling Subsequence Matrix) is used for lower-bounding distance estimation of LB_GUN by
incrementally estimating value of normalized data point while guaranteeing no false dismissals.
The distances for every scaled query sequence are stored in SSM, and then MSM algorithm
monitors SSM to report the optimal range query or the optimal top-k query when a new stream-
ing data point is received. From these two ideas, MSM can monitor data stream nearly in linear
time, and it also achieves much higher accuracy than existing algorithms as expected. The re-
mainder of this chapter is organized as follows. Problem definitions are provided in Section 4.1.
MSM, the proposed method, is described in Section 4.2. Experimental results are reported in

Section 4.3, and the proposed work is concluded in Section 4.4.

4.1 Problem definition

This thesis focuses on two main query problems on streaming time series data, i.e., op-
timal range query and optimal top-k query. The objective of the optimal range query is to find
non-overlapping normalized subsequences from a data stream, whose distance between a can-
didate sequence and a query sequence must be less than a threshold , where the query sequence
is scaled and normalized under uniform scaling between scaling range[fin, fmaz]- On the
other hand, optimal top-k query reports top-k non-overlapping normalized subsequences. Nev-

ertheless, the scaled query sequences and all candidate subsequences in the data stream must



be normalized in order to return meaningful results. A naive method to monitor incoming data
stream first initializes a set of normalized scaled query sequences, and then candidate sequences
are extracted from the data stream using sliding-window model. After normalization, distance
calculation is performed on the extracted subsequences and non-overlapping optimal results are
reported (if any). However, this naive method requires as high as O(n?) time complexity for

each new incoming streaming data point.
4.2 Proposed method

Since the naive method consumes too high time complexity, this thesis proposes a novel
approach for subsequence matching which gives meaningful result. The proposed method is
called MSM algorithm (Meaningful Subsequence Matching), which contains two new ideas,
i.e., a multi-resolution lower-bounding function LB_GUN (Lower-Bounding function under
Global constraint, Uniform scaling, and Normalization), and SSM (Scaling Subsequence Ma-
trix) which incrementally estimates value of LB_GUN under global constraint, uniform scaling,
and normalization in linear time while guaranteeing no false dismissals. Three following sub-

sections of LB_GUN, SSM, and MSM algorithm are precisely described.

4.2.1 Lower-bounding distance under Global constraint, Uniform Scaling, and Normal-

ization (LB_GUN)

LB_GUN is a lower-bounding function of DTW distance extended from LB_Keogh
(Keogh and Ratanamahatana, 2005) whose distance calculation can be done in linear time.
Before calculation, LB_GUN first creates an envelope E’ from scaled and normalized en-
velopes. More specifically, three sequence sets are generated, i.e., sets of Q, R, and E.
The scaled query set Q = {Qn ....,Q,...,Q }is first generated by scaling and
normalizing a query sequence () to every normalized scaled query sequence R, and the
scaled global constraint R = {Ry, . ,...,Rp,...,R;, } setis derived from scaling a spe-
cific global constraint set R with all possible scaling lengths from 7,5, t0 Npaz. An en-
velope Ej of a normalized scaled query sequence Q). and a scaled global constraint R},
for sequence length k is created as in LB_Keogh, and is stored in the envelope set E =
{En,..y -y Egy...,Ep,, . }. Then, E' is generated by merging all envelopes in the set E
together, where B/ = {(u{,l}),... (u},If),...,(u, I, )} To find lower-bounding

distance between a query sequence () and a candidate sequence C' under global constraint, uni-

form scaling, and normalization, an envelope E’ of a query sequence () is generated as mention
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above. LBy n(Q, C,n) is shown in Equation 4.1.

LBoun(Q,Con) = ——— (Z ai + e, Z@) +Z% (4.1)
Ci ¢ >l
a =94 —¢ <l (4.2)
0 ;otherwise
-1 d >
Bi=4q 1 d <l (4.3)
0 ;otherwise
—u, >l
Yi=19 U i < U (4.4)
0 ;otherwise

where pc,  and o¢, , are arithmetic mean and standard deviation of data points 1 to
n of a candidate sequence C, ¢, = (¢; — pic, ,)/0C, > Mmin and Nyyq, are desired scaling

lengths, and N, <N < Nnaz-
4.2.2 Scaling Subsequence Matrix

SSM (Scaling Subsequence Matrix) is another important component in MSM algorithm.
It stores lower-bounding distances determined by LB_GUN for each new incoming streaming
data point s; at time ¢ from data stream S. Suppose we have a query sequence (); each element
(t,7) of the matrix contains five values, i.e., v¢, j, Wy, J, ¢, 4,Yt, j» and 2y, j, calculated from
time ¢ — j to time ¢. Therefore, values in matrix element (¢, j) can be incrementally updated

from the matrix element (¢t — 1, j — 1) according to the following equations.

St AR

U

ANV

V= U111+ —s ;8] 4.5)

0 ;otherwise
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-1 sz
Wy = Wi—1,5-1+ 1 AR l; (4.6)
0 ;otherwise
—u;- ;8L = ug
Ttj = Tt—1,j-1+ l psy < 4.7)
0 ;otherwise
Yt—j = Yt—1,j-1 + St (4.8)
Ztj = Zt—1,j-1 1 (St)2 4.9)
1
Wby j = — (Vrj + puj - We) + T 5 (4.10)
O-t7j
where s} = 2 2Eu = B 0y 5 =\ /2 - (1t,7)° , uj and ; are from an enveloped

E’ generated from a query sequence @, 1 < j < Nnazs Mmin < J < Mynag, and Iy ; is a

lower-bounding distance LB_GUN for an element (¢, j).
4.2.3 Meaningful Subsequence Matching

Since SSM is updated at every arrival of new streaming data point s;, the proposed MSM
algorithm can monitor both optimal range query and optimal top-k query. More specifically,
for optimal range query, MSM first calculates and updates values including lower-bounding
distances in SSM, which is an estimation of LB_GUN and then checks whether a best-so-
far distance dpes; is smaller than a threshold €. If so, MSM reports an optimal subsequence
when there is no overlapping subsequence, and MSM resets dp.s; and values in SSM. For all
Iby; which are smaller than dy.s in a range from 1,y t0 Nz, LB_GUN and LB_Keogh are
calculated and compared to dpes+ to prune off the DTW distance calculation. If they are not
pruned by any lower-bounding distances, DTW distance is computed to update dp.s; and the

optimal subsequence’s position. Additionally, MSM uses only two columns of SSM that are
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values in time ¢ and values in time ¢ — 1. All lower-bounding distances and DTW distance are

normalized by dividing by 7. The MSM algorithm for optimal range query is described in Table

4.1.

Table 4.1: MSM algorithm for optimal range query

MSMOPTIMALRANGEQUERY

Input: a new streaming data point s;
Output: an optimal subsequence (if any)

1.

WA kWb

update v;, w;, x;, y; and z; for all 7, 1 < ¢ < nypqe, and 1b; for all 4,
Ninin < I < Minax
if (dpest < € and Vi, tgnd <t — 1)
Report(dbestv S[tlc;ggt’ tzzz:t})
dpest = 00
reset v;, w;, i, y; and z; = oo for all 4, ¢ > t—i
for (i = Nnin 0 Nmaz)
if (lbz < dbest)
if (LBgun(Q}, Normalize(S[t—i : t])) < dpest
if (LBreogn(Q}, Normalize(S[t—i : t])) < dpest
distance = DTW (Q}, Normalize(S[t—i : t]))
if (distance < dpest)
dpest = distance; {4 = t—i; t5tort = ¢
substitute v}, w, x}, y; and 2 for v;, w;, x;, y;, and z;

MSM algorithm for optimal top-k query is implemented based on the optimal range

query. With a priority queue, MSM stores the k-best non-overlapping subsequence with DTW

distance from the result of MSMOPTIMALRANGEQUERY. First, it initializes a threshold ¢ to

positive infinity. Then, for every new streaming data point s;, the queue is updated, and the

threshold € is set to the largest DTW distance in the queue. The MSM algorithm for optimal

top-k query is described in Table 4.2.

Table 4.2: MSM algorithm for optimal top-k query

MSMOPTIMALTOPKQUERY

Input: a new streaming data point s;
Output: update set P of top-k subsequence

AU S e

[C, dc]= MSMOPTIMALRANGEQUERY (¢, €)
If(C # NULL)
P.push(C,dc¢)
if (size(P) > k)
P.pop()
e = P.peek().dc
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4.3 Experimental results

Since none of the current subsequence matching algorithms under DTW distance can
handle the changes of data distribution, offset, and scaling, this section will compare the pro-
posed method with naive approach in terms of computational time only since the proposed
method and the naive method will both achieve the same accuracy. On the other hand, this
section compare the proposed method’s accuracy with SPRING, the best existing subsequence
matching under DTW distance. Note that this section does not compare the running time with
that of SPRING; while SPRING will have smaller running time, its results are inaccurate due

to lack of normalization, therefore not a reasonable comparison.

Streaming datasets are generated by combining training data sequences from the UCR
classification/clustering datasets (Keogh et al., 2011) and synthesized random walk sequences.
A stream is initialized with a random walk sequence, and then a training data sequence is
appended to the stream. To smooth the stream, before concatenation, each sequence is offset
by the last value of the stream. The dataset to be used in the experiments are Aidac, Beef,
CBF, Coffee, ECG200, Gun Point, Lighting7, Olive Oil, Trace and Synthetic Control which are
represented by Data 1, Data 2, Data 3, Data 4, Data 5, Data 6, Data 7, Data 8, Data 9, and Data

10, respectively

In the first experiment, it will compare the MSM algorithm with naive method in terms
of computational cost by measuring the number of distance calculations. Figure 4.2 shows the
numbers of all distance calculations by varying global constraints to 2, 4, 6, 8 and 10 respec-
tively, and in Figure 4.3, scaling range |fin, fmaz| are varied from [0.8, 1.2], [0.85, 1.15],
[0.9, 1.1], and [0.95, 1.05], respectively. The numbers of all distance calculations are normal-
ized to 100% which represent numbers of DTW calculations used in the naive method. As
expected, MSM is much faster than the naive method by a large margin. Additionally, in MSM,
the proposed multi-resolution lower-bounding function is efficiently used to filter out several
candidate sequences in linear time while guaranteeing no false dismissals; therefore, MSM al-
gorithm requires only a small number of DTW distance calculations comparing with the naive

method.

Then, this section compares the MSM algorithm with SPRING to measure performance
in terms of accuracy, both Accuracy-on-Retrieval (AoR) and Accuracy-on-Detection (AoD).

AoR reflects quality of an algorithm that is able to find the patterns in a data stream; on the
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other hand, AoD reflects quality of the returned results. Suppose we have data stream S, a set
of expected pattern sequences F, and a set of retrieved sequences R. We first define an overlap-
ping subsequence. Let S|t : t.] be the subsequence starting at ¢, and ending at ¢.. Overlapping

subsequence Oy, where X = S[a : bl and Y = S|c : d], and overlap percentage Px y

[Ox.v|
max{b,d}—min{a,c}+1’

are defined as Oy y = S[min{a,c} : min{b,d}], and Pxy = respec-

tively. Both AoR and AoD can be defined over overlapping subsequence O x y and overlapping

_ |{Ox,y|PX7y>p,X€R,Y€EH _ Z{nyy|PX,y>p,X€R,Y€E}
percentage Pxy as AoR = 13 and AoD = TOx s PxvSp XERVEE]”

respectively, where p is a threshold of Px y that defines a sequence in I as a discovered se-
quence. Figure 4.4 and Figure 4.5 compare AoRs of MSM and SPRING under various scaling
ranges and global constraints, respectively. Figure 4.6 and Figure 4.7 illustrate AoDs on every
scaling range and global constraint, respectively. The results show that MSM produces more
meaningful result since SPRING does not support global constraint (illustrated as one single
column of 100% global constraint in Figure 4.5 and Figure 4.7), uniform scaling, nor normal-

ization.
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W@ DTW calculations in MSM
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Figure 4.2: DTW distance calculations filtered out by MSM with varying global constraints.
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Figure 4.3: DTW distance calculations filtered out by MSM with varying scaling ranges.
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Figure 4.4: MSM outperforms SPRING at every scaling range in terms of AoR.
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Figure 4.5: MSM outperforms SPRING at every global constraint value in terms of AoR
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Figure 4.6: MSM outperforms SPRING at every scaling range in terms of AoD

Global
MSM SPRING Constraint (%)
100 o2
80 n °n
60 e

40 @8
0 | n m ||
Datal Data2 Data3 Data4 Data5 Datab Data7 Data8 Data9 DatalO Datal Data2 Data3 Datad4 Data5 Datab Data7 Data8 Data9 DatalO

AoD (%)

Figure 4.7: MSM outperforms SPRING at every global constraint value in terms of AoD

4.4 Conclusion

This chapter proposes a novel and meaningful subsequence matching algorithm, so called
MSM (Meaningful Subsequence Matching), under global constraint, uniform scaling, and nor-
malization. Two ideas have been introduced in MSM algorithm, i.e., a multi-resolution lower-
bounding function LB_GUN (Lower-Bounding distance function under Global constraint, Uni-
form scaling, and Normalization, and a Scaling Subsequence Matrix (SSM) which estimates
value of LB_GUN for each candidate subsequence. The proposed algorithm can update lower-
bounding distance incrementally under normalization, while guaranteeing no false dismissals
in linear time. With these two ideas, MSM algorithm can efficiently monitor a data stream
and can answer both optimal range query and optimal top-k query problems. Since none of
the current algorithms produce meaningful result, this thesis evaluates the proposed method
comparing with the naive method in terms of time consumption and SPRING, the best existing
subsequence matching under DTW distance, in terms of accuracies. As expected, the proposed

MSM algorithm is much faster and more accurate by a very large margin.



CHAPTER V

CONCLUSIONS

This thesis introduces a new framework of frequent episode discovery on real-valued time
series by proposing a concept to identify events from interesting patterns based on their shapes
instead of a single value in a sequence. A new Subsequence Time Series (STS) clustering named
Selective Subsequence Time Series Clustering (SSTSC) is introduced to transform a real-valued
time series to a discrete event sequence. The proposed SSTSC is designed to identify significant
patterns and discard trivial ones to minimize pattern inflations and redundancies, which occur
in other works, while maintaining the meaningfulness of clustering results at the same time.

More specifically, outputs of the SSTSC truly present characteristics of a time series input.

The proposed SSTSC is design to avoid overly-identified patterns by using data com-
pression as a heuristic function to selectively collect interesting patterns. The algorithm are
also made to allow length of the patterns to be variable by utilizing the uniform scaling tech-
nique. This thesis also explores utilization of Dynamic Time Warping (DTW) distance and
shape-based averaging method to increase effectiveness of the previously proposed algorithm.
Furthermore, the proposed algorithm provides parameter suggestion, so it can perform cluster-
ing by requiring only a few parameters where users can easily and flexibly adjust. The frame-
work is also designed to be divided into common subtasks, such as subsequence matching and

motif discovery, so that it is made to be manageable for further optimization.

This thesis assures the effectiveness and efficiency of the proposed algorithm by experi-
menting in various data domains. The experimental results show that the algorithm can identify
significant patterns without giving redundancies and inflating results, and more importantly, can

ensure that the results are meaningful by an extensive set of experimental evaluations.

This thesis also proposes an efficiency improvement on a usage of DTW as a distance
measure in the framework. One of the subtasks that consumes high computational power is
the subsequence matching task. A new subsequence matching algorithm, so called Meaning-
ful Subsequence Matching (MSM) is proposed. The MSM provides subsequence search with

DTW distance under global constraint, uniform scaling, and normalization. The MSM algo-



rithm introduces a multi-resolution lower-bounding function LB_GUN (Lower-Bounding dis-
tance function under Global constraint, Uniform scaling, and Normalization), and a Scaling
Subsequence Matrix (SSM) that estimates value of LB_GUN. The SSM and LB_GUN guaran-
tee lower bound with no false dismissals. The experiments show a huge increase of efficiency

and effectiveness of the proposed MSM algorithm.

The following are the summary of contributions of this thesis.

e This is the first work to address frequent episode discovery problem on real-valued time

series effectively.
e The proposed framework is shown to be able to be applied in real world applications.

e This thesis proposes a new frequent episode discovery framework. The following are

details of the proposed framework.

— The framework includes a new STS clustering algorithm for identification of inter-

esting patterns, while trivial patterns are discarded.
— The framework uses a compression based objective function to perform clustering.
— The framework allows variability in length of the patterns.
— The framework provides the best cluster number parameter suggestion.

— The framework is suitable for frequent episode discovery and other applications such

as rule discovery and prediction.

e The proposed framework is intentionally designed to be divided into common subtasks,

so that it is designed to be manageable for further optimization.

e This thesis proposes effectiveness improvements to the previously proposed STS cluster-

ing method by utilizing DTW distance, and shape-based averaging technique.

e This thesis proposes efficiency improvements on using DTW in a subsequence search

subtask.

Future research directions

Because this thesis proposed a new framework, there are some future improvements that

can be explored. In motif discovery subtask, using DTW distance can provide exceptional
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results; however, it is traded with very high computational time in exchange. For this reason,
efficiency improvement on the usage of DTW can make the motif discovery more useful. Other
directions are to explore other compression techniques to improve efficiency and effectiveness

of the proposed framework.
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APPENDICES A

COMPLETE EXPERIMENTAL RESULTS OF THE
EXPERIMENT IN SECTION 3.5.3
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Figure A.1: TSDMA datasets used in the experiments in section 3.5.3.
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Figure A.2: SMMs of AEM2 dataset when number of clusters (k) is 3 and the length of sliding window

(w) is varied.
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Figure A.3: SMMs of AEM2 dataset when number of clusters (k) is varied and the length of sliding

window (w) is 64.
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Figure A.4: SMMs of Buoy1 dataset when number of clusters (k) is 3 and the length of sliding window

(w) is varied.
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Figure A.5: SMMs of Buoyl dataset when number of clusters (k) is varied and the length of sliding

window (w) is 64.
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Figure A.6: SMMs of CBF dataset when number of clusters (k) is 3 and the length of sliding window (w)
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Figure A.7: SMMs of CBF dataset when number of clusters (k) is varied and the length of sliding window

(w) is 64.
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Figure A.8: SMMs of ERP dataset when number of clusters (k) is 3 and the length of sliding window (w)

is varied.
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Figure A.9: SMMs of ERP dataset when number of clusters (k) is varied and the length of sliding window

(w) is 64.
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Figure A.10: SMMs of Field4 dataset when number of clusters (k) is 3 and the length of sliding window

(w) is varied.
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Figure A.11: SMMs of Field4 dataset when number of clusters (k) is varied and the length of sliding
window (w) is 64.
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Figure A.12: SMMs of Fortune5004 dataset when number of clusters (k) is 3 and the length of sliding
window (w) is varied.
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Figure A.13: SMMs of Fortune5004 dataset when number of clusters (k) is varied and the length of

sliding window (w) is 64.
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Figure A.14: SMMs of MITDBX108 dataset when number of clusters (k) is 3 and the length of sliding
window (w) is varied.
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Figure A.15: SMMs of MITDBX108 dataset when number of clusters (k) is varied and the length of
sliding window (w) is 64.
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Figure A.16: SMMs of TOR96 dataset when number of clusters (k) is 3 and the length of sliding window

(w) is varied.
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Figure A.17: SMMs of TOR96 dataset when number of clusters (k) is varied and the length of sliding

window (w) is 64.
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Figure A.18: Cluster representatives of AEM?2 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3 and w = 32.
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Figure A.19: Cluster representatives of AEM2 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3 and w = 64.
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Figure A.20: Cluster representatives of AEM2 dataset from variations of 2STSC (left) and SSTSC (right)
withk =3 and w = 128.
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Figure A.21: Cluster representatives of AEM?2 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 5 and w = 64.



102

2 r 2 /)
0 0 F'
2k ‘ ‘ : ‘ ‘ ‘ 2 : ‘ ‘ ‘ ‘ ;
10 20 30 40 50 60 10 20 30 40 50 60

2STSC: CDTW + CL SSTSC: EUC + AA

2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.22: Cluster representatives of AEM2 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 7 and w = 64.
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Figure A.23: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3 and w = 32.
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Figure A.24: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 64.
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Figure A.25: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 128.
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Figure A.26: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)
withk =5 and w = 64.

2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.27: Cluster representatives of buoy1 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 7 and w = 64.
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Figure A.28: Cluster representatives of CBF dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 32.
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Figure A.29: Cluster representatives of CBF dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 64.



106

20 40 60 80 100 120 20 40 60 80 100 120

2STSC: CDTW + CL SSTSC: EUC + AA
2r 2
2 2‘0 4‘0 6‘0 36 160 120 = 26 4:0 éO 8‘0 160 léO
2STSC: CDTW + AL SSTSC: EUC + SA
2 2
0 0
2 2‘0 4‘0 (;0 86 160 120 2 26 4‘0 éO 86 160 120
2STSC: ICDTW + CL SSTSC: DTW + AA
2 2
0 0
2 . . . . f . 2 f . . f f .
20 40 60 80 100 120 20 40 60 80 100 120
2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.30: Cluster representatives of CBF dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3and w = 128
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Figure A.31: Cluster representatives of CBF dataset from variations of 2STSC (left) and SSTSC (right)
with k = 5 and w = 64.
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Figure A.32: Cluster representatives of CBF dataset from variations of 2STSC (left) and SSTSC (right)

withk =7 and w = 64.

5 10 15 20 25

2STSC: CDTW + CL

5 10 15 20 25 30

SSTSC: EUC + AA

2
1
0
-1

5 10 15 20 25

2STSC: CDTW + AL

5 10 15 20 25 30

SSTSC: EUC + SA

2
1
0
-1

5 10 15 20 25

2STSC: ICDTW + CL

1
0
-1
-2 . . . . . .

5 10 15 20 25 30

SSTSC: DTW + AA

2
0
-2 . . . . . .

5 10 15 20 25

2STSC: ICDTW + AL

5 10 15 20 25 30

SSTSC: DTW + SA

Figure A.33: Cluster representatives of ERP dataset from variations of 2STSC (left) and SSTSC (right)

with k= 3 and w = 32.
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Figure A.34: Cluster representatives of ERP dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3and w = 64.
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Figure A.35: Cluster representatives of ERP dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3and w = 128
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Figure A.36: Cluster representatives of ERP dataset from variations of 2STSC (left) and SSTSC (right)
with k = 5 and w = 64.
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Figure A.37: Cluster representatives of ERP dataset from variations of 2STSC (left) and SSTSC (right)
with k = 7 and w = 64.
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Figure A.38: Cluster representatives of Field4 dataset from variations of 2STSC (left) and SSTSC (right)
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Figure A.39: Cluster representatives of Field4 dataset from variations of 2STSC (left) and SSTSC (right)
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Figure A.40: Cluster representatives of Field4 dataset from variations of 2STSC (left) and SSTSC (right)
withk =3 and w = 128.

2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.41: Cluster representatives of Field4 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 5 and w = 64.
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Figure A.42: Cluster representatives of Field4 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 7 and w = 64.
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Figure A.43: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 32.
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Figure A.44: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 64.
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Figure A.45: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 128.
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Figure A.46: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 5 and w = 64.
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Figure A.47: Cluster representatives of Fortune5004 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 7 and w = 64.
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Figure A.48: Cluster representatives of MITDBX108 dataset from variations of 2STSC (left) and SSTSC

(right) with k = 3 and w = 32.
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Figure A.49: Cluster representatives of MITDBX108 dataset from variations of 2STSC (left) and SSTSC

(right) with k = 3 and w = 64.
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Figure A.50: Cluster representatives of MITDBX108 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 3 and w = 128.
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Figure A.51: Cluster representatives of MITDBX108 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 5 and w = 64.
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Figure A.52: Cluster representatives of MITDBX108 dataset from variations of 2STSC (left) and SSTSC
(right) with k = 7 and w = 64.
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Figure A.53: Cluster representatives of TOR96 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 3 and w = 32.
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Figure A.54: Cluster representatives of TOR96 dataset from variations of 2STSC (left) and SSTSC (right)

with k = 3 and w = 64.
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Figure A.55: Cluster representatives of TOR96 dataset from variations of 2STSC (left) and SSTSC (right)

withk =3 andw = 128.
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2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.56: Cluster representatives of TOR96 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 5 and w = 64.

2STSC: ICDTW + AL SSTSC: DTW + SA

Figure A.57: Cluster representatives of TOR96 dataset from variations of 2STSC (left) and SSTSC (right)
with k = 7 and w = 64.
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Table B.1: Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is 1 and number
of clusters (k) is set to the number of classes in each dataset

Rand Index
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
I1talyPowerDemand 0491 052]049]049] 049|049 049 ] 049]| 050 | 056 0.48 | 0.53
SonyAIBORobotSurfacell 080]078] 073|072 073]|059]0.81] 072]| 048 | 046 | 056 | 0.57
SonyAIBORobotSurface 0480491 060| 054|077 | 075] 060 | 056 | 046 | 0.50 | 0.47 | 1.00
DistalPhalanxOutlineCorrect 0.49(048]0.49[049]0.49] 048] 0.49[0.49[0.49| 048] 0.49] 0.48
MiddlePhalanxOutlineCorrect 048] 048] 049 049|048 | 048] 049 | 0.49 | 0.50 | 0.50 | 0.50 | 0.50
PhalangesOutlinesCorrect 048] 048] 0.49]0.49]0.49| 049 047 | 047 | 048 | 048] 0.49 | 0.49
ProximalPhalanxOutlineCorrect 0.56 [ 0.56] 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56
DistalPhalanxOutlineA geGroup 069 ) 069] 069 | 069]| 069 | 069 | 0.69 | 0.69 | 0.62 | 0.62 | 0.80 | 0.80
MiddlePhalanxOutlineA geGroup 0.60 | 0.60] 0.60 | 0.60 | 0.60 | 0.60| 0.60 | 0.60 ] 0.45 | 0.45 | 0.60 | 0.60
ProximalPhalanxOutlineAgeGroup | 0.65 [ 0.65] 0.65 | 0.65| 0.65| 0.65] 0.65 [ 0.65] 0.62 | 0.62 | 0.62 | 0.62
TwolLeadECG 061[0.61] 056|056 052]052] 056|056 049 | 048 | 047 | 0.47
MoteStrain 05204710491 049] 049|047 049 | 046 ] 050 | 046 | 0.68 | 1.00
ECG200 0521 054] 056 | 056] 049|051 056|059]| 052]|0.60] 048 | 0.48
CBF 061 060] 060 | 062 ] 061 | 048] 053 | 0.39 | 069 | 0.73] 0.63 | 0.39
Two_Patterns 065)100] 062|1.00] 058 | 0.00| 059 | 080 ]| 057 | 0.63] 0.81 | 0.91
ECGFiveDays 0.54[054] 054|054 047 ] 047 ] 047 | 047 | 0.47 | 0.47 | 049 | 0.50
ECG5000 0781 079]081]081L]063|05] 08| 080|079 |0.96] 075 ]| 0.82
Gun_Poaint 052 050]0.61]059]049]| 049]0.61] 059]| 052|052 052 | 0.52
wafer 065) 066 056 | 058] 072 0.77] 049 | 050 | 049 | 051 | 0.49 | 0.50
ChlorineConcentration 0.60 | 060 0.60 | 0.60] 060 | 0.60| 051 | 051 | 0.56 | 0.56 | 0.54 | 0.54
Wine 061)061]0.73][073] 061 061]0.73]0.73]| 061 | 0.61] 0.61 | 0.61
Strawberry 0490491056 |056] 049|049 049 )| 049 ]| 049 | 049 | 0.56 | 0.56
ArrowHead 0.66 [ 0.66] 0.66 | 0.66| 0.63 | 061 ]| 064 | 0.64 | 0.46 | 0.43 | 0.53 | 0.52
Trace 0781 078] 078 078] 0.78 | 0.78 | 0.78 | 0.78 | 0.69 | 0.81 ] 0.84 | 0.84
ToeSegmentationl 049 1 0.67] 047 | 047] 045| 050| 049 | 045]| 049 | 044 | 048 | 0.56
Coffee 081)081]073[073]081|081|081)081]0.90]|0.90]0.90]| 0.90
ToeSegmentation2 050)0.80] 049 | 047|047 | 046 056 | 054 ]| 051 | 0.52 | 0.49 | 0.49
FaceFour 065)033]076|071] 053|100 069 | 065]| 060 | 0.33] 0.67 | 0.17
yoga 0.52[051] 048 | 048] 052]| 051] 048 | 047 - - - -
Ham 047104710481 048]| 048 |050| 049 | 049 | - - - -
Meat 094(094]081[081|081]|]081]068]|068] - - - -
Beef 0.76 [ 0.76] 0.76 [ 0.76 | 069 | 069 | 0.70 | 0.70 | - - - -
FordA 056)100] 052]|043]|]049 040 053|052 - - - -
FordB 052)100] 048] 044]|051|(071| 048|047 - - - -
ShapeletSm 056 100] 046 |1.00| 049 | 050 | 047 | 043 | - - - -
BeetleFly 045)033] 048] 046|047 | 050 049|051 - - - -
BirdChicken 047 04710.48]0.48| 047 | 047 | 047 | 047 | - - - -
Earthquakes 059)100]059]|050]052[100| 048|050 - - - -
Herring 049(049]049[049|049]049]049]049] - - - -
OliveQil 0.82(0.82]082[082|0.82]082]082]|082] - - - -
Car 0.73{0.73]0.73[0.73| 070 070 0.73| 0.73] - - - -
Lighting2 0471 033] 051|100 052|000 047060 - - - -
Computers 048 045] 047 | 047|051 | 043 047 | 045 - - - -
L argeK itchenA ppliances 050 054]043]038|054]|064] 050 ]| 056 - - - -
RefrigerationDevices 051(100] 045]038[050]|000]038]044] - - - -
ScreenType 053|040 058 | 056] 055(081| 057 | 057 | - - - -
SmallKitchenA ppliances 058 033]054[052|054]|050]047]043] - - - -
WormsTwoClass 056 0.60] 050 | 050 052 | 047 | 047 | 044 - - - -
Worms 064)100] 072]| 067|067 [1.00] 061) 053] - - - -
StarLightCurves 081(081]081[081| 05| 068]081]081] - - - -
Haptics 067 067]0.73|0.73| 060 | 050 | 067 | 0.67 | - - - -
CinC_ECG _torso 0.54 [ 060 ] 0.62] 0.62| 053 | 059 | 056 [ 054 | - - - -
HandOutlines 0.73]0.73] 0.73| 0.73| 0.73] 0.73] 0.73 | 0.73| - - - -
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Table B.2: Precision from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is set to the number of classes in each dataset

Precision
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 048] 049] 047 | 047 | 048 | 047 | 0.48 | 048 | 0.47 | 0.55] 0.47 | 0.50
SonyA|BORobotSurfacel 0771 073] 070 | 0.67| 0.70 | 054 0.79| 067 | 044 | 0.44] 053 | 0.54
SonyA|BORobotSurface 0471 061] 060|067 077 | 0.76 | 0.57 | 056 | 0.50 | 1.00 | 0.48 | 1.00
DistalPhalanxOutlineCorrect 0.48] 048] 0.48) 048] 0.48| 048] 0.48 | 0.48| 0.48 | 048] 0.48 | 0.48
MiddlePhalanxOutlineCorrect 046 ]| 046 ] 047 | 047 | 046 | 046 | 0.47 | 047 | 0.48 | 0.48] 0.48 | 0.48
PhalangesOutlinesCorrect 045] 045] 047 | 047 | 047 | 047 ] 045 | 045| 045 | 045 0.48 | 0.48
ProximalPhalanxOutlineCorrect 0.53] 0.53] 053] 053] 0.53| 053] 053 053|053 0.53] 053] 0.53
DistalPhalanxOutlineA geGroup 048] 048] 048 | 048 | 048 | 048] 0.48 | 048 | 0.41 | 0.41 ] 0.66 | 0.66
MiddlePhalanxOutlineA geGroup 0.39]10.39]039(0.39]|0.39]0.39] 039(039| 031 | 0.31] 0.39 | 0.39
ProximalPhalanxOutlineA geGroup 045]0.45]045( 045 045]0.45] 045 0.45| 042 | 042 ] 042 | 0.42
Twol eadECG 0.58 [ 0.58] 053 | 053] 049 | 049] 053 | 053 | 048 | 0.48 | 0.46 | 0.46
MoteStrain 0501|0471 047 ] 046 | 047 | 046 | 048 | 046 | 0.48 | 0.46 | 0.63 [ 1.00
ECG200 050] 051] 052|052 047 049 053 | 056 | 0.49 | 0.57 | 0.45 | 0.45
CBF 038 033)] 036|046 037 | 040 ] 0.28 | 0.29 | 0.50 | 1.00] 0.42 | 0.45
Two Patterns 0.22]11.00] 019 000 026 | 0.00| 0.22 | 0.33| 0.28 | 0.29 | 0.53 | 0.68
ECGFiveDays 0.52[052]052|052] 046 | 046 046 | 046 | 045 | 0.44 | 0.47 | 0.47
ECG5000 037 ] 043] 044 | 044 019 ]| 0.23] 0.40 | 040 | 0.42 | 0.88] 0.33 | 0.75
Gun_Point 050|049 | 057 | 055 047 ] 047 ] 057 | 055] 049 | 0.49 | 0.49 | 0.49
wafer 063 ] 064] 052|054 069 | 0.75] 047 | 048 | 0.47 | 0.49 | 0.47 | 0.47
ChlorineConcentration 033]033]036]|036| 033] 033]033|[033]029|0.29] 030 0.30
Wine 0.57 | 057] 070 0.70| 057 | 057] 0.70]| 0.70| 057 | 0.57 | 0.57 | 0.57
Strawberry 048 ] 048] 0.53]| 053] 048 | 048] 0.48 | 0.48 | 0.48 | 0.48 | 0.53 | 0.53
ArrowHead 0.45(0.45]045|0.45] 042 | 042] 043 ] 043] 033 ] 033] 0.34| 0.34
Trace 049]049] 049 ]| 049 049 | 049 ] 049 | 049 | 0.38 | 0.53 ] 0.58 | 0.58
ToeSegmentationl 045]0.86] 044 | 042 047 | 050 | 0.48 | 0.45| 0.46 | 0.44 | 0.45 | 0.52
Coffee 079]079] 070 070] 0.79 | 0.79] 0.79 | 0.79 | 0.89 | 0.89 ] 0.89 | 0.89
ToeSegmentation2 048] 0.75] 048 | 046 | 045 | 044 | 053 | 0.52 | 0.48 | 0.47 | 0.47 | 0.46
FaceFour 029]033]045| 050 019 100] 033 | 043| 0.15| 0.00] 0.31 | 0.17
yoga 050 049] 046 | 0.46 | 049 | 0.48 | 0.47 | 0.46 - - - -
Ham 045] 0441 045 | 045 | 045 | 0.47| 0.47 | 0.47 - - - -
Meat 0.89(0.89] 067 | 0.67 | 065 | 0.65| 0.47 | 0.47 - - - -
Beef 0.33] 0.33]1 0.33[0.33] 019 | 0.19 ]| 0.22 | 0.22 - - - -
FordA 052 ]1.00] 049 | 038 | 046 | 040 | 0.50 | 0.52 - - - -
FordB 049 ]| 1.00] 046 | 046 | 0.48 | 0.67 | 0.48 | 0.47 - - - -
ShapeletSim 052 ]1.00] 045 | 000 | 045 | 0.33 ]| 0.46 | 0.43 - - - -
BeetleFly 047 ] 033] 045 | 046 | 043 | 0.50| 0.47 | 0.48 - - - -
BirdChicken 045] 045] 046 | 0.46| 045 | 0.44 | 0.46 | 0.46 - - - -
Earthquakes 0,57 | 000 ] 057 | 033 ]| 047 | 1.00| 0.48 | 0.50 - - - -
Herring 0.48] 0.48] 0.48 | 048] 0.48 [ 0.48] 0.48 | 0.48| - - - -
OliveQil 0.56| 0.56] 0.56 | 0.56| 0.56 [ 0.56| 0.56 | 0.56| - - - -
Car 0.39]0.39]0.39[0.39] 035 0.35] 0.39 | 0.39| - - - -
Lighting2 044 ] 000] 050 | 1.00| 0.47 | 0.00 | 0.46 | 0.60 - - - -
Computers 047 |1 052 ] 045 | 046 | 0.50 | 0.69] 0.45 | 0.45 - - - -
L argeK itchenA ppliances 0241 038] 028] 033] 036 0.45] 0.29 | 0.43 - - - -
RefrigerationDevices 0.21]000]031]031] 030]| 000] 030 | 0.27 - - - -
ScreenType 0241 000] 031] 038] 027 ] 0.57] 0.35 | 0.40 - - - -
SmallKitchenA ppliances 0.34(033]026|017] 032]| 025 0.29 | 0.23 - - - -
WormsTwoClass 052 | 0.75] 047 | 045 | 047 | 0.43] 0.45 | 0.44 - - - -
Worms 0.08 ] 000] 023]0.25]| 011 ]| 000 | 0.23 | 0.19 - - - -
StarLightCurves 0.65] 0.65] 0.65| 0.65] 0.38 | 048] 0.65[ 0.65| - - - -
Haptics 0.18 | 0.00 ] 0.22 ] 0.22]| 0.10 | 0.00 | 0.15 | 0.15 - - - -
CinC_ECG torso 022 024) 025] 025 022 0.26] 0.25 | 0.23 - - - -
HandOutlines 0.70] 0.70] 0.70 [ 0.70] 0.70] 0.70] 0.70 [ 0.70| - - - -
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Table B.3: Recall from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is set to the number of classes in each dataset

Recall
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 067 | 087] 05| 05| 067|084] 08|08 064]|063]0.89]| 0.8
SonyAlBORobotSurfacel | 083(089]077|084|077]081]08]084[044]|054] 055|054
SonyAlBORobotSurface 045( 048] 060 | 050 077 ]| 076 ] 0.87 | 0.56 [ 043 | 0.50 | 0.48 | 1.00
DistalPhalanxOutlineCorrect 0.82] 048] 0.82 | 0.82] 0.82] 0.48 | 0.82 | 0.82] 0.82 | 0.48 | 0.82 [ 0.48
MiddlePhalanxOutlineCorrect 059 (059|056 |05 |05]|059] 05| 05(081]0.81]0.81]0.81
PhalangesOutlinesCorrect 046 [ 0.46| 049 | 049 | 056 | 0.56] 047 | 047 | 0.46 | 0.46 | 0.82 | 0.90
ProximalPhalanxOuitlineCorrect 0.53 [ 0.53] 0.53| 0.53] 0.53| 0.53] 0.53 ]| 0.53] 0.53 | 0.53] 0.53| 0.53
DistalPhalanxOutlineA geGroup 051051 051]|051f051|051]051]051f062]|062]0.67]|0.67
MiddlePhalanxOutlineA geGroup 059 (059|059 |05 05|05]| 05| 059(0.68]|0.68] 059 | 059
ProximalPhalanxOutlineAgeGroup | 0.73] 0.73] 0.73] 0.73] 0.73] 0.73] 0.73 ] 0.73] 0.68 | 0.68 | 0.68 | 0.68
TwolL eadECG 063 [ 063] 056 | 05| 050|050 05 ]|05(082] 048] 064 | 0.64
MoteStrain 063 [ 047] 049 |05 049]|072] 067 | 046| 0.79 | 046 | 0.73 | 1.00
ECG200 063 (070 0.73|0.73| 056 | 060| 056 | 060 [ 0.50 | 0.61 | 0.46 | 0.44
CBF 047 (050|042 058| 033|044 037]080f 055]043] 050] 031
Two_Patterns 031(100] 024]|000f050]|000] 037]100f 065|061 067 ] 1.00
ECGFiveDays 053 053] 053] 053|057]|057]057]|057(048]| 057 058] 0.64
ECG5000 044 047 056 | 056 | 040 | 060 | 048 | 0.48 | 0.68 | 0.88] 0.56 | 0.43
Gun_Point 063 (089|072 075| 056|088]072]|075[054]|054] 054|054
wafer 063 [ 069]073[084|074|075] 049 ] 054|049 | 053] 047 | 0.50
ChlorineConcentration 035] 03] 040|040 035]| 0.35] 0.60 ] 0.60| 0.33 | 0.33] 0.40 | 0.40
Wine 072 072]0.77]0.77| 072 | 0.72] 0.77 ] 0.77| 0.72 | 0.72] 0.72 | 0.72
Strawberry 0.82|0.82] 062 | 062 0.82] 0.82] 0.82| 0.82| 0.82 | 0.82| 0.62 | 0.62
ArrowHead 061 061]061]|061|05|074] 060|060 077]0.87] 060 | 0.65
Trace 070({ 070 070|070 070 | 0.70] 0.70 | 0.70 | 0.70 | 0.88 ] 0.85 | 0.85
ToeSegmentationl 051 060) 044 ] 043 ]| 0.78] 0.50] 0.90 | 0.45| 0.46 | 0.39 ] 0.46 | 0.52
Coffee 082(08]077]|077|08]08] 08| 08(0.90] 0.90] 0.90] 0.90
ToeSegmentation2 058 [0.86] 067 | 05| 053|054] 053]051f052]053]072]072
FaceFour 045 (100|052 ]| 062| 036|1.00] 045] 068| 0.15| 0.00 | 040 | 1.00
yoga 063 [ 060] 059 ]| 05| 054]|052]0.72] 0.70 - - - -
Ham 0.47 | 0.44] 0.50 | 0.50| 0.50 | 0.47 | 0.49 | 0.49 - - - -
Meat 0.90]090] 075 | 075] 081 [ 0.81] 0.49 [ 0.49 - - - -
Beef 0.23]10.23]1023[0.23] 017 017} 019 | 0.19 - - - -
FordA 056 |100] 061|050 065]040] 084 ] 052 - - - -
FordB 051 (100| 062]| 072|047 | 067 ] 048 | 047 - - - -
ShapeletSim 056 (100|071 ]| 000f 053] 050] 073 ] 043 - - - -
BeetleFly 047 [ 033 050 | 046 | 045 | 050 ] 0.80 | 0.76 - - - -
BirdChicken 052 [ 059] 059|059 047 ] 048] 0.64] 0.64 - - - -
Earthquakes 055[000| 055]|050f 053|100 048] 050 - - - -
Herring 0.67 | 0.67] 0.67 | 0.67| 0.67 | 0.67| 0.67 | 0.67| - - - -
OliveQil 0.67 | 0.67] 0.67 | 0.67| 0.67 | 0.67| 0.67 | 0.67| - - - -
Car 0.50) 0.50| 0.50 [ 0.50] 0.50 | 0.50] 0.50 | 0.50 | - - - -
Lighting2 057 000) 058 | 1.00| 053 | 0.00] 0.65| 1.00 - - - -
Computers 045 | 045] 053 | 0.68| 048 | 043 ] 059 | 0.45 - - - -
L argeK itchenA ppliances 030 [ 067|059 | 075| 067]0.82] 049 | 0.52 - - - -
RefrigerationDevices 021 {000| 068082 033]|]000]08]060] - - - -
ScreenType 026 000] 032]038|033]080] 050]| 057 - - - -
SmallKitchenA ppliances 038 0.33]) 0.30 | 017 | 0.50 | 0.33] 0.44 | 0.33 - - - -
WormsTwoClass 052 050]064]| 063|047 ]043] 051039 - - - -
Worms 010 000| 032] 033|013 ] 000] 0.59] 043 - - - -
StarLightCurves 0810808 |08 |075]088] 081] 081 - - - -
Haptics 0.30| 0.00] 030 [ 0.30 | 019 [ 0.00 | 0.22 | 0.22 - - - -
CinC_ECG torso 045(041]040]| 040 | 050 ) 042 | 053 [ 0.53| - - - -
HandOutlines 0.77]0.77] 0.77 | 0.77] 0.77 ]| 0.77] 0.77 | 0.77 - - - -
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Table B.4: Fl-score from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is set to the number of classes in each dataset

F1-Measure
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
I1talyPowerDemand 056 063] 051 | 051]056|060]|061)|061]| 054|059] 0.62]|0.63
SonyA1BORobotSurfacell 080)080] 073 074]073| 065]0.80]| 074] 044 | 048] 0.54 | 0.54
SonyA|BORobotSurface 046 053] 060| 057|077 | 076 068 | 056 | 046 | 0.67 | 0.48 | 1.00
DistalPhalanxOutlineCorrect 0.61(048]0.61|061]0.61] 048] 0.61[0.61[0.61| 0.48 | 0.61] 0.48
MiddlePhalanxOutlineCorrect 052 052] 051 051] 052|052 051)051]0.60]|0.60] 0.60 | 0.60
PhalangesOutlinesCorrect 045)045] 048 048] 051|051 046) 046] 045 | 045] 061 | 0.62
ProximalPhalanxOutlineCorrect 0.53] 0.53] 0.53 | 0.53] 0.53| 0.53] 0.53[ 0.53] 0.53 | 0.53| 0.53 | 0.53
DistalPhalanxOutlineA geGroup 050) 050] 050 | 050 050 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.66 | 0.66
MiddlePhalanxOutlineA geGroup 0.47 [ 0.47] 0.47 | 047 | 0.47 ] 0.47] 0.47 | 0.47| 0.43 | 0.43 | 0.47 | 0.47
ProximalPhalanxOutlineAgeGroup | 0.56 [ 0.56 ] 0.56 | 0.56 | 0.56 | 0.56 ] 0.56 [ 0.56 [ 0.52 | 0.52 | 0.52 | 0.52
TwolLeadECG 060) 060] 054 054] 050| 050| 054 054]061| 048] 054 | 054
MoteStrain 0560471048 050|048 | 0.56| 056 | 046 | 0.59 | 0.46 | 0.68 | 1.00
ECG200 056 059]061][061]051|054]054]058]|050]|059] 045 ]| 044
CBF 04210401039 051]03|042] 032]042]|052|0.60] 046 | 0.37
Two_Patterns 026]100]021]000)]034]|000]027]050]|039]039] 059] 0.81
ECGFiveDays 052 052|052 052|051 |051|051) 051|046 | 050] 052 0.54
ECG5000 040)045] 049 049|026 033] 044 ]| 044] 052 |0.88] 042 | 055
Gun_Poaint 056 063]063]|064] 051|061 063]0.64]| 052|052 052] 052
wafer 063 066] 061 066]071]|0.75] 048] 051 | 048 | 0.51 | 0.47 | 0.48
ChlorineConcentration 034(034]03[03[034[034]043]043[{031]|031]034]|034
Wine 063 | 063]0.73|0.73| 063 | 063]0.73]0.73| 063 | 063 ] 063 | 0.63
Strawberry 0.61] 0.61] 057 | 0.57 ] 0.61| 0.61] 0.61 | 0.61] 0.61 | 0.61]| 0.57 | 0.57
ArrowHead 052 052] 052 ] 052] 048] 054] 050 | 0.50 | 0.46 | 048 | 0.44 | 0.45
Trace 058 053] 058 | 058|058 058]| 058) 058|049 | 0.66] 0.69| 0.69
ToeSegmentationl 04810711 044 043] 058|050 0.62 | 045]| 046 | 041 | 045 | 0.52
Coffee 080)080]073]073] 080|080 080 0.80] 0.90|0.90] 0.90 | 0.90
ToeSegmentation2 052080 056 | 050] 049 | 048] 053] 051]| 050 | 050 057 | 0.57
FaceFour 035)050] 048] 055] 025|100 033]053]|015|0.00] 035]| 029
yoga 056 054]052]|052]|052|050|057)056] - - - -
Ham 0460441 048] 048]| 048 | 047]0.48) 048] - - - -
Meat 090({090]071[071|072]|072] 048] 048] - - - -
Beef 027(027]027(027]018| 018|021 ]| 021] - - - -
FordA 054)100] 055]043|]054[040] 063)| 052 - - - -
FordB 050)100] 053] 057|047 | 067 048|047 - - - -
ShapeletSm 054)100] 055]000]| 049|040 056 | 043 | - - - -
BeetleFly 047)1033] 048] 046|044 | 050]0.60) 059 - - - -
BirdChicken 048 051]052]| 052|046 | 046054054 - - - -
Earthquakes 056 (000|056 ]|040| 050]|100] 048] 050] - - - -
Herring 0.56 [ 0.56] 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | - - - -
OliveQil 0.61[0.61]061[061|0.61]061]0.61]|0.61] - - - -
Car 044]1044]1044(044] 041 (041]1044[044] - - - -
Lighting2 049 000] 054]1.00] 050 000| 054)|075] - - - -
Computers 046 048] 049 055|049 | 053] 051)|045]| - - - -
LargeKitchenA ppliances 0270481 038 | 046]| 047 | 058 037 | 047 | - - - -
RefrigerationDevices 021 000| 043]045( 032|000 044 ] 0.38 - - - -
ScreenType 025)000]031]038]030067| 041|047 ]| - - - -
SmallKitchenA ppliances 036(033]028]017[039]029]035]|027] - - - -
WormsTwoClass 052)060] 054 053|047 |043] 048|041 - - - -
Worms 009 000]027]029]012|000]033)026]| - - - -
StarLightCurves 0.72]10.72]1 0.72[0.72] 050 [ 063 | 0.72[ 0.72]| - - - -
Haptics 0231 000]025/025|013[000| 018) 018 - - - -
CinC_ECG _torso 029)1030]030[030]031[032]034)032]| - - - -
HandOuitlines 0.73]10.731 0.73[0.73]1 0.73[ 0.73] 0.73 [ 0.73| - - - -
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Table B.5: AoR from all algorithms on all datasets when the scaling factor (f) is 1 and number of clusters

(k) is set to the number of classes in each dataset

Accuracy on Retrieval (AoR)
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 1.00f{ 060 1.00| 1.00| 1.00 [ 0.55] 1.00 | 1.00] 0.90 | 0.55 ]| 0.90 | 0.50
SonyAlBORobotSurfacel | 095]| 045]1.00] 0.65| 1.00| 060] 1.00 ] 0.65| 0.90 | 0.40] 0.85 | 0.40
SonyAlBORobotSurface 1.00f{ 0.81] 1.00| 0.81| 1.00| 0.94] 1.00| 0.88] 0.81 | 0.25] 0.88 | 0.19
DistalPhalanxOutlineCorrect 1.00f 0.90] 1.00| 1.00| 1.00 [ 0.90 | 1.00| 1.00| 1.00 | 0.90 | 1.00 | 0.90
MiddlePhalanxOutlineCorrect 1.00| 1.00] 1.00 { 1.00| 1.00 [ 1.00] 1.00 | 1.00 | 0.90 | 0.90 | 0.90 | 0.90
PhalangesOutlinesCorrect 1.00| 1.00] 1.00 | 1.00| 1.00 [ 1.00] 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95
ProximalPhalanxOuitlineCorrect 1.00| 1.00| 1.00 { 1.00 | 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
DistalPhalanxOutlineA geGroup 1.00| 1.00| 1.00 { 1.00 | 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
MiddlePhalanxOutlineA geGroup 1.00| 1.00| 1.00 { 1.00 | 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
ProximalPhalanxOutlineA geGroup 1.00| 1.00| 1.00 { 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
TwolL eadECG 1.00| 1.00| 1.00 { 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 0.90 | 1.00 | 1.00
MoteStrain 1.00f 060 1.00| 0.85| 1.00 | 0.70 | 1.00 | 0.70 | 0.80 | 0.40 | 0.80 | 0.30
ECG200 1.00f 095] 1.00| 1.00| 1.00 | 0.95] 1.00| 0.95] 1.00 | 0.80 | 1.00 | 0.80
CBF 076 029 0.90]| 052 | 0.71 | 0.33] 0.90]| 043 | 0.81L | 0.29] 0.81 | 0.38
Two_Patterns 060 005] 065]{010f 070 010] 070 | 0.25( 1.00| 0.70 ] 0.95 | 0.60
ECGFiveDays 1.00| 1.00] 1.00 | 1.00] 1.00 [ 1.00] 1.00 | 1.00 | 1.00 | 0.84 | 1.00 | 0.95
ECG5000 1.00f 0.83] 1.00| 1.00| 1.00 | 0.78 ] 1.00 | 1.00] 0.94 | 0.56 | 1.00 | 0.44
Gun_Point 1.00{ 0.80] 1.00| 0.95| 1.00| 0.75] 1.00 | 0.95] 1.00 | 1.00 | 1.00 | 1.00
wafer 095 075]1.00] 0.75| 0.95| 0.80] 1.00| 0.80 | 1.00 | 0.85] 1.00 | 0.80
ChlorineConcentration 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Wine 1.00| 1.00| 1.00 { 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
Strawberry 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00
ArrowHead 09509 )09 |09 | 100]| 08 ] 09 | 09| 09 | 0.86] 1.00 | 0.95
Trace 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| 1.00 | 0.90 | 1.00 | 1.00
ToeSegmentationl 075({030] 095|060| 055|020] 095] 055f 095] 045] 1.00]| 0.55
Coffee 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| 1.00 | 1.00 | 1.00 | 1.00
ToeSegmentation2 090 050)1.00] 075] 0.85]| 0.40] 1.00 | 0.80 | 0.95 | 0.60 ] 0.95 | 0.65
FaceFour 094]017]1.00] 0.78] 083 0.11] 1.00| 0.67 | 061 | 0.17] 0.78 | 0.22
yoga 1.00| 095 1.00| 1.00| 1.00| 0.95] 1.00 [ 0.95| - - - -
Ham 1.00| 0.85] 1.00 | 1.00| 1.00 [ 0.80 | 1.00 | 1.00 - - - -
Meat 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Beef 060 | 0.60) 0.60 | 0.60 | 0.80| 0.80] 0.75 | 0.75 - - - -
FordA 055[025] 075|040 075 | 0.25] 0.90 | 0.60 - - - -
FordB 075 020]090]| 045| 070 | 0.35] 0.80 | 0.50 - - - -
ShapeletSim 055[ 015 070 ]| 010| 065 | 020 0.75] 0.40 - - - -
BeetleFly 060 015])1.00] 0.65| 0.75| 0.20] 0.95 | 0.70 - - - -
BirdChicken 0.95] 085] 1.00| 1.00| 1.00 | 0.85| 1.00 | 1.00 - - - -
Earthquakes 060 | 010] 060 | 020| 060 | 0.15] 0.80 | 0.20 - - - -
Herring 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
OliveQil 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Car 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Lighting2 060 [ 015]085]| 015( 060| 010] 080 | 0.25 - - - -
Computers 0.80| 0.55] 0.85] 0.60 | 0.85| 0.40] 0.85| 0.55 - - - -
L argeK itchenA ppliances 0.86 | 038]090]| 048 090]| 052] 0.90]| 057 ] - - - -
RefrigerationDevices 062 | 010] 1.00]| 052 | 062 | 014 ] 090 | 043 - - - -
ScreenType 0710241 095]| 048 | 071] 033] 08| 033 - - - -
SmallKitchenA ppliances 076 019] 0.81] 033 0.81| 0.24] 0.76 | 0.38 - - - -
WormsTwoClass 055[025]1090]| 045| 060| 030] 080 ] 045 - - - -
Worms 055] 0.15] 0.85] 0.30| 050 | 0.10 ] 0.85| 0.45 - - - -
StarLightCurves 1.00) 1.00] 1.00| 1.00]| 1.00| 0.90| 1.00| 1.00| - - - -
Haptics 1.00[{ 030 095|095 09| 025] 09| 095 - - - -
CinC_ECG torso 1.00) 085]1.00]|1.00] 095| 075] 1.00| 090 | - - - -
HandOutlines 1.00) 1.00] 1.00| 1.00| 1.00 [ 1.00| 1.00 | 1.00| - - - -
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Table B.6: AoD from all algorithms on all datasets when the scaling factor (f) is 1 and number of clusters

(k) is set to the number of classes in each dataset

Accuracy on Detection (AoD
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 086 (0951 092 092|08|09]092]|092(08]|093]08L|0H
SonyAlBORobotSurfacel | 077 (092|083 092| 083|092 084]093[073]|09]077] 093
SonyAlBORohotSurface 091)09]089]097]092]| 09| 092]|098]| 069 | 094] 066 | 0.9
DistalPhalanxOutlineCorrect 09 099)]099]099]| 096 099] 0.99] 0.99]| 0.96 | 0.98] 0.96 | 0.98
MiddlePhalanxOutlineCorrect 099 (099|099 099| 099|099 099|099 0.99]0.99] 0.99 | 0.99
PhalangesOutlinesCorrect 0.99]10.99] 098 (098] 0.99]0.99] 098 [ 098] 099 | 0.99] 0.96 [ 0.99
ProximalPhalanxOuitlineCorrect 098 (098] 099|099 099|099 099] 099 0.99]0.99] 0.99 | 0.99
DistalPhalanxOutlineA geGroup 099]091] 09| 099]0.99]|099] 0.99|0.99| 099 | 0.99 | 0.99 | 0.99
MiddlePhalanxOutlineA geGroup 099 (099|099 099 099|099] 099] 099 0.99]0.99] 0.99 | 0.99
ProximalPhalanxOutlineA geGroup 099 099|099 [ 09| 099|099] 099 ]|09(099]|099] 099 | 0.9
TwolL eadECG 098 [ 098]098|098| 098| 098] 098|098[094]|098] 098] 098
MoteStrain 081(097] 09109 |08 |09]08|09%(|07]|095]|075]0.97
ECG200 093(094]094][094|093[094]094]095(085]|09]0.86] 091
CBF 068 (091]08[094|069|094]077]093[070]|089] 072] 0.90
Two_Patterns 062 | 1.00] 060| 086| 064 | 094] 067 ]| 094[ 085|094 08 ] 093
ECGFiveDays 0.98]10.98]10.98|0.98] 098 | 098] 098 [ 098 | 0.93 [ 0.98 | 0.96 [ 0.98
ECG5000 087 092)] 09 |09 | 085] 093] 0.96]0.96| 082 | 0.94] 0.79 | 0.95
Gun_Point 091(097] 09 | 097|090 | 097] 09 | 097 098] 098] 0.99 | 0.99
wafer 083 (09| 091]|097| 08| 094] 09|09 [091]|09]08] 096
ChlorineConcentration 097 (097 099|099 097|097]099]|099f097]|097] 09 | 0.9
Wine 1.00| 1.00| 1.00 { 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00
Strawberry 095 095]0.96]096]| 095| 0.95] 0.96]| 0.96| 0.95| 0.95] 0.94 | 0.94
ArrowHead 095(095]095[095[ 08| 09]09]09([08]|095]093|0H
Trace 095 095]095]|095|09|09] 09|09 |094]|097] 09| 09
ToeSegmentationl 070 (092|081 092|068|08] 078|092 08| 093] 0.8]0.93
Coffee 09909 100] 1.00| 1.00| 1.00] 1.00| 1.00| 0.99 | 0.99] 0.99 | 0.99
ToeSegmentation2 080 (094|087 094|077][094] 08 |091(08]|093]084]|0HA
FaceFour 068 0.86) 0.87 | 0.92| 064 | 0.97] 0.84 | 0.93| 067 | 0.89] 0.71 | 0.90
yoga 095( 09| 097 ]| 097|095 ]| 09| 097 0.98 - - - -
Ham 092 (098] 098|098 088]|096] 097 ] 097 - - - -
Meat 1.00]1.00] 1.00]| 1.00] 1.00 | 1.00] 1.00 | 1.00 - - - -
Beef 1.00) 1.00] 1.00| 1.00] 1.00 | 1.00 | 1.00 | 1.00 - - - -
FordA 0720951 075|090 072]087] 081 | 0.4 - - - -
FordB 066 | 089] 078 093| 072|091 077 | 0.90 - - - -
ShapeletSim 071 (09| 063]|098|069]|093]074]| 0H - - - -
BeetleFly 064 [ 093] 084|094 065]097] 083] 092 - - - -
BirdChicken 087 (093] 094|094 08| 094] 0.95] 0.95 - - - -
Earthquakes 068 | 09| 068|099 067|088 0.65] 0.9 - - - -
Herring 09909 100|100 2100] 200] 1.00] 1.00 - - - -
OliveQil 1.00] 1.00| 1.00| 1.00{ 1.00 [ 1.00] 1.00 | 1.00| - - - -
Car 0970971097 |097]097]| 097]0.97]|0.97 - - - -
Lighting2 066 | 08| 066 | 09| 064 ]| 085 0.70 | 0.96 - - - -
Computers 081(091]08]|092|07]092] 080|094 - - - -
L argeK itchenA ppliances 073[094] 07509 | 078]| 094 ] 0.77 | 0.90 - - - -
RefrigerationDevices 062[091]08]094|067]09]077]093] - - - -
ScreenType 069 0.89)] 0.78 ] 094 0.73| 091 ] 0.72 | 0.92 - - - -
SmallKitchenA ppliances 067 [095] 075|092 | 070 | 094 ] 0.76 | 0.93 - - - -
WormsTwoClass 069 (089|077 093 071]092] 076 ] 092 - - - -
Worms 068 [ 09| 069]| 08| 064]091] 075] 090 - - - -
StarLightCurves 099(099] 099|099 094] 098] 0.99] 0.99 - - - -
Haptics 077 {092 097 ]| 097 | 073 ] 093] 0.97 ] 0.97 - - - -
CinC_ECG _torso 091 [095]097]|097]|08) 09| 094[098] - - - -
HandOutlines 1.00) 1.00| 1.00| 1.00| 1.00 [ 1.00| 1.00 | 1.00| - - - -
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Table B.7: Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is set to the number of classes in each dataset

Excess Rate
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.09 ]| 0.45] 0.00]| 0.00| 0.09| 0.50] 0.00] 0.00| 0.18 | 0.50 ] 0.18 | 0.55
SonyAlBORobotSurfacel | 014 ] 059]0.00] 0.35| 0.09| 045] 0.00] 0.35| 0.25 | 0.67] 0.26 | 0.65
SonyAlBORohotSurface 0.16 { 0.32]0.00]| 019 0.16 | 0.21] 0.00 [ 0.13] 0.28 | 0.78 | 0.22 | 0.83
DistalPhalanxOutlineCorrect 0.00 | 0.10 | 0.00 [ 0.00] 0.00 | 0.10 | 0.00 [ 0.00 ] 0.00 | 0.10 | 0.00 | 0.10
MiddlePhalanxOutlineCorrect 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00
PhalangesOutlinesCorrect 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00| 0.05 | 0.10
ProximalPhalanxOuitlineCorrect 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00
DistalPhalanxOutlineA geGroup 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00
MiddlePhalanxOutlineA geGroup 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00
ProximalPhalanxOutlineA geGroup 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00] 0.00 | 0.00 | 0.00 | 0.00
TwolL eadECG 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00] 0.00 | 0.10 | 0.00 | 0.00
MoteStrain 0.05]| 043]0.00] 0.15]| 0.09| 0.36] 0.00]| 0.30 | 0.24 | 0.62] 0.27 | 0.73
ECG200 0.00 | 0.05 ] 0.00 [ 0.00] 0.00 | 0.05| 0.00 [ 0.05] 0.09 | 0.27 | 0.09 | 0.27
CBF 030]074]0.17] 052 035 0.70] 0.17 ] 0.61 | 0.26 | 0.74 ] 0.26 | 0.65
Two_Patterns 040 095]041][091|036[091]039]|078[009]| 03] 014] 045
ECGFiveDays 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00| 0.00| 0.14 | 0.27 | 0.17 | 0.22
ECG5000 0.05] 021] 0.00]| 0.00| 0.10| 0.30] 0.00 | 0.00| 0.15 | 0.50 ] 0.10 | 0.60
Gun_Point 0.05]| 0.24] 0.00]| 0.05| 0.05| 0.29] 0.00 | 0.05| 0.00 | 0.00] 0.00 | 0.00
wafer 0.05]| 025] 0.00] 0.25| 0.05| 0.20] 0.00 | 0.20 | 0.00 | 0.15] 0.00 | 0.20
ChlorineConcentration 0.00 [ 0.00] 0.00 [ 0.00| 0.00] 0.00] 0.05| 0.05] 0.00 | 0.00 | 0.00 | 0.00
Wine 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00
Strawberry 0.00 | 0.00| 0.00 [ 0.00| 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.00 0.00 | 0.00
ArrowHead 0.00{ 0.00] 0.00 | 0.00| 0.00] 0.24] 0.00| 0.00f 0.10 | 0.14 | 0.00 | 0.05
Trace 0.00 ) 0.00| 0.00 [ 0.00| 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.10 | 0.00 | 0.00
ToeSegmentationl 038[075]014]|045| 048] 081] 014|050 014 ]| 059] 0.13 ] 0.52
Coffee 0.00 | 0.00| 0.00 | 0.00| 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.00 0.00 | 0.00
ToeSegmentation2 022 057] 005]029]| 0.26| 065] 0.00]| 0.20| 0.17 | 0.48] 0.21 | 0.46
FaceFour 0.19] 0.86] 0.00]| 0.22| 0.29| 0.90] 0.00 | 0.33| 0.42 | 0.84] 0.26 | 0.79
yoga 005|010 0.00]| 0.00f 0.09 | 014 ] 005 ] 0.10 - - - -
Ham 0.05] 0.19] 0.00 | 0.00| 0.00 [ 0.20 | 0.00| 0.00| - - - -
Meat 0.00 ) 0.00| 0.00 [ 0.00] 0.00 | 0.00] 0.00 )| 0.00 - - - -
Beef 0.00 ) 0.00| 0.00 [ 0.00] 0.00 | 0.00] 0.00| 0.00 - - - -
FordA 0500771 029]|062| 032|077 0.25] 050 - - - -
FordB 032(08]022]|061|039]|070] 027 | 055 - - - -
ShapeletSim 045(08]033]| 09 041]08] 03] 065 - - - -
BeetleFly 045|086 013 ]| 043 | 038 ] 0.83] 0.05] 0.30 - - - -
BirdChicken 0.17 [ 026 ] 0.00| 0.00| 0.17 | 0.29] 0.00 [ 0.00| - - - -
Earthquakes 043090 045|082 043]086] 0.30] 0.83 - - - -
Herring 0.00 ) 0.00| 0.00 [ 0.00] 0.00 | 0.00] 0.00 )| 0.00 - - - -
OliveQil 0.00 )| 0.00| 0.00 [ 0.00] 0.00 | 0.00] 0.00 )| 0.00 - - - -
Car 0.00 )| 0.00| 0.00 [ 0.00] 0.00 | 0.00] 0.00 | 0.00 - - - -
Lighting2 043[086]015]| 08| 043] 090] 027 | 0.77 - - - -
Computers 033[054]023]|045|026]|065]0.19] 048 - - - -
L argeK itchenA ppliances 025(067]017]|057|024]056] 021 ] 050 - - - -
RefrigerationDevices 043[091]1016]| 05 |043]087]021]063] - - - -
ScreenType 032[077]017] 058|035 ]| 070] 018 | 0.68 - - - -
SmallKitchenA ppliances 030] 083)] 032]072]0.29]| 0.79] 0.33 | 0.67 - - - -
WormsTwoClass 048 [ 076]0.18]| 059 | 040 | 0.70] 0.30 | 0.61 - - - -
Worms 042 084]1019]|071| 050]| 090] 0.19 ] 057 - - - -
StarLightCurves 0.00 [ 0.00] 0.00 [ 0.00| 0.00]| 0.10] 0.00| 0.00] - - - -
Haptics 0.05] 0.71] 0.00 | 0.00| 0.00 | 0.74| 0.00| 0.00| - - - -
CinC_ECG torso 0.09)023]0.00]{0.00]014|032]005)|014]| - - - -
HandOutlines 0.00 | 0.00] 0.00 [ 0.00 | 0.00| 0.00| 0.00 | 0.00| - - - -
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Table B.8: Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is 1 and number

of clusters (k) is chosen by the SSTSC algorithms

Rand Index
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L D-AA-Z D-SA-Z
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0541 052|049 | 049|051 | 049 052 | 052 ]| 050 | 0.56| 0.48 | 0.53
SonyAIBORobotSurfacel | 0.71 [ 068 ]| 0.66 | 0.60 | 0.66 | 0.53 | 0.63 [ 0.55| 0.58 | 0.90 | 0.61 | 0.80
SonyAIBORobotSurface 061)047] 063 ]| 054] 061|047 056 | 051] 045 | 033] 049 | 1.00
DistalPhalanxOutlineCorrect 0.56]| 0.56] 054 | 054 ] 049 | 048] 052 [ 052 ] 049 | 048 | 0.54 [ 0.54
MiddlePhalanxOuitlineCorrect 048 048] 049 | 049]| 048 | 048 | 049 | 049 | 0.55 | 0.55] 0.55 | 0.55
PhalangesOutlinesCorrect 048] 048] 048 | 048] 047 | 047 | 047 | 047 | 048 | 048] 0.49 | 0.48
ProximalPhalanxOutlineCorrect 0.56 [ 0.56] 054 | 054 | 0.56 ]| 0.56] 0.56 | 0.56 | 0.56 | 0.56 | 0.56 | 0.56
DistalPhalanxOutlineA geGroup 069 )| 069] 069 | 0.69 ]| 069 | 0.69 | 0.69 | 0.69 | 0.62 | 0.62 | 0.77 | 0.77
MiddlePhalanxOutlineA geGroup 0.60 ( 060 | 060 | 060 | 0.60 | 0.60 | 0.60 | 0.60 [ 0.61 | 0.61 | 0.61 | 0.61
ProximalPhalanxOutlineAgeGroup | 0.59 ] 0.59] 0.59 | 0.59] 0.59 | 0.59] 0.59 | 0.59] 0.59 | 0.59| 0.59 | 0.59
TwolL eadECG 0.580.58] 058|058 050 | 050 ] 0.58 | 0.58 | 0.49 | 0.48 | 0.58 | 0.58
MoteStrain 065(083] 064]| 066|056 |061]062]| 073|059 | 086 056 ]| 1.00
ECG200 059062 05905049 | 050| 052 053 | 054 | 059 056 | 0.56
CBF 061 | 060| 061|058 | 069|067] 070]|083|069|073] 064|071
Two_Patterns 042 ( 000| 062|100 054 | 000| 068 | 067 | 082 | 0.86] 0.86 | 0.97
ECGFiveDays 0.68 ]| 068 0.68 | 0.68] 0.70| 0.70| 0.70 | 0.70| 0.53 | 0.56 | 0.49 | 0.47
ECG5000 082080088088 08 |079] 074|074 079|086 075]| 0.8
Gun_Point 061 | 065| 065|0.65| 057 | 063 | 065] 0.65| 057 | 0.57 | 057 | 0.57
wafer 062 [ 0.67] 055|061 | 060 | 062| 057 | 062 | 059 | 0.62] 049 | 0.50
ChlorineConcentration 064 | 064]066|066|064|064]034]|034| 062|062 061 ]| 061
Wine 061|061]0.73]|0.73| 061|061 0.73]0.73| 057 | 057 ] 057 | 0.57
Strawberry 060 ) 060] 056 | 0.56 | 0.68 | 0.68 | 0.55 | 055 | 0.54 | 0.54 ] 0.74 | 0.74
ArrowHead 066 | 066 | 065| 065| 063 | 061 ] 0.74] 0.74| 049 | 047 ] 053 | 0.52
Trace 081(081]081]081|083]083]081]081[063]|]073]074]| 074
ToeSegmentationl 050] 033] 056 | 049] 053 | 1.00| 056 | 0.55| 0.56 | 0.50 | 0.50 | 0.55
Coffee 0761 076 | 0.68 | 068 ] 0.75| 0.75] 0.83 ] 0.83]| 0.70 | 0.70 | 0.72 | 0.72
ToeSegmentation2 050 057] 058 | 059] 053] 062] 054 | 054]| 053 | 0.60 | 0.56 | 0.60
FaceFour 070 033|086 08| 071|000]| 084]083|049]|033] 067 ] 017
yoga 050 050| 048] 048 | 051]| 049] 049 | 048] - - - -
Ham 049 | 049 048] 048|051 ]| 050] 049 ]| 049 - - - -
Meat 0771 077]1081|081]|]08.[08| 07|07 - - - -
Beef 0.65) 065]0.69]|0.69]| 062|062 062 | 062 - - - -
FordA 049 (100| 052|043 053] 000] 053] 053] - - - -
FordB 052 100] 052 ]| 047|061 |1.00| 056|017 - - - -
ShapeletSm 056 100] 046 | 1.00] 053 |1.00| 053] 1.00| - - - -
BeetleFly 052 033] 053] 058|053 [1.00| 057)|059] - - - -
BirdChicken 049 (049|057 | 057|049 ]| 050] 0.58 | 0.58 ] - - - -
Earthquakes 059)100] 059 ]| 050]052[100]| 048|050 - - - -
Herring 054|054 049 | 049 054[054] 054[054| - - - -
OliveQil 0.82|0.82]0.82|0.82|0.82]|082]082|0.82]| - - - -
Car 073( 0731 073|073[{079]|079]0.80)|080] - - - -
Lighting2 047 033] 051|100 052 | 000| 050|100 - - - -
Computers 0441 039) 050 | 050 | 0.54 | 0.40 | 0.50 | 0.53 - - - -
LargeKitchenA ppliances 065[071] 057|056 | 069]|069] 063 ] 061] - - - -
RefrigerationDevices 043 | 067] 045|031 056|100 072 | 0.70 - - - -
ScreenType 050( 040 065|061 050|043 053] 062] - - - -
SmallKitchenA ppliances 058 | 033]065]| 050|065]| 033] 063 050] - - - -
WormsTwoClass 051 050| 053]|064|052]|047]052]057] - - - -
Worms 065(083] 072 067|035]|067]062]| 053] - - - -
StarLightCurves 0.84]1084]084[(084] 082 084]084[084]| - - - -
Haptics 0.77]1 067 ] 069 [ 069 | 0.77 [ 050 | 0.67 | 0.67 | - - - -
CinC_ECG torso 0791 079] 073 073] 080 |0.80]| 080 0.80| - - - -
HandOuitlines 0.67 | 0.67] 0.67 | 0.67| 0.67 | 0.67| 0.67 | 0.67| - - - -
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Table B.9: Precision from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is chosen by the SSTSC algorithms

Precision
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 051 [049] 045]| 045]| 048 | 047 | 048 [ 048 | 047 | 0.55]| 0.47 | 0.50
SonyAIBORobotSurfacel | 091)100]084]|077]093|060| 087 )| 057] 0.89|1.00] 1.00 | 1.00
SonyAIBORobotSurface 0.781 0.80] 069 | 0.67] 0.78 | 0.80 | 0.58 | 0.57 | 0.80 | 1.00 ] 0.50 | 1.00
DistalPhalanxOutlineCorrect 056 055] 054|054 048] 048] 055|055 048 | 048 | 0.52 | 0.52
MiddlePhalanxOutlineCorrect 046 | 046 ] 047 | 047 ] 046 | 046 | 047 | 047 ]| 0.52 | 0.52] 0.52 | 0.52
PhalangesOutlinesCorrect 039039/ 041][041]044|044] 041 041] 045 | 045 0.48| 0.48
ProximalPhalanxOutlineCorrect 0.53] 053] 051 [ 051 ] 0.53[0.53] 0.53[0.53]0.53|0.53] 0.53] 0.53
DistalPhalanxOutlineA geGroup 048] 048] 048 | 048] 048 | 048 | 0.48 | 0.48 | 0.40 | 040 | 0.64 | 0.64
MiddlePhalanxOutlineA geGroup 0.39] 0.39] 0.39|0.39] 0.39| 0.39] 0.39 | 0.39]| 0.39 | 0.39 | 0.39 | 0.39
ProximalPhalanxOutlineAgeGroup | 0.41] 0.41] 041 0.41] 041 0.41] 041 041] 041 | 041] 041 | 041
TwolL eadECG 059 059] 059 | 059|045 045 059 | 059 ]| 048 | 048] 0.76 | 0.76
MoteStrain 083)095]079]|078]064|078] 08| 095] 0.65|1.00] 056 | 1.00
ECG200 065 (072 062 | 062 | 044 | 046 048 | 051 [ 055 | 0.63 | 059 | 0.57
CBF 0338)033]033]|036]05|100]| 048] 1.00]| 050 | 1.00] 0.39 | 1.00
Two_Patterns 021 000 019 | 000 | 027 | 0.00 | 0.00 | 0.00 | 0.88 | 1.00| 0.76 | 1.00
ECGFiveDays 081[081]081]081|086|086]|086]|086| 05| 067] 046 ]| 047
ECG5000 046 045] 064 | 064] 031 033]033)]033]03|0.75]033]|0.75
Gun_Point 068 070]081]|081|062|067]081]081|05]|05] 05|05
wafer 090 (100|058 073[093|092] 074|092 082|083 037|042
ChlorineConcentration 035)03]038][038] 03 |03]03)|030]| 027 |027]024]| 024
Wine 057 057]070]|0.70| 057 | 057 0.70| 0.70 | 0.56 | 0.56 | 0.56 | 0.56
Strawberry 071 {071 064]|064|089]|089] 057|057 053]|053]084]|084
ArrowHead 046 [ 046 | 045 | 045 | 042 | 042] 062 ] 0.62| 031 031] 0.34| 0.34
Trace 055 055] 055| 055]062]|062] 055]| 055]| 0.34 | 044 | 0.44 | 0.44
ToeSegmentationl 029 000| 060| 033| 060|100| 067|050 0.80| 0.00] 044 | 0.50
Coffee 0.83]083] 073 073] 09| 09| 1.00]1.00]| 097 | 097 ] 097 | 0.97
ToeSegmentation2 041)050] 068 080] 050| 067 056 | 056 | 050 | 1.00| 058 | 0.71
FaceFour 032(033] 07708 | 030|000]| 08 ]090f022]|033]031]| 017
yoga 046 | 046] 042 | 0421 046 044 ] 042 | 042 | - - - -
Ham 044 | 045] 045 ]| 045|047 ]| 047 ] 042 ]| 042 - - - -
Meat 056 | 056 | 0.67 | 0.67| 065| 065] 061 | 061 ] - - - -
Beef 018(018]0.19|0.19(/ 019|019 019 | 019 ] - - - -
FordA 040)100] 049 025|043 | 000| 050)| 050 - - - -
FordB 049 (100| 048 | 060 | 067 | 1.00] 1.00| 1.00| - - - -
ShapeletSm 052 100] 045]000] 045|100 040 )| 1.00| - - - -
BeetleFly 057033 050]|060f047]|100]08]|08] - - - -
BirdChicken 036 037]065]|065]|038|039]0.78)|078]| - - - -
Earthquakes 057 (000|057 033|047 ]|100] 046|050 - - - -
Herring 0.52(052] 048 | 048 | 052] 0.52] 052 052] - - - -
OliveQil 0.56| 0.56] 0.56 | 0.56| 0.56 [ 0.56 | 0.56 [ 0.56 | - - - -
Car 039)039]039]039]050[050]052)052]| - - - -
Lighting2 044 [ 000| 050|100f 047 ]| 000) 033]100] - - - -
Computers 031]040| 042 ] 040 052] 050] 039 | 043 ] - - - -
LargeK itchenA ppliances 030 [ 0.67] 031 | 050 042 | 0.67] 0.36 | 0.55 - - - -
RefrigerationDevices 025(000|031]|031f021]100] 067 | 0.00 - - - -
ScreenType 0300141036 ] 025]| 027 |027] 035|047 - - - -
SmallK itchenA ppliances 034(033]030[033]033]033]03]033] - - - -
WormsTwoClass 0338 100] 050 | 064|047 | 043] 040|050 - - - -
Worms 018 000| 023]|025(013]|000]J021]019] - - - -
StarLightCurves 0.84]1084]084[(084] 082 082]084[084]| - - - -
Haptics 028(000]019[(019|022]|000]015]015] - - - -
CinC_ECG torso 050 055]030]|030f060]|063]054]|]054] - - - -
HandOuitlines 0.80| 0.80] 0.80 | 0.80]| 0.80 [ 0.80] 0.80 | 0.80| - - - -




Table B.10: Recall from all algorithms on all datasets when the scaling factor (f) is 1 and number
clusters (k) is chosen by the SSTSC algorithms

Recall
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 04410871 029]029] 038|084 029]| 029]| 064 | 063] 0.89]| 0.86
SonyAIBORobotSurfacel | 04210441034 026] 031|011 025]013] 014 |0.75] 017 | 0.50
SonyAIBORobotSurface 030)044]1045]050] 030|044 042 | 047 ] 0.10 | 0.33] 0.30 | 1.00
DistalPhalanxOutlineCorrect 037(044]052]|052|082| 048] 051 ]| 051 0.82| 048] 047 | 047
MiddlePhalanxOuitlineCorrect 059 [ 059] 056 | 056 | 059 | 059 | 0.56 [ 0.56 | 0.50 | 0.50 | 0.67 | 0.67
PhalangesOutlinesCorrect 019019/ 021 021]033|033]021]|021]| 046 | 046 0.90| 048
ProximalPhalanxOutlineCorrect 0.53 [ 0.53] 042 | 042 ] 0.53] 0.53] 0.53 | 0.53] 0.53 | 0.53 | 0.53 | 0.53
DistalPhalanxOutlineA geGroup 051 ({051 051|051 |051|051]|051]051f058]|0.58] 053] 053
MiddlePhalanxOutlineA geGroup 0.59| 0.59] 059|059 059|059 059(|059]| 051 | 051] 051 051
ProximalPhalanxOutlineAgeGroup | 0.84 | 0.84] 0.84 | 0.84 ] 0.84 | 0.84] 0.84| 0.84] 0.84 | 0.84] 0.84 | 0.84
TwolL eadECG 039)03]039]039]023]|023]039]|039]|082| 048] 016 | 0.16
MoteStrain 032 068]032]|039(016]|023] 024]| 043|027 | 069 029 ] 1.00
ECG200 029(032]037[037[/030[032]024]|]026|020| 029] 023 ]| 0.30
CBF 047 {050 025|026 021 | 022] 020 | 040 | 026 | 043 ] 0.31 | 045
Two_Patterns 059 (000|024 000f053|000]000|000f021]031]050]0.85
ECGFiveDays 043(043]043]043|044|044]044] 044|006 | 011 0.54| 047
ECG5000 044 [ 056 05 | 05| 020| 027] 0.60] 0.60| 032 ]| 043 ] 056 | 043
Gun_Point 031(046] 033 036| 02| 041] 033] 036048 048] 0.48 | 0.48
wafer 022 (0311020031017 021|016 ]| 021 | 017 | 022] 012 | 0.18
ChlorineConcentration 023[023]023]023[023]023]09]090( 016|016 0.14] 0.14
Wine 0720720771077 072 | 0.72] 0.77 | 0.77| 049 | 0.49 ] 0.49 | 0.49
Strawberry 027 (027|021 021| 037|037] 023]023[0.72]|0.72] 056 | 0.56
ArrowHead 0.75]1 0.75] 0.65 | 0.65]| 056 | 0.74 ] 0.38 [ 0.38 | 0.56 | 0.63 | 0.60 [ 0.65
Trace 045)045] 045 045|045 | 045 045 | 045 ] 0.80 | 1.00| 1.00 | 1.00
ToeSegmentationl 006 000] 016 | 015] 011 | 1.00| 013 ] 0.16 | 0.10 | 0.00 | 0.19 | 0.20
Coffee 058 058] 051 | 051] 050|050 0.64]0.64] 037 | 0.37 ] 0.44 | 0.44
ToeSegmentation2 012 ( 008] 023|026 012 | 022] 016 ]| 016| 007 | 0.12] 0.22 | 0.24
FaceFour 040|100 052 | 062 016 | 0.00] 0.33 | 047 | 046 | 1.00| 040 | 1.00
yoga 030033 024|024 027]|030] 023|026 - - - -
Ham 029 039]050]|050] 026|03]018)| 018 - - - -
Meat 100)100)075]|075]081)|081] 049|049 - - - -
Beef 033 033]030]030]043|043]043)|043]| - - - -
FordA 019(100| 043]| 017|007 | 000) 007 | 014] - - - -
FordB 051)100]025]060] 017|100 013 017 | - - - -
ShapeletSm 056)100]071]000] 020|100 007|100 - - - -
BeetleFly 024(033]014|029(019]|100)J010]|014] - - - -
BirdChicken 011)013]019]049] 010 013 017 | 017 | - - - -
Earthquakes 055 000] 055]| 050] 053 [1.00|] 054 050 - - - -
Herring 038 0.38) 0.67 ]| 0.67| 038 | 0.38] 0.38 | 0.38 - - - -
OliveQil 0.67 | 0.67] 0.67 | 0.67 | 0.67 | 0.67| 0.67 | 0.67| - - - -
Car 0.50{ 0.50] 0.50 [ 050 | 040 | 040] 042 | 042 | - - - -
Lighting2 057 000] 058|1.00] 053|000 008) 1.00| - - - -
Computers 0.09 ] 013] 0271 0.33] 0.30 | 0.33] 0.14 | 0.19 - - - -
LargeKitchenA ppliances 01310221 035]050] 010|025 035|075 - - - -
RefrigerationDevices 048 | 0.00) 0.68 | 1.00| 0.14 | 1.00] 0.13 | 0.00 - - - -
ScreenType 04610251 020]011]| 047|080 067 | 1.00| - - - -
SmallKitchenA ppliances 038(033]011[025(014]033]018]|025] - - - -
WormsTwoClass 012 017] 024 | 044 | 047 ]| 043] 004 | 011 ] - - - -
Worms 036 | 000| 032]033|067]| 000] 053] 043] - - - -
StarLightCurves 057 (057|057 057|051]060) 057]057] - - - -
Haptics 030 000]030[030019]|]000]022]022] - - - -
CinC_ECG torso 019023 020|020( 017 025] 019 | 0.22] - - - -
HandOuitlines 0.40 | 0.40] 0.40 | 0.40| 0.40| 0.40]| 0.40 | 0.40| - - - -
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Table B.11: Fl-score from all algorithms on all datasets when the scaling factor (f) is 1 and number of
clusters (k) is chosen by the SSTSC algorithms

F1-Measure
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm 4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% [ 80%
ItalyPowerDemand 048 [ 063] 035|035 042 060 036 [ 036 | 054 | 0.59 | 0.62 | 0.63
SonyAIBORobotSurfacel | 0.58 [ 061]049]039]| 046 019 038 [ 021 ]| 0.24 | 0.86| 0.29 | 0.67
SonyAIBORobotSurface 043 057] 055]057] 043|057 049 | 052] 018 | 0.50 ] 0.38 | 1.00
DistalPhalanxOutlineCorrect 044 049] 053 | 053|061| 048] 053] 053|0.61]| 048] 049 | 049
MiddlePhalanxOuitlineCorrect 052 052] 051 | 051]052|052]|051)051]051]|051]0.58]|0.58
PhalangesOutlinesCorrect 026 026] 027 027] 038|038 028]| 028|045 | 045] 0.62| 048
ProximalPhalanxOutlineCorrect 0.53] 0.53] 046 | 0.46 | 0.53 | 0.53] 0.53 [ 0.53] 0.53 | 0.53] 0.53 | 0.53
DistalPhalanxOutlineA geGroup 050) 050] 050 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.47 | 047 | 0.58 | 0.58
MiddlePhalanxOutlineA geGroup 0.47[0.47] 047|047 047 ] 0.47] 047 [ 047| 044 | 044 | 044 | 0.44
ProximalPhalanxOutlineAgeGroup | 0.55 ] 0.55] 0.55 | 0.55] 0.55 | 0.55] 0.55| 0.55] 0.55 | 0.55] 0.55 | 0.55
TwolL eadECG 047 047] 047 |1 047 031 ] 0.31] 047 | 047 | 0.61 | 048] 0.27 | 0.27
MoteStrain 046 079] 046 | 052] 025 | 035] 038 | 059 ]| 0.38 | 0.82] 0.38 | 1.00
ECG200 040)0441046]046] 036 | 0.38] 032 034] 029 | 0.39] 0.34 | 0.39
CBF 042 040] 028 030] 030 036 028 057 ]| 0.34| 0.60 | 0.35 | 0.63
Two_Patterns 031) 000 021 ] 000|036 000 000 | 000 0.34 | 048] 0.60 | 0.92
ECGFiveDays 056 | 056| 056 | 056 059]|059] 059|059 010|019 050 | 047
ECG5000 0.45] 050 0.60]|0.60] 024 | 0.30| 043 ]| 043 ] 0.33 | 0.55] 0.42 | 0.55
Gun_Point 043 (055|047 | 050 036| 051|047 | 050 051 | 051 051 | 051
wafer 036)0.48] 030]044]029|034]026]034]029]03]019]| 025
ChlorineConcentration 028 028]029]|029]028|028]045]0.45]|020|020] 0.18] 0.18
Wine 063 | 063]0.73|0.73| 063 | 063]0.73]0.73| 052 | 052 ] 052 | 0.52
Strawberry 040)040] 032 032]052|052] 033)| 033|061 061]0.67| 0.67
ArrowHead 0.57]1057] 054 | 054] 048 054] 047 | 047 ] 040 | 042 | 0.44 | 0.45
Trace 049 (049|049 | 049|052 | 052] 049 | 049 | 048 | 0.61 | 0.62 | 0.62
ToeSegmentationl 009 000]025]{021]019]|1.00| 021]|024] 018 | 0.00] 0.26 | 0.29
Coffee 070 070 ] 0.60 | 0.60 | 0.66 | 0.66 | 0.78 | 0.78 | 0.54 | 0.54 | 0.60 | 0.60
ToeSegmentation2 01910141 035[039] 020 033] 024] 025] 013|021 0.32 | 0.36
FaceFour 036)050]062]070] 021|000 048] 062] 030 | 050 | 0.35| 0.29
yoga 036(039]031]|031(034]|036]03]|032] - - - -
Ham 035(042]1048]|048( 033|040 025|025 - - - -
Meat 072{072] 071 (071|072 072] 054 | 054 | - - - -
Beef 023 023]023]|023]|026(026]0.26)026] - - - -
FordA 026)100] 046 020|012 000|012 02| - - - -
FordB 050)100]033]060] 027|100 023|029 - - - -
ShapeletSim 054)100] 055]000] 028|100 011)100]| - - - -
BeetleFly 033(033]02]|039(027]|100)j018]|024] - - - -
BirdChicken 017019029029 016 | 019] 028 | 0.28] - - - -
Earthquakes 056 | 000| 056|040| 050|100 050 050] - - - -
Herring 04410441 056|056 044 | 044 ] 044 | 0.44 - - - -
OliveQil 0.61] 0.61]0.61[061] 0.61[0.61] 061|061 - - - -
Car 044104410441 044]1 044044046046 - - - -
Lighting2 049 (000| 054]|100f050]|000) 013]100] - - - -
Computers 014( 019 033]|036(03]|040]021]|026] - - - -
LargeKitchenA ppliances 018 033]033]|050]| 016|036 035|063 - - - -
RefrigerationDevices 033 [ 000| 043|047 017 | 1.00] 0.22 | 0.00 - - - -
ScreenType 036)018] 025]015]| 035|040 046 | 0.64| - - - -
SmallKitchenA ppliances 036(033]016[029]020]033]024]029] - - - -
WormsTwoClass 018 029] 032]052| 047]043]007]018] - - - -
Worms 0241 000]027]029] 022000030026 - - - -
SarLightCurves 068 | 068 | 068 | 068 | 063 | 0.69] 0.68 | 0.68 - - - -
Haptics 029(000]023[023]020]|000]018]018] - - - -
CinC_ECG torso 028(032]024|024[(026]036]029]031] - - - -
HandOutlines 0.53] 0.53] 0.53| 053] 0.53[ 053] 0.53| 0.53| - - - -




Table B.12: AoR from all algorithms on all datasets
clusters (k) is chosen by the SSTSC algorithms

when the scaling factor (f) is 1 and number

Accuracy on Retrieval (AoR)
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm 4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 1.00| 060 1.00 | 1.00| 1.00 | 0.55] 1.00 | 1.00 | 0.90 | 0.55 | 0.90 [ 0.50
SonyAIBORobotSurfacel | 0.90 [ 040] 1.00]| 0.65| 095)| 0.55| 0.95 [ 060 | 0.80 | 0.25 | 0.85 | 0.30
SonyAIBORobotSurface 1.00] 063]1.00]| 0.81]1.00]| 0.63] 1.00| 0.88] 0.75 | 0.19] 0.88 | 0.19
DistalPhalanxOutlineCorrect 1.00/ 090 080) 080]1.00f{090]075|075]1.00]| 0.90] 0.90 [ 0.90
MiddlePhalanxOuitlineCorrect 1.00| 1.00] 1.00 | 1.00 ] 1.00 | 1.00] 1.00 | 1.00| 0.90 | 0.90 | 0.90 | 0.90
PhalangesOutlinesCorrect 0.80 [ 0.80] 090 | 0.0 | 0.85)| 0.85| 0.85 [ 0.85] 1.00 | 1.00| 0.95 | 0.90
ProximalPhalanxOutlineCorrect 1.00] 1.00] 1.00| 1.00] 1.00 | 1.00] 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00
DistalPhalanxOutlineA geGroup 1.00| 1.00] 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00| 0.95 | 0.95| 0.95 | 0.95
MiddlePhalanxOutlineA geGroup 1.00]|1.00] 1.00]| 1.00] 1.00| 1.00] 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00
ProximalPhalanxOutlineAgeGroup | 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00] 1.00 | 1.00 ] 1.00 | 1.00 | 1.00 | 1.00
TwolL eadECG 1.00|1.00| 1.00]| 1.00| 1.00 | 1.00] 1.00 | 1.00| 1.00 | 0.90 | 0.95 | 0.95
MoteStrain 1.00| 060| 095) 085] 1.00( 0.60 ] 1.00 | 0.70 | 0.80 | 0.40 | 0.75 | 0.25
ECG200 1.00| 095]1.00)1.00] 1.00f{ 0.95] 1.00| 095| 0.95| 0.70 | 0.95 | 0.70
CBF 076 { 029 090|052 071 | 033 0.90]| 043 | 081 ]| 029] 081 ] 0.33
Two_Patterns 065(010| 065|010 065| 010 | 060 | 0.15 | 0.90 | 0.65] 0.90 | 0.60
ECGFiveDays 1.00(1.00| 1.00| 1.00| 1.00 [ 1.00] 1.00 | 1.00| 0.95 | 0.68 | 1.00 | 0.74
ECG5000 1.00] 0.78 ] 1.00| 1.00] 1.00| 0.78] 1.00| 1.00] 0.94 | 0.50 | 1.00 | 0.44
Gun_Point 1.00| 080 1.00) 095] 1.00f 0.75] 1.00 [ 0.95| 1.00 | 1.00| 1.00 | 1.00
wafer 095(075]100]| 075 095|080 1.00]| 080 095| 0.85] 0.95| 0.80
ChlorineConcentration 0950909 |09 |09 |09]|100]|100f09]|09]09]09%5
Wine 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00
Strawberry 090 090] 08| 085] 1.00| 1.00| 1.00| 1.00| 0.80 | 0.80 | 0.85 | 0.85
ArrowHead 095 095|090 |09 |100| 08| 081]08Lf09]|08] 100|095
Trace 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| 1.00 | 0.90 | 1.00 | 1.00
ToeSegmentationl 065)015] 080 | 050] 055 | 0.05] 0.85]| 055]| 095 | 040 | 1.00| 055
Coffee 085|085 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00| 095 | 0.95] 0.85 | 0.85
ToeSegmentation2 090 040] 095|070] 080 035 1.00]| 0.80| 095 | 0.55] 0.95| 0.50
FaceFour 089]017]1.00| 078] 0.72| 0.00| 1.00| 0.67 | 061 | 0.17 | 0.78 | 0.22
yoga 095|090 1.00| 1.00| 1.00| 085| 095]| 090 | - - - -
Ham 1.00| 085 1.00| 1.00| 1.00| 0.80] 1.00 [ 1.00| - - - -
Meat 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Beef 095)095]095]09]|100(100]1.00)100]| - - - -
FordA 050 005]075|/ 040 070 | 000 0.70| 0.30] - - - -
FordB 075(020] 085|030 040|005 070 | 020] - - - -
ShapeletSm 055(015]0.70| 010 055 | 005] 060 | 0.05] - - - -
BeetleFly 060 | 015| 1.00| 060 065|010 095|070 ] - - - -
BirdChicken 095|080 1.00| 1.00| 1.00| 0.80 ] 0.95]| 0.95] - - - -
Earthquakes 060)010] 060 | 020]| 060 | 0.15] 0.80)| 020 | - - - -
Herring 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
OliveQil 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Car 1.00 [ 1.00| 1.00| 1.00| 1.00| 1.00] 095 [ 0.95| - - - -
Lighting2 060(015]085]| 015 060|010 0.75]| 015] - - - -
Computers 0701 0401 060 | 040| 070 | 0.25] 0.75)| 045 | - - - -
LargeK itchenA ppliances 0.86| 0.38] 0.90| 043 | 0.90| 0.48] 0.81 | 0.43 - - - -
RefrigerationDevices 067|014 100]| 048 057 | 005] 0.71 | 0.24 - - - -
ScreenType 076 { 029 090]| 038 071 033] 08| 033] - - - -
SmallKitchenA ppliances 076 019] 067 [ 024| 067 | 014] 071 | 024 | - - - -
WormsTwoClass 05502509 ]|045(060]|030]075]03] - - - -
Worms 070 [ 020 085|030 060|015 080 | 045] - - - -
StarLightCurves 1.00| 1.00] 1.00| 1.00] 1.00| 0.90 | 1.00 | 1.00| - - - -
Haptics 1.00) 030 095][095]095[025] 09|09 - - - -
CinC_ECG torso 095( 080 100|100 095]|070] 095|090 - - - -
HandOuitlines 1.00]| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00| - - - -
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Table B.13: AoD from all algorithms on all datasets when the scaling factor (f) is 1 and number
clusters (k) is chosen by the SSTSC algorithms

Accuracy on Detection (AoD
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm 4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 086095/ 092]092]08 |09 ]092]|092]|08|093]081L| 0%
SonyAIBORobotSurfacel | 075]1091]083]092]080| 09| 084]093]|]070| 08| 073 ] 091
SonyAIBORobotSurface 083 097]089|097]083|097]092]|098]| 066 | 09| 066 | 0.9
DistalPhalanxOutlineCorrect 096 099]099] 09|09 |099] 099|099 09| 098] 098] 098
MiddlePhalanxOuitlineCorrect 099)099]09 [ 09|09 |099]09]099]|0.99]|0.99]0.99]| 0.99
PhalangesOutlinesCorrect 0.99(0.99] 098 |098]0.99]099]| 098 [ 098|099 |099] 0.94 | 0.9
ProximalPhalanxOutlineCorrect 098 (098] 099]|099(099]|099] 099] 099 0.99]0.99] 0.99 | 0.99
DistalPhalanxOutlineA geGroup 099 099]099]09]099]|099]0.99]|099]| 099 | 0.99] 0.99 | 0.99
MiddlePhalanxOutlineA geGroup 099099099 [099(099]|099] 099]099(0.99]0.99] 0.99 | 0.99
ProximalPhalanxOutlineAgeGroup | 0.99 [ 0.99] 099 | 0.99| 099 | 099 ] 0.99 [ 099 ] 0.99 | 0.99] 0.99 | 0.99
TwolL eadECG 098 [ 098]098|098|098|098]|]098|098[094|098] 098] 098
MoteStrain 081090920908 ]|09]08|09%]|07]|09]| 075|097
ECG200 093[094]094[094[093[094]094]095(083]|091] 083|090
CBF 068 (091|082 [094|068|[091]076]|091| 070|089 0.70 | 0.89
Two_Patterns 063)095] 060 | 086] 065| 093] 0.63]| 0.89 ]| 0.82 | 0.93] 0.82 | 0.93
ECGFiveDays 0.98(0.98]098|0.98]| 098] 098] 098|098 087 |097] 087 ] 098
ECG5000 084]1092]095]09]08|093]0.96|096]| 0.80|09] 079 ]| 095
Gun_Point 090)097] 09 | 097] 08| 09| 09| 097] 098 | 098] 0.99]| 0.99
wafer 083096 091]097]090| 094|090 |09]093]|09%]| 091]| 096
ChlorineConcentration 098 (098] 099|099 098] 098] 099|099 097]|097] 09| 09
Wine 1.00(1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00
Strawberry 095]1095]095]09]09|09]096]|096]| 09 | 0.95] 0.95| 0.9
ArrowHead 095)095]095][095] 08| 09]09)|09]|08 |09] 093|094
Trace 095)1095]095]09]09|09]09]|09]|094]097] 09 | 0.9
ToeSegmentationl 063 091|078 091|062|084]078] 092 079| 093] 082 0.93
Coffee 100 | 100)100]| 100 1.00| 1.00] 1.00 | 1.00f 099 | 0.99 | 0.99 | 0.99
ToeSegmentation2 07710941 085]093]075| 093] 08 |091]|081]093]079]| 09
FaceFour 068 | 086|087 | 092| 062|098]| 084 ] 093| 067|089 0.71 | 0.90
yoga 092 (09| 097|097 091]|09%|]094]098] - - - -
Ham 092 (098] 098] 098| 088|096 097]|097] - - - -
Meat 1.00(1.00| 1.00) 1.00| 1.00 | 1.00] 200 [ 100 - - - -
Beef 099)099]099[099]|]099[099]099)|099]| - - - -
FordA 065)089]075]090]|065[08] 074|091 - - - -
FordB 066089 073]091]| 065|083 069|091 - - - -
ShapeletSm 071 (09| 062|097 063]|092]063]|0H4] - - - -
BeetleFly 064 (093] 08]|092|061]|09]08]092] - - - -
BirdChicken 08410931 094]094]|08|094]09)095]| - - - -
Earthquakes 068 [ 09| 068]|099|067]|088] 064|096 - - - -
Herring 099] 09| 100| 1.00| 1.00 | 1.00 | 1.00 | 1.00 - - - -
OliveQil 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 [ 1.00| - - - -
Car 09710971097 ]097] 097097097097 - - - -
Lighting2 066 085] 066|090 ]| 064|085 067)|098]| - - - -
Computers 075)1089]079]091]|] 070|090 080)093]| - - - -
LargeK itchenA ppliances 073]1094]074]091| 077 | 093] 0.75 | 0.91 - - - -
RefrigerationDevices 063 [ 09| 081]|093| 062|086 072] 092 - - - -
ScreenType 069(087] 076|094 073|]091]072]|092] - - - -
SmallKitchenA ppliances 067 (0951 071|091 068]|09]071] 093] - - - -
WormsTwoClass 068 (089|076 092|071]092]071]092] - - - -
Worms 067 092] 069|089 065]|094]076]090] - - - -
StarLightCurves 099)1099]09]099]094)/098]099)099]| - - - -
Haptics 07710921 097097073 [093]097)|097]| - - - -
CinC_ECG torso 0890951 097]097]|]08 09| 094)098]| - - - -
HandOuitlines 1.00] 1.00| 1.00 | 1.00| 1.00 [ 1.00| 1.00 | 1.00| - - - -

133

of



134

Table B.14: Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1 and number

of clusters (k) is chosen by the SSTSC algorithms

Excess Rate
Dataset Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm 4 | Algorithm 5 | Algorithm 6
40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% | 80% | 40% [ 80%
ItalyPowerDemand 0.09 | 0451 0.00| 0.00] 0.09 | 050 | 0.00| 0.00]| 0.18 | 0.50 | 0.18 | 0.55
SonyAIBORobotSurfacel | 014 062]0.00]| 03] 010| 048] 0.00)| 037 | 024 | 0.76 | 0.26 | 0.74
SonyAIBORobotSurface 0.16 | 0471 0.00| 019] 0.16 | 047 ] 0.00]| 0.13 ]| 029 | 0.82 | 0.22 | 0.83
DistalPhalanxOutlineCorrect 0.00| 0.10] 0.00 [ 0.00] 0.00 [ 0.10 | 0.00 { 0.00 | 0.00 | 0.10 | 0.00 | 0.00
MiddlePhalanxOutlineCorrect 0.00| 0.00] 0.00 [ 0.00] 0.00 [ 0.00] 0.00 [ 0.00| 0.00 | 0.00| 0.00 | 0.00
PhalangesOutlinesCorrect 0.00 | 0.00] 0.00 | 0.00 | 0.00| 0.00| 0.00 | 0.00| 0.00 | 0.00| 0.05 | 0.10
ProximalPhalanxOutlineCorrect 0.00| 0.00] 0.00 [ 0.00] 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
DistalPhalanxOutlineA geGroup 0.00| 0.00] 0.00 [ 0.00] 0.00 [ 0.00] 0.00 [ 0.00| 0.00 | 0.00| 0.00 | 0.00
MiddlePhalanxOutlineA geGroup 0.00| 0.00] 0.00 [ 0.00] 0.00 [ 0.00] 0.00 [ 0.00| 0.00 | 0.00| 0.00 | 0.00
ProximalPhalanxOutlineAgeGroup | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00] 0.00 | 0.00 ] 0.00 | 0.00 | 0.00 | 0.00
TwolL eadECG 0.00 [ 0.00] 0.00 | 0.00 | 0.00| 0.00| 0.00 | 0.00] 0.00 | 0.10 | 0.00 | 0.00
MoteStrain 005(043]0.00]|011|009|045]0.00]|030f024|062] 029|076
ECG200 0.00 | 0.05] 0.00 | 0.00| 0.00] 0.05] 0.00 | 0.05| 0.10 | 0.33 | 0.10 | 0.33
CBF 030 074]017| 052|035 |070]017]061| 026]| 074] 026 | 0.70
Two_Patterns 033)090]041]091]038]| 09| 043]086]014|038]0.14]| 043
ECGFiveDays 0.00 | 0.00] 0.00 | 0.00| 0.00| 0.00] 0.00 [ 0.00| 0.10 | 0.35 | 0.17 | 0.39
ECG5000 0.00| 0.22] 0.00 | 0.00] 0.00 | 0.22 ] 0.00 [ 0.00| 0.06 | 0.50 | 0.10 | 0.60
Gun_Point 0.00 | 0.20] 0.00 [ 0.05| 0.00 ]| 0.25] 0.00 | 0.05] 0.00 | 0.00 | 0.00 | 0.00
wafer 0.05] 025]0.00| 025] 0.00| 0.16 | 0.00 | 0.20 | 0.00 | 0.11 | 0.00 | 0.16
ChlorineConcentration 0.00 { 0.00] 0.00 [ 0.00 | 0.00 | 0.00] 0.05 | 0.05] 0.00 | 0.00 | 0.00 | 0.00
Wine 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00] 0.00 [ 0.00| 0.00 | 0.00| 0.00 | 0.00
Strawberry 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
ArrowHead 0.00| 0.00] 0.00 | 0.00] 0.00 [ 0.14 ] 0.00 [ 0.00| 0.10 | 0.14 | 0.00 [ 0.05
Trace 0.00 [ 0.00] 0.00 | 0.00 | 0.00 | 0.00| 0.00 | 0.00] 0.00 | 0.10 | 0.00 | 0.00
ToeSegmentationl 041)086] 016 | 047 ] 048 | 095 015]| 045]| 0.14 | 0.64 ] 0.13]| 0.52
Coffee 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00] 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
ToeSegmentation2 022 065] 005|030 030|070] 000|020 017 | 052] 021 | 0.58
FaceFour 020(08]0.00| 022| 028|100} 000]033|042]|084] 026|079
yoga 0.05) 010 0.00| 0.00] 0.09 | 023] 005)| 010 | - - - -
Ham 0.05| 019 0.00| 0.00| 0.00| 0.20] 0.00| 0.00| - - - -
Meat 0.00| 0.00] 0.00 [ 0.00]| 0.00 [ 0.00] 0.00 [ 0.00| - - - -
Beef 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00| 0.00 [ 0.00| - - - -
FordA 0521 095]1029]|062]| 033|100 030)|070] - - - -
FordB 032)082]023]|073]050(094]030)|080 ]| - - - -
ShapeletSim 045(085]033|09|045]|095]040 | 095] - - - -
BeetleFly 045)086] 013 048] 041 091]0.05| 030 - - - -
BirdChicken 017 ( 030 0.00| 0.00f 017 | 0.33] 0.00| 0.00| - - - -
Earthquakes 0431090 045]08]043|[08]030) 083 - - - -
Herring 0.00| 0.00] 0.00 [ 0.00] 0.00 [ 0.00] 0.00 | 0.00| - - - -
OliveQil 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00| 0.00 [ 0.00| - - - -
Car 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00| 0.00 [ 0.00| - - - -
Lighting2 043 [ 08]015| 08| 043]|]090]025]08] - - - -
Computers 033)062] 020|047 030 075]012) 047 | - - - -
LargeKitchenA ppliances 025)067]017]061] 021|058 023|059 - - - -
RefrigerationDevices 039(087]009]|057|045]|095] 025|075 - - - -
ScreenType 030(074]1014| 064 035]|070] 018 ]| 068] - - - -
SmallKitchenA ppliances 030 083]036[077]033]08]03]|078] - - - -
WormsTwoClass 048 [ 076]0.18| 059|040 | 070] 0.32 | 068] - - - -
Worms 039)083]019]071] 045|086 020 055 - - - -
StarLightCurves 0.00| 0.00] 0.00 [ 0.00]| 0.00 [ 0.10] 0.00 [ 0.00| - - - -
Haptics 0.05| 0.72 | 0.00 | 0.00 | 0.00 | 0.74 ] 0.00 | 0.00| - - - -
CinC_ECG torso 010 024]0.00]|0.00f014]|036] 005] 010] - - - -
HandOutlines 0.00| 0.00] 0.00 [ 0.00| 0.00 [ 0.00| 0.00 [ 0.00| - - - -
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Figure B.1: ItalyPowerDemand dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and
D-SA-Z, respectively.
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Figure B.2: SonyAIBORobotSurfacell dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z
and D-SA-Z, respectively.
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Figure B.3: SonyAIBORobotSurface dataset: (a) Input time series labeled with classes of planted data.
(b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z
and D-SA-Z, respectively.
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Figure B.4: DistalPhalanxOutlineCorrect dataset: (a) Input time series labeled with classes of planted
data. (b), (c¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L,

D-AA-Z and D-SA-Z, respectively.
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Figure B.5: MiddlePhalanxOutlineCorrect dataset: (a) Input time series labeled with classes of planted
data. (b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L,
D-AA-Z and D-SA-Z, respectively.



140

(a)

(b)

(©

(d)

(e)

®

€3]

-5k 1 1 1 1 =
500 1000 1500 2000

Figure B.6: PhalangesOutlinesCorrect dataset: (a) Input time series labeled with classes of planted data.
(b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z
and D-SA-Z, respectively.
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Figure B.7: ProximalPhalanxOutlineCorrect dataset: (a) Input time series labeled with classes of planted
data. (b), (c¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L,
D-AA-Z and D-SA-Z, respectively.
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Figure B.8: DistalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled with classes of planted
data. (b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L,
D-AA-Z and D-SA-Z, respectively.
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Figure B.9: MiddlePhalanxOutlineAgeGroup dataset: (a) Input time series labeled with classes of planted
data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-
AA-Z and D-SA-Z, respectively.
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Figure B.10: ProximalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled with classes of
planted data. (b), (c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z,
E-SA-L, D-AA-Z and D-SA-Z, respectively.
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Figure B.11: TwoLeadECG dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.



146

()

(b)

()

(d)

(e

®

€3]

500 1000 1500 2000 2500

Figure B.12: MoteStrain dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.13: ECG200 dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.14: CBF dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d), (e),
(f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.15: Two_Patterns dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.16: ECGFiveDays dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.17: ECG5000 dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.18: Gun_Point dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.



(a)

(b)

(©

(d)

(e)

®

€3]

500

1
1000

1
1500

2000

2500

1
3000

1
3500

1
4000

500

1
1000

1
1500

1
2000

1
2500

1
3000

1
3500

1
4000

500

1
1000

1
1500

2000

2500

1
3000

1
3500

1
4000

500

1
1000

!
1500

1
2000

1
2500

1
3000

1
3500

1
4000

500

1
1000

1
1500

2000

2500

1
3000

1
3500

1
4000

500

1
1000

1
1500

2000

2500

1
3000

1
3500

1
4000

500

1
1000

!
1500

2000

2500

1
3000

1
3500

1
4000

4500

153

Figure B.19: wafer dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d), (e),
(f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.20: ChlorineConcentration dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z
and D-SA-Z, respectively.
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Figure B.21: Wine dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d), (e),
(f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.22: Strawberry dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.



157

()

(b)

©)

(d)

(e)

®

€3]

| | | | | | | 1
1000 2000 3000 4000 5000 6000 7000 8000

Figure B.23: ArrowHead dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.24: Trace dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d), (e),
(f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,
respectively.
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Figure B.25: ToeSegmentation] dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and
D-SA-Z, respectively.
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Figure B.26: Coffee dataset: (a) Input time series labeled with classes of planted data. (b), (¢), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.27: ToeSegmentation2 dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d), (e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and
D-SA-Z, respectively.
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Figure B.28: FaceFour dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d),
(e), (f) and (g) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z, E-SA-L, D-AA-Z and D-SA-Z,

respectively.
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Figure B.29: yoga dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.30: Ham dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.



165

(a)

(b)

(©

(d)

(e

1 1
2000 4000 6000 8000 10000 12000 14000

-30 ‘ ‘

Figure B.31: Meat dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.32: Beef dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.33: FordA dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.34: FordB dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.35: ShapeletSim dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d)
and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.36: BeetleFly dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.37: BirdChicken dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d)
and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.38: Earthquakes dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d)
and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.39: Herring dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.40: OliveOil dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and

(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.



(a)

(b)

(©)

(d)

(e)

10

10

o u

10

o v

WMW
| | | | | | | | =
2000 4000 6000 8000 10000 12000 14000 16000
T T T T T T T T m
| | | | | | | | =
2000 4000 6000 8000 10000 12000 14000 16000
T T T T T T T T m
| | | | | | | | =
2000 4000 6000 8000 10000 12000 14000 16000
T T T T T T T T
| | | | | | | | =
2000 4000 6000 8000 10000 12000 14000 16000
T T T T T T T T m
| | | | | | | | =
2000 4000 6000 8000 10000 12000 14000 16000

175

Figure B.41: Car dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and (e)
are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.42: Lighting2 dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.43: Computers dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d)
and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.44: LargeKitchenAppliances dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.45: RefrigerationDevices dataset: (a) Input time series labeled with classes of planted data. (b),
(c), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.46: ScreenType dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d)
and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.47: SmallKitchenAppliances dataset: (a) Input time series labeled with classes of planted data.
(b), (¢), (d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.48: WormsTwoClass dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.49: Worms dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.50: StarLightCurves dataset: (a) Input time series labeled with classes of planted data. (b), (c),
(d) and (e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure B.51: Haptics dataset: (a) Input time series labeled with classes of planted data. (b), (c), (d) and
(e) are output from SSTSC with E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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COMPLETE EXPERIMENTAL RESULTS OF THE
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Table C.1: Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is set to the number of classes in each dataset

Rand Index
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.47 | 045 | 0.56 [ 0.51 | 0.48 | 0.49 | 0.47 | 0.47
SonyAlBORobotSurfacel | 0.61 )| 0.63| 048 | 0.59 | 054 | 0.53 ] 0.47 | 0.49
SonyAlBORobotSurface 047 | 045]| 048 | 0.46 | 0.56 | 0.47 | 0.48 | 0.46
DistalPhalanxOutlineCorrect 0.49|049] 049 0.49| 0.49| 0.49] 047 | 047
MiddlePhalanxOutlineCorrect 0.56 | 0.53 | 0.66 [ 0.66| 0.61 | 0.56 | 0.49 | 0.49
PhalangesOutlinesCorrect 0.47 | 0.47 | 049 | 049 | 047 | 0.47 | 0.49 | 0.49
ProximalPhalanxOuitlineCorrect 0.49 ] 0.49] 047 | 0.47] 0.49 | 0.49] 0.49 | 0.49
DistalPhalanxOutlineA geGroup 054 045| 054 | 054 ] 059 | 0.44] 0.60 | 0.60
MiddlePhalanxOutlineA geGroup 0.59| 059|059 059]059|059]| 053 053
ProximalPhalanxOutlineAgeGroup | 0.73 ] 0.71] 0.60 | 0.60 | 0.55 | 0.55 | 0.57 | 0.57
TwolLeadECG 052 | 053 | 048 | 049 ] 052 | 0.53 ] 0.56 | 0.56
MoteStrain 049 | 046 | 048 | 047 ] 0.54 | 0.47 | 0.52 | 0.51
ECG200 0.48 | 0.47 | 0.61 | 056 | 0.49 | 0.50 | 0.49 | 0.48
CBF 0.71] 0.69 | 0.60 | 0.56 | 0.51 | 0.50 | 0.60 | 0.56
Two Patterns 073 0.69 | 0.66 | 069 | 0.63 | 0.73] 0.53 | 0.64
ECGFiveDays 0.51(051| 049 | 049] 051|051 047 | 0.47
ECG5000 0.72 | 062 ] 063 ]| 066 ] 0.60 | 0.36 | 0.71 | 0.69
Gun_Point 052 | 0.54| 052 [ 0.54] 0.52 | 0.53 ] 0.52 | 0.52
wafer 0.48 | 0.47 | 0.66 | 0.74 ] 0.47 | 0.47 | 0.48 | 0.47
ChlorineConcentration 0.47 | 0.50 | 049 | 0.47 ] 0.47 | 0.59] 0.45 | 0.45
Wine 0.47 | 0.47 | 0.49 | 0.49 | 0.47 | 0.47 | 0.52 | 0.52
Strawberry 0.48 | 048 | 048 | 048] 0.48 | 0.48 ] 0.52 | 0.52
ArrowHead 054 | 053 | 0.65|0.65]| 054 | 0.49 | 0.48 | 0.48
Trace 069 )| 0.83| 0.84 [ 0.84] 069 | 0.82] 0.72 | 0.77
ToeSegmentationl 058 | 056 | 048 | 0.47 | 049 | 0.62] 0.47 | 0.47
Coffee 0.52 | 0.52] 049 | 0.49 | 0.47 | 0.47 | 0.52 | 0.52
ToeSegmentation2 051 | 054 | 049 [ 0.58 | 0.53 | 0.49 | 0.48 | 0.47
FaceFour 050 | 033]0.76]| 067] 052 ] 040] 0.71 | 0.71
yoga 0.48 | 0.47 | 047 | 047 | 0.48 | 0.47 | 0.48 | 0.49
Ham 0.50 | 040 | 0.47 | 047 | 0.47 | 0.44 | 0.47 | 0.49
Meat 054|054 | 052 | 052] 052 | 0.52] 0.56 | 0.56
Beef 074 |1 065]| 0.75]| 0.67| 0.74 | 0.65| 0.67 | 0.57
FordA 053|040 ] 048 | 0.47 | 048 | 043 | 0.47 | 0.52
FordB 045 ) 0.00 | 048 | 0.46 | 0.47 | 0.52] 0.49 | 0.47
ShapeletSim 0.44 | 0.33 | 0.57 | 0.33] 0.49 | 0.46 | 0.44 | 0.00
BeetleFly 051 | 060 | 053 | 049 ]| 068 | 1.00 | 0.49 | 0.47
BirdChicken 0.61]043] 048] 045] 052 | 044 | 056 | 0.58
Earthquakes 0.47 | 0.57| 049 [ 052 ] 0.43 | 0.40 | 0.50 | 0.33
Herring 049 | 049 | 0.52 | 0.52]| 0.49 | 0.49 | 0.49 | 0.49
OliveQil 0.69|0.69]| 062 062 ] 0.61 | 0.61 | 0.63 | 0.63
Car 0.74]1 074] 0.74| 0.74] 0.74 | 0.74 | 0.66 | 0.66
Lighting2 0.47 | 040 | 0.48 { 0.50 | 0.47 | 0.50 | 0.52 | 0.57
Computers 0.49 | 0.53 | 051 | 0.44] 0.49 | 0.56 | 0.48 | 0.47
L argeK itchenA ppliances 063 )| 067 | 0.64 [ 0.70] 058 | 0.59 | 043 | 0.47
RefrigerationDevices 0.57]040] 048 | 051 ] 052 | 043 ]| 040 | 0.36
ScreenType 050 [ 017 | 0.33 [ 0.28 | 0.48 | 0.47 | 0.47 | 0.60
SmallKitchenA ppliances 0.54| 053] 047 046 0.54| 039 ]| 037 | 0.29
WormsTwoClass 0.46 | 0.40 | 047 | 043 ] 054 | 1.00 ] 0.49 | 0.46
Worms 0.81 | 0.83| 0.73 | 0.83] 0.68 | 0.81 ] 0.69 | 0.60
StarLightCurves 0.70 | 0.71] 0.70 | 0.71] 0.70 | 0.71] 0.70 | 0.71
Haptics 068|064 | 071 071] 066 | 0.72] 0.73 | 0.73
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Table C.2: Precision from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is set to the number of classes in each dataset

Precision
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.47 | 045 | 0.53| 048] 047 | 0.46 ] 045 | 0.45
SonyAlBORobotSurfacel | 057 | 059| 046 | 054 ] 051 | 0.51 ] 0.47 | 0.49
SonyA|BORobotSurface 047 (| 054 048 [ 056 | 0.63 | 1.00| 0.48 [ 0.50
DistalPhalanxOutlineCorrect 0.48 ) 0.48] 0.48 | 0.48] 0.48 | 0.48| 0.46 | 0.46
MiddlePhalanxOutlineCorrect 053 [ 051]0.64[064] 057 | 053] 0.48 [ 0.48
PhalangesOutlinesCorrect 0.46 | 0.46 | 0.48 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47
ProximalPhalanxOuitlineCorrect 0.47 | 0.47] 0.44 | 0.44] 0.47 | 0.47 | 0.47 | 0.47
DistalPhalanxOutlineA geGroup 032(033]033f033]03]|032]0.38]0.38
MiddlePhalanxOutlineA geGroup 0.34]| 0.34] 0.34]| 0.34] 0.34| 0.34]| 0.26 | 0.26
ProximalPhalanxOutlineAgeGroup | 0.54 [ 0.51 ] 0.39 | 0.39 | 0.33 | 0.32 | 0.30 | 0.30
Twol eadECG 050 [ 0.50| 0.45 | 0.46 | 0.50 | 0.50 | 0.52 | 0.52
MoteStrain 0.47 | 0.44 | 0.46 | 0.45] 0.52 | 0.44 | 0.50 | 0.50
ECG200 045 | 045 058 [ 0.53 | 0.47 | 0.47 | 0.47 | 0.45
CBF 052046 039(034]031] 025] 039 | 0.37
Two_Patterns 0.35[030] 023 017] 030 |050] 0.24 | 0.33
ECGFiveDays 048] 048] 046 | 046] 048 | 048] 045 | 0.45
ECG5000 028 026] 018 0.26 ] 019 | 0.22 | 0.26 | 0.27
Gun_Point 050 [ 0.51] 050 [ 0.51] 050 | 0.50 | 0.50 [ 0.50
wafer 047 | 047 062 [ 0.70| 0.47 | 0.47 | 0.47 | 0.46
ChlorineConcentration 029 [ 018 028 028 0.31]0.32] 0.31 | 0.31
Wine 0.44 | 0.44 | 0.47 | 0.47 | 0.47 | 0.47 | 0.50 | 0.50
Strawberry 045 | 045]| 045 | 045 045 | 045 | 0.49 | 0.49
ArrowHead 0.28 | 028 0.42(0.42] 029 | 0.29 | 0.31 | 0.31
Trace 0.38| 056 | 0.60 | 0.61]| 0.38 | 0.55 | 0.40 | 0.47
ToeSegmentationl 054|056 045 043] 048 | 0.59] 0.45 | 0.43
Coffee 049 | 049 | 047 | 047 ] 047 | 047 | 0.50 | 0.50
ToeSegmentation2 0.49 [ 050 | 0.47 [ 056 051 | 0.47 | 0.47 | 0.47
FaceFour 021 [ 1.00| 0.47 [ 0.47 ] 0.21 | 0.29 | 0.38 | 0.44
yoga 045 | 045 | 045 | 044 | 045 | 045 | 0.46 | 0.47
Ham 047 [ 040 | 044 [ 042 | 0.46 | 0.46 | 0.47 | 0.49
Meat 033|033 028 028]0.33]|0.33] 031 0.31
Beef 024 017] 024 016 0.24| 0.17 | 0.16 | 0.15
FordA 050 | 040 | 047 [ 0.44] 048 | 043 | 047 | 0.52
FordB 0.44 [ 0.00| 0.47 [ 0.46 | 0.48 | 0.67 | 0.48 | 0.47
ShapeletSm 0.39 [ 033|052 033] 045 | 0.43 | 0.44 [ 0.00
BeetleFly 051 [ 060 050 [ 0.49 | 0.68 | 1.00 | 0.48 | 0.47
BirdChicken 058 | 050 045 ]| 047 ] 049 | 044 ]| 052 | 0.54
Earthquakes 046 | 050 | 047 [ 0.52] 0.33 | 0.33 | 046 | 0.33
Herring 0.48 | 0.48 | 049 | 0.49] 048 | 0.48 | 0.48 | 0.48
OliveQil 0271 0.27] 020 020] 016 | 0.16 | 0.22 | 0.22
Car 0421 0.42] 040 | 040] 042 [ 0.42] 0.27 | 0.27
Lighting2 045 050]| 045 [ 050 | 045 | 0.44 | 050 | 0.52
Computers 0.47 | 0.50 | 049 [ 044 ] 0.47 | 0.53] 047 | 045
LargeKitchenA ppliances 039 | 045 044 [ 050] 0.33 | 0.36| 0.32 | 0.34
RefrigerationDevices 031)033]028[025]026|018] 0.29 | 0.36
ScreenType 028 | 1.00| 0.29 [ 0.28] 0.30 | 0.40 | 0.30 | 0.50
SmallKitchenA ppliances 0.28 | 023 031|029]0.32| 029 0.30 [ 0.29
WormsTwoClass 050 [ 050 | 043 [ 0.47 | 057 | 1.00 | 0.46 | 0.45
Worms 0.43] 0.00] 014 ] 0.00] 023 | 0.33] 0.13 | 0.00
StarLightCurves 050 ) 0.52| 050 [ 051 ] 050 | 0.51 ] 0.50 | 0.51
Haptics 022 000] 015] 0.15] 011 | 0.13 | 0.14 | 0.14
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Table C.3: Recall from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is set to the number of classes in each dataset

Recall
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.47 | 0.45| 053 | 048] 0.72| 0.61 | 0.53 | 0.59
SonyAlBORobotSurfacel | 072 072] 059 | 0.81]| 0.70 | 0.67 | 0.47 | 0.49
SonyA |BORobotSurface 057 | 054 | 065 | 056 | 053 | 0.47 ] 0.65 | 0.67
DistalPhalanxOutlineCorrect 0.82|0.82]082|0.82]|0.82|0.82| 064 | 0.64
MiddlePhalanxOutlineCorrect 0.62 | 0.67 | 0.67 | 067 ]| 0.72 | 0.85] 0.67 | 0.67
PhalangesOutlinesCorrect 064 | 0.64 | 0.67 | 0.72] 0.80 | 0.80 | 0.47 | 0.47
ProximalPhalanxOuitlineCorrect 049 0.49] 044 | 0441 0.49| 0.49] 0.49 | 0.49
DistalPhalanxOutlineA geGroup 0.46 | 0.69| 052 | 052 | 0.46 | 0.65] 0.51 | 0.51
MiddlePhalanxOutlineA geGroup 041]041]1041]|041]041|041] 032 032
ProximalPhalanxOutlineAgeGroup | 0.71 | 0.70 | 0.62 | 0.62 | 048 | 0.44 | 0.33 | 0.33
TwolLeadECG 0.77 {0.84]| 050 [ 049 ]| 0.77 | 0.84]| 0.73 [ 0.73
MoteStrain 049 | 058 059 [ 063 | 056 | 0.57 | 0.63 | 0.71
ECG200 050 | 0.63| 059 [ 0.53 | 0.47 | 0.50 | 0.49 | 0.47
CBF 057 | 0.60 | 0.62 | 0.59 | 0.45 | 0.40 | 0.59 | 0.65
Two Patterns 0.38| 0.30| 0.28 | 0.14 ] 056 | 0.50 ] 0.57 | 0.71
ECGFiveDays 0.56 | 0.56| 053 | 053] 0.56 | 0.56| 0.48 | 0.48
ECG5000 045 | 060] 036 | 0.38]| 044 | 1.00| 0.44 | 0.50
Gun_Point 0.77 | 0.78 | 0.77 | 0.78 | 0.77 | 0.84] 0.77 | 0.77
wafer 078 | 047 ] 073 ] 0.92] 0.88 | 0.47 | 0.72 | 0.67
ChlorineConcentration 051 021 044 | 050 0.60 | 0.44 ] 0.68 | 0.68
Wine 0.44 | 0.44 | 056 | 0.56 | 0.47 | 0.47 | 0.63 | 0.63
Strawberry 0.50| 050 0.50 | 0.50] 0.50 | 0.50| 0.50 | 0.50
ArrowHead 033 037] 044 | 044 ] 037 | 048] 0.62 | 0.62
Trace 070 | 0.83] 065 | 069]| 0.70 | 0.86] 0.65 | 0.72
ToeSegmentationl 079 | 056 | 050 | 0.48 ]| 0.82 | 0.93] 0.47 | 0.45
Coffee 050 | 050 | 049 [ 049 | 047 | 0.47 ] 0.77 | 0.77
ToeSegmentation2 0.72 | 0.78 | 0.56 | 0.67 | 0.67 | 0.84 | 0.90 | 0.47
FaceFour 045 | 0.33| 0.64 | 0.70| 045 | 0.33] 0.52 | 0.75
yoga 050 | 0.47 | 047 | 050 | 0.50 | 0.47 | 0.59 | 0.64
Ham 064 | 040 ]| 044 | 043 ]| 063 | 0.72] 0.47 | 0.49
Meat 052|052 040 | 040] 059 | 0.59] 0.37 | 0.37
Beef 030 025] 027|021 030|025]| 027 | 0.29
FordA 057 | 1.00| 0.89 [ 0.80 | 0.48 | 0.43 ] 0.88 | 0.52
FordB 055 | 0.00| 0.78 | 046 | 0.48 | 0.67 | 0.77 | 0.47
ShapeletSim 0.44 1 1.00| 0.85 | 1.00| 0.47 | 0.75 ] 0.44 | 0.00
BeetleFly 048 | 1.00] 0.84 | 0.49] 0.65 | 1.00| 0.82 | 0.47
BirdChicken 059|038 | 050 | 047] 050 | 0.39] 0.73 | 0.79
Earthquakes 068 | 0.67| 0.86 | 1.00| 0.33 | 0.50 ] 0.81 | 0.33
Herring 0.820.82] 050 050| 0.82 | 0.82] 0.67 | 0.67
OliveQil 028 028 | 028 028] 019 0.19] 0.31| 0.31
Car 055 [0.69]| 048 [ 0.48 ] 055 | 0.69] 0.38 | 0.38
Lighting2 0.46 | 0.33] 0.46 | 0.33 | 0.46 | 0.44 | 0.63 | 0.85
Computers 072 0.86| 0.83 | 044 ] 0.72 | 0.89] 0.78 | 0.83
LargeK itchenA ppliances 0.46 | 042 | 0.72 | 0.78] 037 | 0.31] 0.78 | 0.85
RefrigerationDevices 038 050 | 046 | 042 ] 0.32 | 0.40 ] 0.69 | 0.36
ScreenType 0.32]017]1 084 ]| 028]| 041 | 0.67] 0.65| 0.50
SmallKitchenA ppliances 033 030| 0.67 | 064 ] 0.46 | 0.80 ] 0.81 | 0.29
WormsTwoClass 050 | 0.33| 045 | 064 ] 057 | 1.00 ] 0.53 | 0.50
Worms 0.45 | 0.00 | 0.17 [ 0.00 | 0.40 | 1.00 ] 0.17 | 0.00
StarLightCurves 056 | 0.57 | 0.65 | 0.69] 0.65 | 0.69] 0.65 | 0.69
Haptics 040|000] 019 019 017 | 0.25] 0.15 | 0.15
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Table C.4: Fl-score from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is set to the number of classes in each dataset

F1-Measure
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.47 | 045 | 053 [ 048] 0.57 | 052 ] 049 | 0.51
SonyAlBORobotSurfacel | 063 0.65| 052 | 0.65] 059 | 0.58 | 0.47 | 0.49
SonyA |BORobotSurface 052 )| 054 | 055 | 056 ] 057 | 0.64] 0.55 | 0.57
DistalPhalanxOutlineCorrect 0.61]061]061|061]0.61|061| 054|054
MiddlePhalanxOutlineCorrect 0.57 | 0.58 | 0.65[ 0.65]| 0.63 | 0.65| 0.56 | 0.56
PhalangesOutlinesCorrect 054 | 054 056 [ 0.57 | 0.59 | 0.59| 0.47 | 0.47
ProximalPhalanxOuitlineCorrect 0.48 | 0.48] 0.44 | 0.44] 0.48 | 0.48] 0.48 | 0.48
DistalPhalanxOutlineA geGroup 0.33(0.45]| 040 | 0.40 | 0.40 | 0.43 | 0.44 | 0.44
MiddlePhalanxOutlineA geGroup 0.370.37] 037 0.37] 0.37| 0.37] 029 | 0.29
ProximalPhalanxOutlineAgeGroup | 0.61 [ 0.59 | 0.48 | 0.48 | 0.39 | 0.37 | 0.32 | 0.32
Twol eadECG 0.60 [ 0.63]| 0.48 [ 0.48 | 0.60 | 0.63 | 0.61 | 0.61
MoteStrain 048 | 050 052 [ 053 | 054 | 0.49 | 0.56 | 0.59
ECG200 0.48 | 0.53 | 0.59 | 0.53 | 0.47 | 0.48 | 0.48 | 0.46
CBF 054 | 052] 048 | 0.43] 0.37 | 0.31 | 0.47 | 0.47
Two_Patterns 0.36 [ 0.30| 0.25 [ 0.15] 0.39 | 0.50| 0.33 [ 0.45
ECGFiveDays 0.52]052] 049 ]| 049 ] 052 | 0.52 ]| 0.46 | 0.46
ECG5000 034 0.36| 024 [ 031 ] 027 | 0.36] 0.33 | 0.35
Gun_Point 0.60 | 0.62 | 0.60 | 0.62 | 0.60 | 0.63] 0.60 | 0.60
wafer 059 | 0.47 | 0.67 [ 0.80| 0.61 | 0.47 | 0.57 | 0.54
ChlorineConcentration 037020 034 {036 041 | 0.37 ] 0.43| 0.43
Wine 0.44 | 0.44 | 051 | 0.51 | 0.47 | 0.47 | 0.56 | 0.56
Strawberry 0.48 | 048 | 048 | 048] 0.48 | 0.48] 0.50 | 0.50
ArrowHead 030]| 032 043[043] 032 | 0.36] 042 | 0.42
Trace 0.49 | 0.67| 0.63 | 0.65] 0.49 | 0.67 ] 0.50 | 0.57
ToeSegmentationl 064 | 056 | 048 | 045] 061 | 0.72] 0.46 | 0.44
Coffee 050 [ 0.50 | 0.48 | 0.48 | 0.47 | 0.47 | 0.60 | 0.60
ToeSegmentation2 058 [ 061 051 [ 061 ] 058 | 0.60 | 0.62 | 0.47
FaceFour 028 | 0.50 | 054 [ 0.56]| 0.29 | 0.31 | 0.44 | 0.56
yoga 0.48 | 0.46 | 0.46 | 0.47 | 0.48 | 0.46 | 0.52 | 0.54
Ham 054 )| 040 | 044 | 043 ] 053 | 0.57] 047 | 0.49
Meat 0.40 | 0.40| 0.33 [ 0.33] 0.42 | 0.42] 0.33 | 0.33
Beef 0.26 | 020 0.25| 018 ] 0.26 | 0.20 | 0.20 | 0.19
FordA 053 | 057 | 0.62| 057 ] 0.48 | 0.43 ] 0.61 | 0.52
FordB 0.49 | 0.00 | 059 | 0.46 | 0.48 | 0.67 ] 0.59 | 0.47
ShapeletSim 041 [ 050 0.65[ 050 0.46 | 0.55 | 0.44 [ 0.00
BeetleFly 049 | 0.75| 0.63 | 049 | 0.67 | 1.00 | 0.61 | 0.47
BirdChicken 059 | 043 0.48 | 0.47 | 050 | 0.41 | 0.61 | 0.64
Earthquakes 055) 057 | 061 |069] 033 | 040 ] 0.59 | 0.33
Herring 0.61]061] 050 050] 0.61| 0.61] 056 | 0.56
OliveQil 0.270.27] 024 024] 017 | 0.17 | 0.26 | 0.26
Car 047 [ 052] 044 [ 044 047 | 0.52] 0.32 | 0.32
Lighting2 0.45 | 0.40| 0.45 | 0.40 | 0.45 | 0.44 ] 0.56 | 0.65
Computers 057 | 0.63]| 0.61 [ 0.44 | 057 | 0.67 ]| 0.59 [ 0.59
LargeK itchenA ppliances 0.42 | 043 | 055 | 0.61] 035 | 0.33] 045 | 0.49
RefrigerationDevices 034 040| 035(031] 029 025] 0.41 | 0.36
ScreenType 030 029 | 043 | 0.28] 0.35 | 0.50] 0.41 | 0.50
SmallKitchenA ppliances 030 [ 026 043 [ 040] 038 | 042 0.43 | 0.29
WormsTwoClass 050 | 040 | 044 | 054 ] 057 | 1.00 | 0.49 | 0.48
Worms 0.44 | 0.00 | 0.15| 0.00 | 0.29 | 0.50 ] 0.14 | 0.00
StarLightCurves 053 | 054 | 057 [ 0.59] 057 | 0.59] 0.57 | 0.59
Haptics 0.28| 0.00] 017 | 0.17] 013 | 0.17 | 0.15 | 0.15
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Table C.5: AoR from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is set to the number of classes in each dataset

Accuracy on Retrieval (AoR)
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 1.00| 055]1.00] 08| 1.00| 0.65] 1.00 | 0.85
SonyA|BORobotSurfacel| 1.00| 090 1.00| 060| 095 | 090 ] 1.00 | 0.85
SonyA|BORobotSurface 1.00| 075 1.00]| 081 | 0.88| 063 ] 1.00 | 0.81
DistalPhalanxOuitlineCorrect 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00
MiddlePhalanxOutlineCorrect 1.00 | 090] 1.00| 1.00| 1.00 | 0.85 | 1.00 | 1.00
PhalangesOutlinesCorrect 1.00 ( 1.00] 1.00 | 0.95| 1.00 | 1.00 | 1.00 | 1.00
ProximalPhalanxOuitlineCorrect 1.00 ( 1.00] 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00
DistalPhalanxOutlineA geGroup 1.00| 076 | 1.00| 1.00| 1.00 | 0.71 | 1.00 | 1.00
MiddlePhalanxOutlineA geGroup 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00
ProximalPhalanxOutlineAgeGroup | 1.00 | 0.95| 1.00 | 1.00] 1.00 | 0.95] 1.00 | 1.00
TwolLeadECG 1.00( 090] 1.00]| 0.95| 1.00 | 0.90 | 1.00 | 1.00
MoteStrain 1.00| 065 1.00]| 0.75] 095 ]| 060 ] 1.00 | 0.85
ECG200 1.00| 0.75] 1.00]| 0.85| 1.00 | 0.80 | 1.00 | 0.90
CBF 090 )| 043 | 1.00f 062] 081 | 043 ] 1.00 | 0.86
Two_Patterns 090 )| 050 1.00 | 045] 090 | 0.30] 0.85 | 0.60
ECGFiveDays 1.00|1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00
ECG5000 094 )| 061 | 1.00| 0.83] 1.00| 0.61 ] 1.00 | 0.83
Gun_Point 1.00| 095]1.00]| 0.95| 1.00 | 0.90 | 1.00 | 1.00
wafer 090 [ 060 1.00 | 0.70 | 0.90 | 0.60 | 1.00 [ 0.85
ChlorineConcentration 1.00 [ 057 ] 1.00| 0.81| 1.00 | 0.57 | 1.00 | 1.00
Wine 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00
Strawberry 1.00 | 1.00] 1.00 | 1.00| 1.00 | 1.00 | 1.00 | 1.00
ArrowHead 1.00( 095]1.00]1.00] 1.00| 0.86 | 1.00| 1.00
Trace 1.00| 0.80]1.00] 0.90| 1.00 | 0.85] 1.00 | 0.95
ToeSegmentationl 090 | 055 1.00 | 0.70 | 1.00 | 0.65] 1.00 | 0.75
Coffee 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00
ToeSegmentation2 085|065 100 0.75] 090 | 0.55| 1.00 | 0.60
FaceFour 1.00]| 017 | 1.00] 067 | 094 | 0.33] 1.00 | 0.67
yoga 1.00{ 090]1.00] 09| 1.00| 0.90] 1.00 | 0.95
Ham 090 )| 030 | 0.95| 060 0.95| 0.45] 0.80 | 0.55
Meat 1.00|1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00
Beef 1.00| 085]1.00] 0.85| 1.00 | 0.85| 1.00 | 0.85
FordA 050 0.25| 0.90| 050 0.90| 0.35] 0.85 | 0.35
FordB 060 [ 010]090(040] 070 | 0.35] 0.85 | 0.50
ShapeletSm 0.45 | 020 0.40 [ 0.15] 0.65| 0.40 | 0.45 | 0.00
BeetleFly 070 | 0.25| 0.90 [ 0.55] 0.80 | 0.30 ] 1.00 | 0.70
BirdChicken 1.00{ 040]1.00] 0.60| 1.00 | 0.45] 1.00 | 0.90
Earthquakes 060 [ 040| 0.65[ 035 035 | 025 045 | 0.15
Herring 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00
OliveQil 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00 | 1.00 | 1.00
Car 1.00 | 090] 1.00| 1.00| 1.00 | 0.90 | 1.00 | 1.00
Lighting2 095(025]1.00f020] 095| 045 | 1.00 | 0.40
Computers 0.95] 050 ] 0.95]| 045] 0.95| 055 ] 0.90 | 0.60
L argeK itchenA ppliances 095) 062| 095 | 067] 090 | 0.62] 1.00 | 0.67
RefrigerationDevices 081 024]|095( 048] 071 | 0.33 | 0.90 [ 0.43
ScreenType 057 (019 071{ 043 057 | 029 | 0.67 [ 0.29
SmallKitchenA ppliances 090 [ 043 090 [ 062 | 090 | 043 | 1.00 [ 0.71
WormsTwoClass 065|025 075(035] 065 | 0.15] 0.95 | 0.65
Worms 0.80 | 0.20 | 0.80 [ 0.20] 0.90 | 0.35] 0.90 | 0.25
StarLightCurves 1.00{ 090]1.00] 09| 1.00| 090] 1.00] 0.90
Haptics 1.00(040] 095] 095 1.00 | 0.45]| 0.95 | 0.95
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Table C.6: AoD from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is set to the number of classes in each dataset

Accuracy on Detection (AoD
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.84 093] 092(094] 08| 093] 091 | 0.94
SonyAlBORobotSurfacel | 097 099|089 ]099]| 093 ]| 09| 091 | 0.4
SonyA|BORobotSurface 0.83 | 090 | 0.89 [ 0.93] 0.81 | 0.92] 0.88 | 0.92
DistalPhalanxOuitlineCorrect 090 [ 090| 090 { 090 | 091 | 0.91 | 0.95]| 0.95
MiddlePhalanxOutlineCorrect 0.83 | 0.89 | 0.87 [ 0.87 | 0.87 | 0.88 ] 0.94 | 0.94
PhalangesOutlinesCorrect 093] 093 | 09 [ 0.96] 095 | 0.95] 0.93 | 0.93
ProximalPhalanxOuitlineCorrect 0.87 ) 087 | 083 | 0.83] 0.88| 0.88] 0.94 | 0.94
DistalPhalanxOutlineA geGroup 084 089 087 | 087] 084 | 0.89] 0.94] 0.94
MiddlePhalanxOutlineA geGroup 094(094]1094(094] 094 | 094]| 094 | 094
ProximalPhalanxOuitlineA geGroup 093|094 092[092] 092 092]0.94]0.94
TwolLeadECG 090 [ 091] 092092 090 | 091] 0.95]| 0.95
MoteStrain 0.80 [ 0.89| 0.86 | 090 | 0.77 | 0.89 | 0.91 | 0.93
ECG200 086 092] 08| 087 084 | 090] 091 | 0.93
CBF 0.74 | 090 0.87 [ 0.94] 0.73 | 0.89 | 0.89 | 0.92
Two_Patterns 0771 087 | 074 085] 071 | 091 ] 0.79 | 0.95
ECGFiveDays 092092 095(095] 092 | 092] 0.96 | 0.96
ECG5000 0.76 | 0.89 | 0.83 | 0.86| 0.79 | 0.88 | 0.88 | 0.91
Gun_Point 091)0.92| 092 (092] 089 | 0.90] 091 | 0.91
wafer 0.80 [ 0.89 | 0.83 [ 0.87 | 0.80 | 0.88 | 0.90 | 0.92
ChlorineConcentration 086 | 094] 088|091 0.8 | 093] 0.94]| 0.94
Wine 0.86 | 0.86| 092 | 092 | 0.87 | 0.87 | 0.92 | 0.92
Strawberry 090 090|091 |091] 090 | 090] 0.95] 0.95
ArrowHead 09409 | 091 |091] 09 | 094] 0.98| 0.98
Trace 087 (089 09 | 091 087 | 0.89] 093 | 0.93
ToeSegmentationl 0771 091| 0.82 | 0.87] 0.82 | 0.90 ] 0.83 | 0.88
Coffee 091091090 (09| 092]|092] 0.96 | 0.96
ToeSegmentation2 079 (089] 084 (089 078 | 0.89 ] 0.81 | 0.92
FaceFour 0.70 [ 0.96] 0.83 [ 0.89 | 0.72 | 0.88 | 0.85 [ 0.90
yoga 0.87 [ 091 091 [ 093] 090 | 092 | 0.92 | 0.93
Ham 074 | 092 086 [ 096 0.77 | 0.92 | 0.79 | 0.94
Meat 091091 092|092] 092 092] 0.98]| 0.98
Beef 090 | 092]| 083 093| 090 ]| 092] 091 |0.97
FordA 064 |08 | 07708 072|090 ]| 074 | 1.02
FordB 064 (08 ] 078[09] 071]100] 075 | 0.90
ShapeletSm 0.69 [ 0.92] 0.67 [ 0.89 | 0.69 | 0.88 | 0.60 [ 0.00
BeetleFly 065) 087 | 0.75| 087 ] 065 | 0.87] 0.81 | 0.89
BirdChicken 079 088 | 082 | 0.87] 0.79 | 0.89 ] 0.91 | 0.92
Earthquakes 0741 092 | 072 091] 0.70 | 0.96] 0.67 | 0.96
Herring 0.86 | 0.86| 0.87 [ 0.87 | 0.87 | 0.87 | 0.92 | 0.92
OliveQil 0.86 | 086 0.87 | 0.87 | 0.88 | 0.88 | 0.94 | 0.94
Car 084 [08] 087|087 084]085]0.92] 0.92
Lighting2 073092 071 {092 079 | 0.95] 0.78 | 0.92
Computers 075|083 0.74 | 0.86 | 0.78 | 0.88 | 0.81 | 0.91
LargeK itchenA ppliances 082 091|082 [08] 079 | 09 ] 084 | 0.92
RefrigerationDevices 0.67 ) 0.88| 0.79 [ 0.94] 0.73 | 093] 0.77 | 0.92
ScreenType 065) 083|071 | 085] 069 | 0.91] 0.68 | 0.87
SmallKitchenA ppliances 0.74{090]| 081 [ 0.88] 0.73 | 0.87 | 0.84 [ 0.89
WormsTwoClass 068 | 093] 0.74 [ 0.86 | 0.66 | 0.97 | 0.80 [ 0.92
Worms 0.67 | 0.88 | 0.66 [ 0.88| 0.69 | 0.86 | 0.71 | 0.89
StarLightCurves 089 091|090 [092] 090 | 092] 091 | 0.93
Haptics 0.77 {092 0.87 [ 0.87 | 0.78 | 0.92 | 0.87 | 0.87
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Table C.7: Excess Rate from all algorithms on all datasets when the scaling factor (f) is 1.2 and number
of clusters (k) is set to the number of classes in each dataset

Excess Rate
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 0.09 | 050 | 0.05| 0.19] 0.05| 0.38] 0.09 | 0.23
SonyA|BORobotSurfacel | 023031 023[054]027|031]0.13][ 026
SonyA|BORobotSurface 027 [ 0451 020 [ 0.35] 0.36 | 055 0.11 | 0.28
DistalPhalanxOutlineCorrect 0.09 | 0.09 | 0.09 [ 0.09 | 0.05| 0.05] 0.05 | 0.05
MiddlePhalanxOutlineCorrect 0.05) 014] 009 | 0.09] 0.09 | 0.23 | 0.00 ) 0.00
PhalangesOutlinesCorrect 0.05 [ 005] 005 010 0.05| 0.05] 0.00 | 0.00
ProximalPhalanxOutlineCorrect 0.05 | 0.05] 0.05| 0.05| 0.05 | 0.05| 0.00 | 0.00
DistalPhalanxOutlineA geGroup 0.05] 0.27 | 0.00 [ 0.00] 0.05 | 0.32] 0.00 | 0.00
MiddlePhalanxOutlineA geGroup 0.00 | 0.00 | 0.00 | 0.00] 0.00 | 0.00| 0.00 [ 0.00
ProximalPhalanxOutlineAgeGroup | 0.00 | 0.05 | 0.00 | 0.00 ] 0.00 | 0.05 | 0.00 | 0.00
Twol eadECG 0.05]014] 005| 010 ] 0.05 | 0.14 | 0.00 | 0.00
MoteStrain 023050 009 032]030]| 056]0.05[ 019
ECG200 0.09 (0321 0.00f 015] 0.09 | 0.27 | 0.00 | 0.10
CBF 032|068 016 | 048] 0.35 | 0.65| 0.00 | 0.14
Two_Patterns 036 )| 064 0.17| 063] 031 | 0.77] 0.23 | 0.45
ECGFiveDays 005) 005 014 | 0.14] 005 | 0.05] 0.00 | 0.00
ECG5000 023050 0.00f017] 018 | 050] 0.00( 0.17
Gun_Point 0.09|014] 009 | 014 ] 009 | 0.18 | 0.00 | 0.00
wafer 025 050 005| 033] 022 | 048] 0.00| 0.15
ChlorineConcentration 0.00 | 043 ] 0.00]| 0.19] 0.00 | 0.43 ] 0.00 | 0.00
Wine 0.13 ] 0.13] 0.09 ( 0.09] 0.13 | 0.13 | 0.00 | 0.00
Strawberry 0.00 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00
ArrowHead 0.13 | 0.17 | 0.00 [ 0.00| 0.13 | 0.25 | 0.00 | 0.00
Trace 0.00)| 020 ] 0.00| 0.10] 0.00 | 0.15 ] 0.00 | 0.05
ToeSegmentationl 031[058]013[039]023]|050]0.13[ 0.35
Coffee 0.09 | 009] 005| 0.05] 013 | 0.13 | 0.00 | 0.00
ToeSegmentation2 035(050]013[ 03] 031]058]0.13[ 0.48
FaceFour 0.25 | 0.88 ] 0.00 | 0.33] 0.26 | 0.74 | 0.00 | 0.33
yoga 0.17 ] 025 0.00 | 010 ] 0.17 | 0.25] 0.13 | 0.17
Ham 025|075 0.24 | 052 0.24 | 064 | 0.30 | 0.52
Meat 0.00 | 0.00 | 0.00 | 0.00] 0.00 [ 0.00| 0.00 [ 0.00
Beef 0.00)| 0.15] 0.09 | 023] 0.00 | 0.15] 0.05 | 0.19
FordA 060 | 0.80| 0.33| 063]0.31| 0.73] 0.32 | 0.72
FordB 052 092]033|070] 050 | 0.75] 0.32| 0.60
ShapeletSm 064 | 084] 069 [ 08]054]071] 057 1.00
BeetleFly 046 | 081 028|056 03] 077]0.17| 042
BirdChicken 009 )| 064 | 0.05|043] 013 | 0.61] 0.09 | 0.18
Earthquakes 056 [ 070 054 075] 071 | 0.79 | 0.61 | 0.87
Herring 0.05]| 005] 0.05[ 0.05] 0.05 | 0.05] 0.00] 0.00
OliveQil 0.05 | 0.05| 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
Car 0.05| 0.14 | 0.00 [ 0.00| 0.05 | 0.14 ] 0.00 | 0.00
Lighting2 030 081]023|08] 027 |065]0.13| 0.65
Computers 024 060 | 0.27 | 065] 0.17 | 0.52 ] 0.18 | 0.45
L argeK itchenA ppliances 035|058 033 053] 037 | 057]0.13[ 042
RefrigerationDevices 041 | 083 029 [ 064] 044 | 0.74 | 0.27 | 0.65
ScreenType 056 | 085 042 | 065 057 | 079 0.39| 0.74
SmallKitchenA ppliances 037070 027 | 050] 037 | 0.70 ] 0.19 | 042
WormsTwoClass 048 [ 080 040 [ 0.72 ] 0.46 | 0.88 | 0.27 [ 0.50
Worms 043 086]038|08]036|075]0.33]| 081
StarLightCurves 0.09] 017]0.09] 0.17] 0.09 | 0.17 | 0.09 | 0.17
Haptics 0.09 | 0.64 | 0.00 | 0.00| 0.09 | 0.59 | 0.00 | 0.00
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Table C.8: Rand Index (RI) from all algorithms on all datasets when the scaling factor (f) is 1.2 and
number of clusters (k) is chosen by the SSTSC algorithms

Rand Index
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 064 | 060 | 0.69| 067 ] 064 | 0.59 ] 0.58 | 0.58
SonyA|BORobotSurfacel | 0.65| 0.73| 055 | 064 | 0.61 | 0.69 | 0.59 | 0.58
SonyAlIBORobotSurface 050 | 0.44 | 0.60 [ 051 ] 0.41 | 0.14 | 0.48 | 0.46
DistalPhalanxOutlineCorrect 049 | 049 | 049 | 049 ] 0.51| 0.51] 0.49 | 0.49
MiddlePhalanxOutlineCorrect 055| 055 0.63|063]| 054 | 051] 052 | 0.52
PhalangesOutlinesCorrect 0.49 | 049 | 050 [ 0.49 ] 0.49 | 0.49 ] 0.53 | 0.53
ProximalPhalanxOuitlineCorrect 054 | 054 054]|054] 054 | 054 054 | 0.54
DistalPhalanxOutlineA geGroup 0.67 | 0.62 ] 0.69| 0.69]| 057 | 0.44 | 0.64 | 0.64
MiddlePhalanxOutlineA geGroup 059 | 059]061]|0.61] 059 | 059 ] 053 | 0.53
ProximalPhalanxOutlineAgeGroup | 0.76 | 0.74 ] 0.65 | 0.65] 0.75 | 0.73 ] 0.60 | 0.60
TwolLeadECG 056 | 0.57 | 0.61| 060 | 0.56 | 0.57 | 0.56 | 0.56
MoteStrain 057 | 0.67 | 059 [ 063 ] 0.63 | 0.73] 0.67 | 0.69
ECG200 063 )| 0.64| 057 [ 0.54 ] 058 | 0.60 | 0.57 | 0.56
CBF 078 070]0.88| 087]| 0.76 | 0.33 ]| 0.77 | 0.76
Two Patterns 082 ) 081| 073 | 0.78] 0.82 | 0.87] 0.80 | 0.85
ECGFiveDays 051 | 051 | 053 | 054 ] 051 | 0.51] 0.58| 0.58
ECG5000 0.74 ] 053] 063 | 0.66) 0.74 | 0.62 | 0.71 | 0.69
Gun_Point 054 | 056 | 0.61| 060]| 054 | 0.56 | 0.54 | 0.54
wafer 064 )| 0.71| 0.66 | 0.59 ] 068 | 0.71] 0.55 | 0.57
ChlorineConcentration 064 | 058 ]| 063 | 0.64| 0.64 | 0.68] 0.68 | 0.68
Wine 049 | 049 | 049 | 049 ] 0.53 | 0.53] 0.52 | 0.52
Strawberry 049 | 049 | 051 | 051] 048 | 0.48] 0.51 | 0.51
ArrowHead 0.62 | 058 | 0.73| 0.73] 0.68 | 0.67 | 0.63 | 0.63
Trace 069 | 0.83| 079 | 0.84]| 069 | 0.82] 0.75 | 0.80
ToeSegmentationl 0.63 | 0.64| 053 | 053] 0.57 | 0.52 ] 0.58 | 0.58
Coffee 0.57 | 057] 055 055| 055 | 0.55| 055 | 0.55
ToeSegmentation2 062 | 064 ]| 062 | 0.65]| 056 | 0.60 | 0.57 | 0.60
FaceFour 0.76 | 0.33 | 0.82 | 068 | 0.78 | 0.40 | 0.82 | 0.80
yoga 051 | 053 | 049 | 050 052 | 0.52 ] 0.54 | 0.54
Ham 056 | 050 048 | 0.46 | 0.52 | 0.53 | 0.58 | 0.67
Meat 0.74 | 0.74] 057 | 057 | 0.71 | 0.71 | 0.62 | 0.62
Beef 0771 070 ] 0.75]| 0.67] 0.75 | 0.70 | 0.78 | 0.74
FordA 0.67 )| 0.00| 049 [ 052 ] 051 | 0.67 ] 0.55 | 1.00
FordB 051 | 0.00| 050 | 0.60| 053 | 0.40 | 0.50 | 0.40
ShapeletSm 044 | 033]057] 033] 043 | 0.00 | 0.44 | 0.00
BeetleFly 058 | 1.00| 055 | 0.19] 064 | 0.70 | 0.55 | 0.61
BirdChicken 057 | 057 061|061 057 | 057] 061 | 0.62
Earthquakes 033 0.00] 068 ] 0.71] 043 | 040 | 0.54 | 0.00
Herring 0.54 | 054 053 | 053] 052 | 0.52 | 0.50 | 0.50
OliveQil 0.71]10.71]1 0.71] 0.71] 0.69 | 0.69 | 0.68 | 0.68
Car 0791 0.80]| 074 ]| 0.74] 0.79 | 0.80]| 0.75 | 0.75
Lighting2 0.47 | 040 | 055 | 1.00| 052 | 1.00 | 0.53 | 0.67
Computers 056 | 0.60| 047 [ 0.52 ] 0.56 | 0.55] 0.50 | 0.55
LargeKitchenA ppliances 0.69| 058 057 | 0.67 ] 0.69 | 0.60 | 0.54 | 0.69
RefrigerationDevices 0.67 | 0.00 | 057 | 0.40 | 0.67 | 0.33 ] 0.68 | 0.60
ScreenType 057 | 0.00 ] 055 | 0.57] 0.40 | 0.00 | 0.66 | 0.60
SmallKitchenA ppliances 0.69 | 0.76]| 063 | 0.50| 0.69 | 0.76 ] 0.61 | 0.59
WormsTwoClass 0431 1.00| 045 | 0.00] 054 | 1.00] 0.50 | 0.27
Worms 0.84 | 1.00| 0.73 | 0.83] 0.75| 1.00] 0.82 | 0.83
StarLightCurves 0.74| 074 0.74| 0.74] 0.74 | 0.74]| 0.74 | 0.74
Haptics 0.79| 075] 066 | 0.66 | 0.77 | 0.75 | 0.67 | 0.67




195

Table C.9: Precision from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is chosen by the SSTSC algorithms

Precision
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% [ 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 092[071| 08 | 079]0.92] 0.75] 0.63 [ 0.59
SonyA|BORobotSurfacell 1.00| 1.00| 0.61 | 1.00| 1.00 | 1.00] 1.00 | 1.00
SonyA1BORobotSurface 0.50 [ 0.58 | 0.80 [ 1.00| 0.63 | 1.00 | 0.47 | 0.50
DistalPhalanxOutlineCorrect 042 | 042 042 | 0421 0.46 | 0.46| 0.41 | 0.41
MiddlePhalanxOutlineCorrect 057 | 056 0.73 | 0.73] 052 | 0.50 | 0.49 | 0.49
PhalangesOutlinesCorrect 0.46 | 046 | 0.45 | 0.44 | 0.46 | 0.46 | 0.50 | 0.50
ProximalPhalanxOutlineCorrect 052 [ 052 053[053] 052|052] 052 052
DistalPhalanxOutlineA geGroup 043 [042]046(046] 032 ] 032] 0.39 [ 0.39
MiddlePhalanxOutlineA geGroup 0.34]10.34] 030]| 030]034|034] 026 | 0.26
ProximalPhalanxOutlineAgeGroup | 0.65 | 0.61 | 0.40 | 040 ] 0.61 | 0.57 | 0.30 | 0.30
TwoLeadECG 059 | 0.63| 0.63[ 062 | 059 | 0.63 | 0.56 | 0.56
MoteStrain 073089 070 [ 0.79 ] 1.00 | 1.00| 0.93 | 0.96
ECG200 0.73 | 068 0.60 | 0.52] 0.78 | 0.73 | 0.57 | 0.54
CBF 0.84 | 1.00| 095 | 0.93 | 1.00 | 0.33 | 1.00 | 1.00
Two_Patterns 0.64 | 1.00] 028 | 0.33] 067 | 1.00| 057 | 1.00
ECGFiveDays 046 | 046 | 052 | 0.55] 0.46 | 0.46 | 0.80 | 0.80
ECG5000 028 023|018 026] 015| 018] 0.26 | 0.27
Gun_Poaint 052 | 055 064|062 052 | 055 053 [ 0.53
wafer 070 | 0.77] 090 [ 1.00| 0.74 | 0.77 | 0.63 | 0.71
ChlorineConcentration 024 [ 020] 020 { 020 | 0.25 | 0.29 | 0.33 | 0.33
Wine 044 | 0441 0338 ] 038] 051 ]| 0.51] 0.46 | 0.46
Strawberry 043|043 ]| 047 [ 047] 045 | 045 0.48 | 0.48
ArrowHead 0.34(033]059({059] 042 ] 043] 0.39 | 0.39
Trace 0383 056 051 (056 038 ] 055] 042 | 0.51
ToeSegmentationl 0.79 [ 1.00| 050 [ 0.43 ] 0.75 | 0.60 | 0.78 | 0.75
Coffee 0.60| 0.60] 058 | 0.58 ] 0.57 | 0.57 | 0.53 | 0.53
ToeSegmentation2 1.00/100| 084 094]071]1.00] 0.9 | 1.00
FaceFour 044 (1.00| 058 [ 048] 050 | 0.50 | 0.78 | 0.80
yoga 0471 048] 039 040] 045 | 044 ] 054 ] 0.54
Ham 059 033] 041|038 044 | 0.00 | 0.67 | 0.67
Meat 0.66 | 0.66] 0.32 | 0.32] 053 | 053] 0.35 | 0.35
Beef 025(016]| 024 (016 019 | 0.16 | 0.26 | 0.23
FordA 1.00 | 0.00| 048 | 052 | 0.50 | 0.00 ] 0.67 | 1.00
FordB 0.38 | 0.00| 0.44 [ 0.50| 0.60 | 0.50 | 0.25 | 0.00
ShapeletSm 039 (033]052(033]033]|000]| 044 [ 0.00
BeetleFly 0.73[1.00] 059|019 1.00| 1.00| 0.73 | 1.00
BirdChicken 0.83[1.00] 1.00{ 1.00| 090 | 1.00| 0.94 | 1.00
Earthquakes 0.33[000]| 064 [0.67] 033 ] 0.33] 0.33 | 0.00
Herring 054 054] 050 | 050 ] 047 | 047 ] 045 | 0.45
OliveQil 019 [ 0191 0.29({0.29] 0.19 | 0.19 | 0.20 | 0.20
Car 050 [ 051] 040 040 050 | 051] 041 | 0.41
Lighting2 045|050 054 (1.00| 048 | 1.00| 0.52 | 1.00
Computers 0.67 [ 0.80]| 055 [ 057 | 0.67 | 0.67 | 0.45 | 0.50
LargeK itchenA ppliances 047 |1 0.67] 040 | 051 ] 054 | 0.67] 0.35 | 0.50
RefrigerationDevices 045 000]| 027 [ 020] 0.25 | 0.00 | 0.29 | 0.50
ScreenType 0.25] 0.00] 018 | 0.00] 0.25| 0.00 | 0.14 | 0.00
SmallKitchenA ppliances 045 (050 042 [ 025 046 | 0.50| 0.30 | 0.22
WormsTwoClass 050 [ 1.00| 024 [ 0.00 | 057 | 1.00| 0.29 | 0.00
Worms 0.67) 0.00] 011 | 0.00] 0.33 | 0.00 | 0.33 | 0.00
StarLightCurves 0.62 )| 0.61] 0.62]| 0.61] 057 | 0.56 | 0.57 | 0.56
Haptics 0.26| 0.00] 012 ]| 0.12] 019 | 0.14 | 0.13 | 0.13
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Table C.10: Recall from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is chosen by the SSTSC algorithms

Recall
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 027 | 020 | 042 | 040] 0.27 | 0.19 ] 0.27 | 0.30
SonyA|BORobotSurfacel | 027 | 045| 016 | 0.28] 0.17 | 0.33 ] 0.14 | 0.17
SonyAlIBORobotSurface 0.13 | 018 | 0.27 | 0.27 ] 0.10 | 0.14 | 0.47 | 0.67
DistalPhalanxOuitlineCorrect 0.18 | 018 | 018 | 0.18 ] 0.21 | 0.21] 0.18 | 0.18
MiddlePhalanxOutlineCorrect 022]026] 033]|033] 042 ] 053] 0.38 | 0.38
PhalangesOutlinesCorrect 0.38 | 0.38] 0.27 | 0.27 ] 0.38| 0.38] 0.20 | 0.20
ProximalPhalanxOutlineCorrect 0.27 | 0271 0.33] 0.33] 0.27 | 0.27 | 0.27 | 0.27
DistalPhalanxOutlineA geGroup 033 049| 021 | 021] 040 0.65] 0.35| 0.35
MiddlePhalanxOutlineA geGroup 0.41]041] 022(022]041|0.41]| 032 | 0.32
ProximalPhalanxOutlineAgeGroup | 0.44 | 040 ] 0.35| 0.35] 0.48 | 044 | 0.27 | 0.27
TwolLeadECG 021 023| 040 |042] 021 | 023 ] 0.31 | 0.31
MoteStrain 015] 032|026 | 026 020 | 0.40] 0.32 | 0.40
ECG200 033]043]029]|025] 016 | 0.22] 042 | 0.39
CBF 035|050]062]| 05 027]|033] 022] 0.2
Two Patterns 0.25)| 043 | 018 | 0.14] 0.21 | 0.50] 0.16 | 0.29
ECGFiveDays 0.21]021] 014 017 0.21]| 0.21] 0.15 | 0.15
ECG5000 0.41 )| 0.56| 0.36 | 0.38] 0.14 | 0.30 | 0.44 | 0.50
Gun_Point 039|044 039 |044] 039 | 0.44] 020 | 0.20
wafer 0421 055|031 | 027] 051 055] 011 0.16
ChlorineConcentration 009 ) 0.12| 0.08 | 0.08] 0.10 | 0.11 ] 0.08 | 0.08
Wine 0240241 012 012] 020 | 0.20| 0.14 | 0.14
Strawberry 026 | 0.26 | 0.22 | 0.22] 0.50 | 0.50 | 0.39 | 0.39
ArrowHead 029 | 037 | 033 033] 021 | 0.29 ] 0.42 | 0.42
Trace 070 | 0.83 | 0.90 [ 1.00| 0.70 | 0.86 | 0.45 | 0.50
ToeSegmentationl 0.30 | 0.33| 0.11 | 0.08] 0.15| 0.18] 0.16 | 0.14
Coffee 029]029] 020| 020] 022 | 0.22] 0.43 | 0.43
ToeSegmentation2 0.19 | 0.33] 023 033] 010] 0.14] 0.11 | 0.19
FaceFour 033 033 064 |0.70] 015 | 0.17] 0.21 | 0.25
yoga 017 0.23| 012 | 0.14] 0.10 | 0.14 ] 0.16 | 0.16
Ham 018 [ 025] 0.26 | 0.42 | 0.06 | 0.00 | 0.20 | 0.50
Meat 030 | 0.30] 0.40| 0.40]| 0.27 | 0.27 | 0.32 | 0.32
Beef 023] 017 | 0.27| 021] 019 | 017 ] 0.20 | 0.21
FordA 0.36 | 0.00 | 0.79 | 1.00| 0.08 | 0.00 | 0.08 | 1.00
FordB 012 000 | 011 | 0.33] 0.08 | 0.17 | 0.03 | 0.00
ShapeletSm 0.44 |1 1.00| 0.85 | 1.00| 0.33 | 0.00 | 0.44 | 0.00
BeetleFly 021)1.00| 016 [ 0.19] 0.20 | 0.50 | 0.09 | 0.22
BirdChicken 012 [ 0.25] 018 [ 024 0.11 | 0.25] 0.20 | 0.23
Earthquakes 0.33 | 0.00| 0.69 [ 0.91] 0.33 | 0.50 ] 0.08 | 0.00
Herring 021 021|029[029] 018 | 0.18] 0.24 | 0.24
OliveQil 011 011 0.25(0.25] 0.14 | 0.14 | 0.17 | 0.17
Car 0.48 | 0.59| 048 | 048] 0.48 | 0.59] 0.38 | 0.38
Lighting2 046 | 0.33| 031 | 1.00| 0.14 | 1.00| 0.17 | 0.29
Computers 012 019 033 [0.36] 0.12 | 0.15] 0.14 | 0.16
LargeKitchenA ppliances 014 | 0.33| 0.76 [ 1.00] 0.15 | 0.24 ] 0.63 | 0.79
RefrigerationDevices 0.24 | 0.00 | 0.23 [ 0.67] 0.04 | 0.00 ] 0.04 | 0.25
ScreenType 0.14 | 0.00 | 0.15| 0.00 | 0.14 | 0.00 | 0.04 | 0.00
SmallK itchenA ppliances 0.11 )| 040 | 054 | 040] 0.12 | 0.40 | 0.22 | 0.18
WormsTwoClass 0.13 | 1.00| 0.03 | 0.00 | 057 | 1.00 ] 0.04 | 0.00
Worms 042 000] 011 ]| 0.00] 025 | 0.00| 0.12 | 0.00
StarLightCurves 033 0.33| 033 | 033] 052 | 0.53] 0.52 | 0.53
Haptics 019 000 019 | 019] 0.15| 0.25] 0.19 | 0.19
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Table C.11: F1 from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of clusters
(k) is chosen by the SSTSC algorithms

F1-Measure
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% | 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 041 031 | 057 | 053] 041 | 0.31] 0.38 | 0.40
SonyA|BORobotSurfacel | 042 0.62| 0.25| 043] 029 | 0.50 ] 0.25 | 0.29
SonyAlIBORobotSurface 021 | 0.27 | 040 | 043 ] 0.18 | 0.25 ] 0.47 | 0.57
DistalPhalanxOuitlineCorrect 025 025| 025|025]029]| 0.29] 0.25 | 0.25
MiddlePhalanxOutlineCorrect 032 036| 046 | 046 ] 047 | 0.51] 043 | 0.43
PhalangesOutlinesCorrect 041]041]1 034 034]041|041] 028 | 0.28
ProximalPhalanxOuitlineCorrect 035]03]041]041] 035]| 035] 035 ]| 0.35
DistalPhalanxOutlineA geGroup 038 045| 029 | 0.29] 0.35| 0.43 ] 0.37 | 0.37
MiddlePhalanxOutlineA geGroup 0.37 ] 0.37| 0.26 | 0.26 ] 0.37 | 0.37] 0.29 | 0.29
ProximalPhalanxOutlineAgeGroup | 0.53 | 048 | 0.37 | 0.37] 0.54 | 0.50 | 0.29 | 0.29
TwolLeadECG 031|034 | 049 [ 0.50]| 0.31 | 0.34 | 0.40 | 0.40
MoteStrain 025) 047 | 037 | 039] 034 | 0.57] 048 | 0.56
ECG200 0.46 | 0.53| 0.39 | 0.34] 026 | 0.34 | 048 | 0.45
CBF 049 | 067 0.75]| 0.72] 042 ]| 0.33] 0.35 | 0.36
Two Patterns 036 | 060 | 0.22 | 0.20] 0.32 | 0.67] 0.25 | 0.44
ECGFiveDays 0.29]0.29] 022 026] 0.29| 0.29] 0.25 | 0.25
ECG5000 033 032|024 (031] 014 | 0.22] 0.33 | 0.35
Gun_Point 045| 049 | 048 | 051] 045 | 0.49 | 0.29 | 0.29
wafer 053] 0.64| 046 | 043] 060 | 0.64] 019 | 0.26
ChlorineConcentration 013 015|011 | 011] 014 | 0.16] 0.13 | 0.13
Wine 0.31(031] 018 018] 029 | 0.29 | 0.22 | 0.22
Strawberry 032 032|030| 03] 0.48]| 048] 043 | 043
ArrowHead 031 03| 043[043] 028 | 0.35] 041 | 0.41
Trace 0.49 | 0.67 | 0.65 | 0.72] 0.49 | 0.67 | 0.43 | 0.51
ToeSegmentationl 0.44 |1 0.50| 018 | 0.14 ] 0.25 | 0.27 ]| 0.26 | 0.24
Coffee 039 039|030( 03] 032 032] 048] 0.48
ToeSegmentation2 032 050| 037| 048] 018 | 0.25] 0.20 | 0.31
FaceFour 038 | 050 | 0.61| 057 ] 023 | 0.25] 0.33 | 0.38
yoga 025)031|019|021] 016 | 0.22] 0.25 | 0.25
Ham 028029 032{040] 010] 000] 031 |0.57
Meat 041]041] 035|035 036 | 036 033 | 0.33
Beef 024 016 | 0.25| 0.18] 0.19 | 0.16 | 0.23 | 0.22
FordA 053] 000 059 | 069] 013 | 0.00] 015 | 1.00
FordB 0.18 | 0.00 | 0.17 [ 0.40| 0.14 | 0.25 | 0.06 | 0.00
ShapeletSm 0.41 ) 050 | 0.65| 050 | 0.33 | 0.00 | 0.44 | 0.00
BeetleFly 0.33|1.00| 025 | 0.19] 0.33 | 0.67 ] 0.16 | 0.36
BirdChicken 022 {0.40]| 030 038] 020 | 0.40]| 0.33 [ 0.38
Earthquakes 0.33 | 0.00| 0.67 | 0.77] 0.33 | 0.40 | 0.13 | 0.00
Herring 030|030 0.37|037] 026 | 0.26 | 0.32 | 0.32
OliveQil 0.14 | 014 | 0.27 | 0.27] 0.16 | 0.16 | 0.18 | 0.18
Car 049 | 0.55] 044 | 0.44] 049 | 0.55] 0.39 | 0.39
Lighting2 045 | 040 | 040 | 1.00| 0.22 | 1.00| 0.26 | 0.44
Computers 021 031|041 [044] 021 | 0.24] 0.21 | 0.24
LargeKitchenA ppliances 022 | 044 | 052 | 0.68] 0.23 | 0.35] 0.46 | 0.61
RefrigerationDevices 031 000]| 025{ 031 006 | 000] 008 0.33
ScreenType 0.18 | 0.00 | 0.16 | 0.00 | 0.18 | 0.00 | 0.06 | 0.00
SmallK itchenA ppliances 0.18 | 044 | 047 | 031] 018 | 0.44 | 0.25 | 0.20
WormsTwoClass 020 | 1.00| 0.04 [ 0.00 | 057 | 1.00 ] 0.06 | 0.00
Worms 0.52| 000] 011 | 0.00 | 0.29 | 0.00 | 0.17 | 0.00
StarLightCurves 043 043 | 043 | 043 ] 0.55| 0.55] 0.55| 0.55
Haptics 0.22 | 000] 015] 0.15] 017 | 0.18 | 0.15 | 0.15
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Table C.12: AoR from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is chosen by the SSTSC algorithms

Accuracy on Retrieval (AoR)
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% [ 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 1.00| 055 1.00] 0.80 | 1.00 | 0.60 ] 1.00 | 0.80
SonyA|BORobotSurfacell 1.00 | 065 1.00] 045] 095 | 0.65] 1.00 | 0.80
SonyA|BORobotSurface 1.00| 075/ 1.00] 069 ] 0.81 | 0.50 ] 1.00 | 0.81
DistalPhalanxOutlineCorrect 1.00 | 1.00| 1.00| 1.00| 1.00 | 1.00 ] 1.00 | 1.00
MiddlePhalanxOutlineCorrect 1.00 | 090 1.00| 1.00| 1.00 | 0.85 ] 1.00 | 1.00
PhalangesOutlinesCorrect 1.00| 1.00| 1.00| 0.95| 1.00 | 1.00] 0.95 | 0.95
ProximalPhalanxOutlineCorrect 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00
DistalPhalanxOutlineA geGroup 1.00| 0.76 | 1.00 | 1.00| 1.00 | 0.71 ] 1.00 | 1.00
MiddlePhalanxOutlineA geGroup 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00
ProximalPhalanxOutlineAgeGroup | 1.00 | 0.95 | 1.00 [ 1.00] 1.00 | 0.95 | 1.00 | 1.00
TwolLeadECG 1.00| 090 1.00] 0.95] 1.00| 0.90] 1.00 | 1.00
MoteStrain 0.90 | 055]1.00| 0.70] 0.75 | 0.50 | 0.95 | 0.80
ECG200 1.00| 0.75] 1.00] 0.85] 1.00 | 0.75] 1.00 | 0.90
CBF 086 | 024 1.00( 062] 062 | 0.14 | 0.90 [ 0.86
Two_Patterns 085|035 1.00f 045] 0.85| 0.30 | 0.80 [ 0.60
ECGFiveDays 1.00| 1.00| 1.00| 0.89 | 1.00 | 1.00] 1.00 | 1.00
ECG5000 094 056]1.00| 083] 094 0.61]1.00]| 0.83
Gun_Point 1.00| 090 | 1.00] 090 1.00| 0.90] 1.00 | 1.00
wafer 0.90 | 060 1.00| 0.70] 090 | 0.60 | 1.00 | 0.85
ChlorineConcentration 095|052 1.00|081] 100 057] 1.00| 1.00
Wine 1.00| 1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00
Strawberry 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00
ArrowHead 1.00| 086 0.95] 095] 1.00 | 0.81 ] 0.95 | 0.95
Trace 1.00| 080 | 1.00| 0.90| 1.00| 0.85] 1.00 | 0.95
ToeSegmentationl 0.90 | 050 1.00| 0.65] 095 | 0.60 | 1.00 | 0.70
Coffee 1.00|1.00| 1.00| 1.00| 1.00 | 1.00] 1.00 | 1.00
ToeSegmentation2 085|050 100070 075 | 050 | 0.95 | 0.55
FaceFour 100/ 017 1.00] 067 ] 089 | 0.28] 1.00| 0.67
yoga 095(080]1.00f090] 1.00]| 080 095 0.95
Ham 0.90) 0.25]0.90]| 040] 0.90| 0.30] 0.75 | 0.45
Meat 1.00| 1.00| 1.00 | 1.00| 1.00 | 1.00] 1.00 | 1.00
Beef 1.00| 0.85]1.00] 0.85) 095 | 0.85] 1.00| 0.85
FordA 0.35]| 000] 090| 035] 08 | 015] 0.75 | 0.05
FordB 0.55)010] 0.85| 0.30] 065 | 0.25] 0.60 | 0.25
ShapeletSm 0.45[020(040) 015] 035 | 010 | 0.45 | 0.00
BeetleFly 0.65)025] 085|035] 060 | 025] 1.00| 045
BirdChicken 095|040 1.00f 060 095 | 040 | 0.95 | 0.80
Earthquakes 0.15(000]065[ 03] 03| 025] 040 | 0.10
Herring 1.00 | 1.00| 1.00| 1.00] 1.00 | 1.00] 1.00 | 1.00
OliveQil 1.00 | 1.00| 1.00| 1.00] 1.00 | 1.00] 1.00 | 1.00
Car 1.00 | 090 1.00| 1.00| 1.00 | 0.90 | 1.00 | 1.00
Lighting2 095[025[/ 08| 005] 0.9 | 020]0.95( 030
Computers 095[050|070] 035]0.95]| 055] 0.85 [ 0.55
LargeKitchenA ppliances 095[043[/081)|052] 08 | 052] 090 | 0.62
RefrigerationDevices 057 [ 000]090f029] 067 | 014] 0.8 | 0.24
ScreenType 0.33] 010] 0.67( 033] 0.29 | 0.10 | 0.67 | 0.24
SmallK itchenA ppliances 0.86 | 0.33| 0.76 [ 043 ] 0.90| 0.33] 0.86 | 0.62
WormsTwoClass 0.40 [ 0.05]| 0.65 | 0.15 ] 0.65 | 0.15| 0.80 [ 0.30
Worms 0.70 | 0.15] 0.80| 020] 0.80 | 0.20] 0.75 | 0.20
StarLightCurves 1.00| 090 1.00]| 0.90| 1.00| 0.90] 1.00 | 0.90
Haptics 095|040 0.95]| 0.95]| 0.95| 0.45| 0.95| 0.95
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Table C.13: AoD from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is chosen by the SSTSC algorithms

Accuracy on Detection (AoD
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% [ 80% | 40% | 80% | 40% | 80%
ItalyPowerDemand 084 (092] 090[093] 086 | 092] 0.8 [ 0.93
SonyA|BORobotSurfacell 0.86 | 092]| 081 [092]085|092] 089 0.93
SonyA|BORobotSurface 0.81)083]| 08| 083)] 075|089 083 ] 0.92
DistalPhalanxOutlineCorrect 0.89 | 089] 089 0.89] 090 | 0.90 | 0.93] 0.93
MiddlePhalanxOutlineCorrect 0.88 | 089]| 086 | 0.86] 0.86 | 0.88 | 0.94] 0.94
PhalangesOutlinesCorrect 092|092 094[095] 093] 093] 093 | 0.93
ProximalPhalanxOutlineCorrect 0.87 |1 087]| 086 | 0.8 ] 087 | 0.87 | 0.94] 0.94
DistalPhalanxOutlineA geGroup 0841 089]| 087 [ 087]084|089]0.94]0.94
MiddlePhalanxOutlineA geGroup 094 094|094[094] 094 | 094 ] 0.94 | 0.94
ProximalPhalanxOutlineAgeGroup | 0.93 | 0.94 | 0.92 | 0.92] 0.92 | 0.92] 0.94 | 0.94
TwolLeadECG 089 (090 091|091 089 | 0.90| 0.95]| 0.95
MoteStrain 0.76 1 0.87 ] 083 [ 0.88] 0.75 | 0.87 | 0.89 | 0.92
ECG200 0.83|083] 085(087]083| 09| 091]0.93
CBF 0.67 | 0838] 086 [ 091] 064 | 085 091 | 0.92
Two_Patterns 0721086 074 085] 069 | 0.87 | 081 | 0.95
ECGFiveDays 091)091]|091[094]091|091]0.96]0.96
ECG5000 0.76 1 090 0.83 [ 0.86] 0.79 | 0.88| 083 | 0.91
Gun_Point 0.88 (090 083|090 088 | 090] 0.91]0.91
wafer 079 087] 083 [ 087] 080|087 090 | 0.92
ChlorineConcentration 0.85)094]083[091]085|093]0.94]0.94
Wine 0.86 | 0.86 | 0.88 | 0.88] 0.87 | 0.87 | 0.92 ] 0.92
Strawberry 090 090 091 [ 091] 090 | 090 0.95] 0.95
ArrowHead 090 095] 092 [ 092] 08| 095]0.98)0.98
Trace 0.87 1089 09 [091] 087|089 093] 0.93
ToeSegmentationl 0.75)0.88] 081 | 087] 079 | 0.87 ] 0.82 | 0.88
Coffee 091091 090|090 092 | 092] 0.96 | 0.96
ToeSegmentation2 0.73]1085]082[09]077|087] 079]0.90
FaceFour 070 {096 0.83 [ 0.89 | 0.71 | 0.89 | 0.85 [ 0.90
yoga 082 (089 091 (093] 081|089] 0.8 0.90
Ham 0721 083] 078 08] 072 | 084 0.73 ] 0.93
Meat 091)091]092[092]092|092]0.98]0.98
Beef 090 092] 087 (093] 091 |092]091]0.97
FordA 0.62 | 095]| 072 | 086] 064 | 0.86] 0.65 | 0.92
FordB 063 | 082 070 [ 0.88 | 0.67 | 0.89 | 0.69 | 0.88
ShapeletSm 069 [ 0.92]| 067 [ 0.89 | 0.67 | 0.87 | 0.60 [ 0.00
BeetleFly 0.65) 085]| 066 | 0.85] 065 | 0.86| 0.73 | 0.91
BirdChicken 078 083] 082 | 087] 078 | 088 0.87 | 0.92
Earthquakes 071 (092|069 [ 0.83] 0.70 | 0.96 | 0.61 [ 0.95
Herring 085 [ 085] 086|086 086 | 0.86| 0.92 | 0.92
OliveQil 0.86 | 0.86 | 0.87 ( 0.87 | 0.88 | 0.88 | 0.94 | 0.94
Car 084 [ 085]| 087|087 084]|085]0.92|0.92
Lighting2 0731 092 | 0.64 [ 087 ] 0.70 | 0.96] 0.74 | 0.91
Computers 074108707108 ] 078 | 088 0.79 | 0.92
LargeKitchenA ppliances 0721087 078 [ 08| 072|087 083]0.91
RefrigerationDevices 070 [ 095 0.73 [ 092 ] 068 | 0.96| 0.69 | 0.91
ScreenType 0.64 |1 084] 069 | 084] 061 | 084 067 | 0.88
SmallKitchenA ppliances 0.69 | 0.85]| 0.76 | 0.86] 069 | 0.85] 0.79 | 0.85
WormsTwoClass 0.62 [ 098] 068 [ 0.83 | 0.66 | 0.97 | 0.71 | 0.89
Worms 0.66 | 0.84 | 066 | 0.88] 0.66 | 0.84 | 0.72 | 0.90
StarLightCurves 0.883 | 089]| 083|090 087 | 088 0.88 ] 0.90
Haptics 0.78 1 0.92] 087 | 0.87] 0.79 | 0.92 ] 0.87 | 0.87
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Table C.14: Excess from all algorithms on all datasets when the scaling factor (f) is 1.2 and number of
clusters (k) is chosen by the SSTSC algorithms

Excess Rate
Dataset E-AA-Z E-AA-L E-SA-Z E-SA-L

40% | 80% | 40% [ 80% | 40% | 80% | 40% | 80%
| talyPowerDemand 0.00 )| 045] 0.00]| 0.20] 0.00 | 040 | 0.05 | 0.24
SonyA|BORobotSurfacel | 023 050]| 0.09| 059] 024 048]0.09]| 027
SonyA|BORobotSurface 027 045|016 [ 042] 041 | 064 ] 0.11 | 0.28
DistalPhalanxOutlineCorrect 0.00 | 0.00 | 0.00 | 0.00| 0.05 | 0.05| 0.00 | 0.00
MiddlePhalanxOutlineCorrect 0.05] 014] 005[ 0.05] 005 | 0.19 | 0.00 | 0.00
PhalangesOutlinesCorrect 0.00 | 0.00 | 0.00 | 0.05] 0.00 [ 0.00 | 0.00 [ 0.00
ProximalPhalanxOutlineCorrect 0.00 | 0.00 | 0.00 | 0.00] 0.00 [ 0.00 | 0.00 [ 0.00
DistalPhalanxOutlineA geGroup 0.05] 0.27 ] 0.00 [ 0.00] 0.05 | 0.32 | 0.00 ] 0.00
MiddlePhalanxOutlineA geGroup 0.00 | 0.00 | 0.00 | 0.00] 0.00 [ 0.00 | 0.00 [ 0.00
ProximalPhalanxOutlineAgeGroup | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00
Twol eadECG 0.00 | 0.10 ] 0.00| 0.05] 0.00 | 0.10 | 0.00 | 0.00
MoteStrain 0.28 | 056 0.00| 0.30] 035 | 057 ] 0.05| 0.20
ECG200 0.00 025(0.00)| 015] 0.00| 0.25] 0.00 | 0.10
CBF 0.33|081]016| 048] 041 | 0.86 ] 0.00 | 0.05
Two_Patterns 037 [ 0741 0.09(059] 035|077 ] 0.20 | 0.40
ECGFiveDays 0.00 [ 0.00{ 0.10 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00
ECG5000 0.23 ] 055]0.00| 017] 019 | 048] 0.00| 0.17
Gun_Point 0.09 | 0.18] 0.00 | 0.10 | 0.09 | 0.18 | 0.00 | 0.00
wafer 0.25 | 050 0.00 | 0.30| 0.22 | 0.48 | 0.00 [ 0.15
ChlorineConcentration 0.00 [ 045(0.00| 0.19 | 0.00 | 0.43 | 0.00 | 0.00
Wine 0.00 [ 0.00 | 0.09 | 0.09 | 0.09 | 0.09 | 0.00 | 0.00
Strawberry 0.00 | 0.00 | 0.00 | 0.00] 0.00 [ 0.00 | 0.00 [ 0.00
ArrowHead 0.05] 0.18] 0.00 | 0.00] 0.13 | 0.29 | 0.00 | 0.00
Trace 0.00 | 0.20] 0.00| 0.10] 0.00 | 0.15] 0.00 | 0.05
ToeSegmentationl 031 | 062] 013 [ 043 ] 0.27 | 0.54 | 0.09 | 0.36
Coffee 0.00 | 0.00 | 0.00 | 0.00] 0.09 | 0.09 | 0.00 | 0.00
ToeSegmentation2 035|062 013(039] 040 | 060 | 0.24 [ 0.50
FaceFour 0.22 | 0871 0.00f 033 0.27 | 0.77 ] 0.00 | 0.33
yoga 021 (033000010} 017 | 033] 0.10 | 0.10
Ham 0.25] 079]0.25] 067] 0.25| 0.75] 0.35 | 0.61
Meat 0.00 | 0.00 | 0.00 | 0.00] 0.00 [ 0.00 | 0.00 [ 0.00
Beef 0.00) 0.15] 0.00]| 0.15] 0.00 | 0.11 ] 0.05 | 0.19
FordA 0.68 | 1.00]| 0.28| 0.72] 035 | 0.88] 0.32 | 0.95
FordB 056 [ 0921 029(075] 052 | 081 040 | 0.75
ShapeletSm 0.64 |1 084] 069 | 083] 068 | 091]0.57]| 100
BeetleFly 050)081]032|072] 050|079]0.13| 061
BirdChicken 0.10 [ 062 0.00 | 040 | 0.24 | 064 | 0.05 | 0.20
Earthquakes 081 [100]054({075]071]079] 064 | 091
Herring 0.00 [ 0.00 | 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
OliveQil 0.00 | 0.00 | 0.00 | 0.00| 0.00 | 0.00| 0.00 | 0.00
Car 0.00 | 0.10 | 0.00 | 0.00] 0.00 [ 0.10 | 0.00 | 0.00
Lighting2 030)081]023][09]02|08]0.05] 070
Computers 0241 060] 033] 067]0.17| 052] 0.19 | 0.48
LargeKitchenA ppliances 035 071]023|050] 040 | 063]0.05]| 0.35
RefrigerationDevices 043 [1.00]017{074] 046 | 0.88 | 0.31 [ 0.81
ScreenType 068 091|042 (071]074]091]0.39|0.78
SmallK itchenA ppliances 040 | 077 020 [ 055 0.37 | 0.77 | 0.14 | 0.38
WormsTwoClass 062 | 095]| 046 [ 0.88 | 0.46 | 0.88 | 0.27 [ 0.73
Worms 042 083] 038 | 085] 03| 085]0.38]| 0.83
StarLightCurves 0.00| 0.10] 0.00| 0.10] 0.00 | 0.10 | 0.00 | 0.10
Haptics 0.00 | 0.58 [ 0.00 | 0.00 | 0.00 | 0.53 | 0.00 | 0.00
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Figure C.1: ItalyPowerDemand dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.2: SonyAIBORobotSurfacell dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.3: SonyAIBORobotSurface dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (¢), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.4: DistalPhalanxOutlineCorrect dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.5: MiddlePhalanxOutlineCorrect dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.6: PhalangesOutlinesCorrect dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.7: ProximalPhalanxOutlineCorrect dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f= 1.2 by

using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.8: DistalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.9: MiddlePhalanxOutlineAgeGroup dataset: (a) Input time series labeled by classes of planted
data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f= 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.10: ProximalPhalanxOutlineAgeGroup dataset: (a) Input time series labeled by classes of
planted data with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f
= 1.2 by using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.11: TwoLeadECG dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.12: MoteStrain dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.13: ECG200 dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.14: CBF dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.15: Two_Patterns dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.16: ECGFiveDays dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.17: ECG5000 dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (¢), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.18: Gun_Point dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.19: wafer dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.20: ChlorineConcentration dataset: (a) Input time series labeled by classes of planted data with
scaling factor f' = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.21: Wine dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.22: Strawberry dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.23: ArrowHead dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.24: Trace dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.25: ToeSegmentationl dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.26: Coffee dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.27: ToeSegmentation2 dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.28: FaceFour dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (¢), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.29: yoga dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.30: Ham dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.31: Meat dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.32: Beef dataset: (a) Input time series labeled by classes of planted data with scaling factor f =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.33: FordA dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.34: FordB dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.35: ShapeletSim dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.36: BeetleFly dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.37: BirdChicken dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.38: Earthquakes dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.39: Herring dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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Figure C.40: OliveOil dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.41: Car dataset: (a) Input time series labeled by classes of planted data with scaling factor ' =
1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.42: Lighting2 dataset: (a) Input time series labeled by classes of planted data with scaling factor
f=1.2.(b), (¢), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.43: Computers dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.44: LargeKitchenAppliances dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.45: RefrigerationDevices dataset: (a) Input time series labeled by classes of planted data with
scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using
E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.46: ScreenType dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.47: SmallKitchenAppliances dataset: (a) Input time series labeled by classes of planted data
with scaling factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by
using E-AA-Z, E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.48: WormsTwoClass dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.49: Worms dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,

E-SA-Z and E-SA-L, respectively.
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Figure C.50: StarLightCurves dataset: (a) Input time series labeled by classes of planted data with scaling
factor f = 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z,
E-AA-L, E-SA-Z and E-SA-L, respectively.
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Figure C.51: Haptics dataset: (a) Input time series labeled by classes of planted data with scaling factor f
= 1.2. (b), (c), (d) and (e) are output from SSTSC with scaling factor f = 1.2 by using E-AA-Z, E-AA-L,
E-SA-Z and E-SA-L, respectively.
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