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CHAPTER 1

INTRODUCTION

1.1 Digraph of the kth power mapping

Let R be a finite commutative ring with identity 1 # 0. For an integer k > 2,
the kth power mapping digraph over R, denoted by G*)(R), is the digraph
whose vertex set is R and there is a directed edge from a to b if and only if a* = b.

A component of a digraph is a subdigraph which is a maximal connected
subgraph of the associated nondirected graph. We consider two disjoint subdi-
graphs ng)(R) and ng)(R) of G®(R) induced on the set of vertices which are
in the unit group R* and induced on the remaining vertices which are not invert-
ible, respectively. They are called the unit subdigraph and the zero divisor
subdigraph, respectively. Observe that there are no edges between ng)(R) and
GY¥(R), that is, G®(R) = GP(R) U G (R).

A cycle of length ¢t > 1 is said to be a t-cycle and we assume that all cycles
are oriented counterclockwise. We call a cycle of length one a fixed point. The
distance from a vertex g € R to a cycle is the length of the directed path from
g to a vertex in the cycle.

The indegree (respectively, outdegree) of a vertex a € R of G®)(R), is the

number of directed edges entering (respectively, leaving) to a, and denoted by



indeg® a (respectively, outdeg® a). The definition of G®(R) implies that the
outdegree of each vertex is equal to 1. This result implies the next result that

each component of the digraph G(k)(R) has exactly one cycle.

Theorem 1.1.1. Let R be a finite commutative ring with identity, and let k > 2.
Each component of the digraph G*™(R) has ezactly one cycle. Therefore, the

number of components of this digraph is equal to the number of its cycles.

Proof. Let g be a vertex in a component C' of G*(R). Consider

If there is no cycle, then the above path is infinite, contradicting the finiteness
of R. Thus, C contains a cycle. Moreover, if C' has more than one cycle, then
there is a vertex with outdegree greater than one, which is impossible. Hence,

each component contains exactly one cycle. O

Example 1.1.2. Consider the digraph G©®)(Z3).

N/, N/ AN/ N/
o 5% © ®
G (Zy3) G (Zys)

We see that the digraph G®(Zi3) contains three components for G\*(Zy3) and
one component for Gég) (Z13). This digraph has three fixed points and one 2-cycle.
Moreover, indeg(3) 1= indeg(3) D= indeg(3) 8 = indeg(3) 12 =3, indeg(?’) 0=1 and

the indegree of the other vettices is 0.



Example 1.1.3. (Example 3 in Section 5 of [7]) Consider the digraph

GO(Z[i)/ (2 + 41)).

63 T . i 2§ 1+
34i 44@%% 9+1VZ+1 8+i

DN N

We see that the digraph G®(Z[i]/(2 + 4i)) contains four fixed points. Moreover,
this digraph is symmetric (see definition in Chapter IV) of order 2.

For a finite commutative ring R with identity and a € R, the component of
G®(R) containing a is denoted by Com(a).

The kth power mapping digraph is defined by using the idea of Somer and
Kiizek [5] who studied the structure of digraphs G®(Z,,). Later, they worked on
the kth power mapping digraph G*)(Z,,) [6]. Y. Meemark and N. Wiroonsri ([10,
11], respectively) worked on digraphs G (F,.[2]/(f(z))) and G®)(Fa[2]/(f(2))),
respectively, where f(x) is a monic polynomial of degree > 1 in Fn[z], where Fn
is the field with p" elements and gave some conditions for symmetric digraphs.
Again, Y. Meemark and N. Maingam [7] studied the digraphs G® (Z[i]/()), where
Z[i] is the ring of Gaussian integers and v = a + bi be a nonzero element in Z[i].
Next, Y.J. Wei, G.H. Tang, H.D. Su [13] considered the digraphs G®(R), where
R is a finite commutative ring with identity and determined the structure of R
when the digraphs have only two, three and four components. Later, Y.J. Wei,
G.H. Tang, J.H. Nan [12] investigated the structure of digraphs G*)(F,-C,,) for

the group ring F,,»C,,, where [ is a field with p" elements, and C,, is a cyclic group



of order n. They explained some conditions for symmetric digraphs. G. Deng, L.
Somer [3] worked on the digraphs G*)(R), where R is a finite commutative ring
of characteristic p. Recently, Y.J. Wei and G.H. Tang [14] generalized the results
on cycles, components and semiregularity to finite commutative rings. They also

continued working more on symmetric digraphs.

1.2 Exponent

Let G be a finite group. The exponent of G, denoted by exp G, is the least
positive integer n such that ¢" = e for all ¢ € G. For example, expZ, = n
and exp Sy = 12. It gives some information on the order of an element of G. The
exponent plays the role of universal order for a group. Note that exp G divides |G|
When G is abelian, the exponent of GG also serves as an important tool to explore
deeper into its Sylow p-subgroup which results in the structure theorem for finite
abelian groups. We briefly discuss some properties of exponent of a group in the

following theorem.

Theorem 1.2.1. (Theorem 1.1 of [7]) Let G be a finite group and H a subgroup

of G.
(1) expG = lem{o(a) : a € G}, where o(a) is the order of a in G.
(2) exp H divides exp G.
(3) If G = Gy x G, then exp G = lem{exp Gy, exp G }.

(4) If G is abelian, then there exists an element g in G such that o(g) = exp G.



Proof. (1)-(3) are clear. To prove (4), assume that G is abelian. By the ele-
mentary divisor theorem, there exist positive integers ny, no,...,n; > 1 such that
ny | ng |-+ | ny and

G =Ly X Liny X -+ X Lip,.
Thus, exp G = n; and (0,0,...,0,1) in the rightmost group has order n;. O

For a finite commutative ring R with identity, its exponent is defined to be
the exponent of the group of units of R. We write A(R) for the exponent of
R and R* for the group of units of R. That is, A(R) = exp(R*). For example,
AZ1s) = exp(Zy;) = 2. We can easily determine the exponent of R if the structure
of the group of units is known, such as when R is the ring of integers modulo m,
finite fields, Galois rings, and finite chain rings. The exponent of the ring of
integers modulo m is also known as the Carmichael A-function [5, 6], which is

defined by a modification of the Euler’s ¢-function as follows:
(1) A1) =1=9(1), A(2) =1 = ¢(2), A(4) = 2 = p(4).
(2) A(2F) =22 = Lp(2), for k > 3.
(3) A(p*) = (p — 1)pF~t = p(p*), for any odd prime p and k > 1.

(4) MpPps2...pb) = lem(A(pt"), A(®52), ..., A(pFr)), where py,ps,...,p, are

distinct primes and k; > 1 fori e {1,...,7}.

The exponent of the quotient rings over the Gaussian integers is completely

determined in the next theorem.



Theorem 1.2.2. (Lemma 2.2 and Proposition 2.3 of [7])

(1) Up to multiplication by units, the primes in Z[i| are of three types.

(a) p, where p is a prime in Z satisfying p =1 (mod 4).
(b) 7 or m, where ¢ = w7 is a prime in Z satisfying ¢ =1 (mod 4).
(c) a=1+1.

(2) Let p and q be positive primes in 7 satisfying p = 3 (mod 4), and ¢ = 1

(mod 4), 7 denote a prime factor of q in Z[i], and o« = 1 +1i. Then:

(a) (@) = [(Z[i]/(7™))*| = ¢" (¢ — 1) for all positive integers n.

(b) A(p™) = p,},l (Z[i])/(p™))*| = p" Y (p* — 1) for all positive integers n.

(c) M) =[(Z[i]/(a?))*| = 2" forj € {1,2,3}, Ma") = 3I(Z[i]/(a"))| =

4, Ma®) = 31(Z[i)/(e*))*] = 4, and
g l(Z]/(a™)*| =271, if n=2m;
Aa") =
g l(Z[i]/ (™) = 27", if n=2m+ 1,
for alln > 6.
(d) A(O{laéé - ag's) = lcm()\(a{l)’ )\(ng)’ o ,)\(Jg‘s))’ where 01,09, . ..,0

are distinct primes in Z[i] for j; > 1 and l € {1,2,...,s}.

1.3 Local rings and Galois rings

A local ring is a commutative ring with identity which has a unique maxi-

mal ideal. Note that for a local ring R, its unique maximal ideal is given by



M = R~ R* (Proposition 1.2.11 of [1]) and we call the field R/M, the residue
field of R.

For example, Z,», where p is a prime and n € N, is a local ring with unique
maximal ideal pZ,» and residue field Zyn /pZyn = 7Z,. Moreover, every field is a
local ring with maximal ideal {0}.

We recall some properties of a finite local ring in the next theorem.

Theorem 1.3.1. (Theorem 6.1.2 of [1] and Theorem XVIIIL.2 of [8]) Let R be a

finite local ring with unique mazximal ideal M. Then
(1) |R| = p™ and |M| = p"=", for some prime p and some n,r € N.

(2) M™ ={0}. Moreover, for the least positive integer s such that M* = {0},

it 1s called the nilpotency of M.
(3) R*=(1+ M) x (R/M)*.

Next, let n, d be positive integers and p a prime. Then there exists a monic
polynomial ¢(t) in Zyn[t] of degree d such that the reduction g(t) in Z,[t] is irre-
ducible (Theorem 13.9 of [15]). Consider the ring extension Zyn[t]/(g(t)) of Zyn.

This is given by
{ag +art + -+ +ag_ 1t  + (g(t)) : a; € Zpn foralli € {0,1,...,d — 1}}.
It is called a Galois extension of Zn.

Theorem 1.3.2. (Theorem 5.1.8 of [1]) Up to isomorphism the Galois extension

with parameters n, d and p is unique.



Hence, we may denote Z,»[t]/(g(t)) by GR(p",d), and call it the Galois ring.
Observe that GR(p",1) = Zy» and GR(p, d) = Fa, the field of p? elements.

We record some properties of GR(p", d) in the next theorem.

Theorem 1.3.3. (Section 6.2 of [1]) Let n, d be positive integers and p a prime.
Let g(t) € Zyn[t] be a monic polynomial of degree d such that the reduction g(t) in

Zylt] is irreducible. Let R = GR(p™,d) = Zyn[t]/(g(t)). Then

(1) R is a finite local ring of order p™ with mazimal ideal M = p(Z[t]/(g(t))),
which is principal, and residue field R/M = F,a. Moreover, the character-
istic of R is p".

(2) The unit group R* consists of cosets ag+ayt +---+aqg_1t* 1+ (g(t)), where
a; € Ly foralli € {0,1,...,d—1} and p 1 a; for somei € {0,1,...,d—1}.

An extension ring R of a local ring S is called a local extension if R is a
local ring. Hence, the Galois ring GR(p", d) is a local extension of Zn.
The structure of the unit group of GR(p™, d) is well studied and presented with

its exponent below.

Theorem 1.3.4. (Theorem XVIL.9 of [8]) The unit group GR(p",d)* = H x F,,

where H is a group of order p™~Y?% such that:

(1) If (p is odd) or (p = 2 and n < 2), then H is a direct product of d cyclic

groups each of order p"~', and so the exponent of GR(p"™,d) in this case is

Pt (pt —1).

(2) If p=2 and n > 3, then H is a direct product of a cyclic group of order 2,

a cyclic group of order 2"~2 and d — 1 cyclic groups each of order 2"~ ', and



so the exponent of GR(2",d) in this case is 2" *(21 — 1) for d > 2 and 2"

for d =1, respectively.

1.4 Finite chain rings

A finite chain ring R is a finite commutative ring with identity such that for
any two ideals I and J of R, we have [ C J or J C I. For example, for a prime p

and n € N, Zp» is a finite chain ring and all ideals form the chain
{0} Sp" ' Zpn -+ C PZn S L.

Moreover, the nilpotency of pZ,. is n.
It can be shown that (Section XVII of [8]) a finite chain ring is a finite local

ring with maximal principal ideal. Thus, a Galois ring is a finite chain ring.

Example 1.4.1. The ring Fyz[z]/((x 4 3)?) is a finite chain ring (maximal ideal

(x + 3)/(x + 3)?), but it is not a Galois ring.
We recall the characterization of a finite chain ring in the next theorem.

Theorem 1.4.2. (Theorem XVIL5 of [8]) Let R be a finite chain ring with unique
maximal ideal M with nilpotency s, and residue field R/M = F,a. Then a finite

chain ring R is isomorphic to an extension ring
GR(p", d)[z]/(2(x), p"~ 2"~ "7D°)

for some positive integers n, e, and z(x) = ¢+ p(ac_12 " + -+ + ag), ag €

GR(p™,d)*, ai, -+ ,a._1 € GR(p",d), called an Eisenstein polynomial of
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d(s—1

degree c. Furthermore, |R| = p®, |M| = p?*=Y and R is a local extension of

GR(p",d).

Moreover, the group of units of a finite chain ring is explicitly determined
by Hou et al. [4]. (The results are complicated and consist of several cases and
many new symbols, so they are not included in this dissertation.) Therefore, the
exponent of a finite chain ring is known. Recently, Chen et al. [2] studied the
structure of the Gauss extension of a Galois ring and its unit group.

Besides the characteristic of the unit group, the exponent of the ring can be
used to study the digraph of the kth power mapping [3, 7, 10, 11]. This motivated
Dang and Somer [3] to compute without the explicit structure of the unit group,
the exponent of the quotient ring F,[z]/(f(x)*), where a > 1, F, is the field of ¢
elements and f(z) is a monic irreducible polynomial in F[z].

A deeper result for local ring extensions is as follows.

Theorem 1.4.3. (Corollary 4.3.3 of [1]) Let R be a finite local ring, and f(x) be
a monic irreducible polynomial in R[z]. Then R[z]/(f(x)*) is a finite local ring

for any positive integer a.

In this dissertation, we consider a local extension R of the Galois ring GR(p™, d)

of the form
GR(p",d)[z]/(f(2)),
where @ > 1 and f(x) is a monic polynomial in GR(p", d)[z] of degree r such that

the reduction f(x) in Fya[z] is irreducible. We compute the exponent of R without

completely determination of its group structure in Chapter II. In Chapter III, we
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study the existence of a t-cycle and the number of ¢-cycles in ng)(R) where R is
a finite commutative ring with identity. Moreover, in Section 3.2, the maximum
distance from any vertex to the unique cycle in the component of the digraph
ng)(R) and the trees attached to it are determined. Furthermore, we investigate
indegree of 0 and the maximum distance from any vertex to the fixed point 0 in
ng)(R) for a finite chain ring R. For Chapter IV, we discuss semiregular digraphs
and determine the indegree of any vertex in R* in Section 4.1. Then, in Section
4.2, we work on symmetric digraphs. The final chapter gives five examples of the
kth power mapping digraphs demonstrating the results in the previous chapters.

The work in this dissertation will appear in Turkish Journal of Mathematics [9].



CHAPTER 11

EXPONENT OF GR(p",d)[x]/(f(x)")

In this chapter, we compute the exponent of the local extension R of the Galois

ring GR(p™, d) of the form

GR(p", d)[x]/(f(x)"),
where a > 1 and f(z) is a monic polynomial in GR(p", d)[x] of degree r such that

the reduction f(z) in Fya[z] is irreducible. From Section 4.3 of [1], we have that

R is a local ring of characteristic p” with maximal ideal

M = (p, f(x))/(f(x)*)
= {h(z) + f(@)l(z) + (f(2)?) - h(x) € pGR(p", d)[z], I(z) € GR(p", d)l],
degh < r, degl <r(a—1)}.
Then |R| = p™¥a, |M| = p ™= and R/M = F .
When a = 1, it turns out that R is still a Galois ring as a result of the next

theorem.

Theorem. (Theorem 14.23 of [15]) Let f(z) € GR(p",d)[z] be a monic polyno-
mial of degree r such that the reduction f(z) in Fya[x] is irreducible. Then the
ring GR(p™, d)[z]/(f(z)) is isomorphic to a Galois ring GR(p™,dr).

Hence, R = GR(p",d)[z]/(f(z)) = GR(p",dr) and the exponent R is pre-

sented in Theorem 1.3.4.
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Now, we assume that a > 2 and proceed to compute the exponent of R.

2.1 Some lemmas

Since R is a local ring with maximal ideal M, by Theorem 1.4.3 (3) we have
R*=(1+M)x ]F;dr and IF;dT is cyclic of order p?" — 1, so it suffices to determine
the exponent of the p-group 1+ M.

Deng and Somer [3] considered the exponent of the ring F,.[z]/(f(x)*), where
a>1and f(z) is an irreducible polynomial in F,»[z]| of degree r in the following

theorem.

Theorem 2.1.1. (Lemma 3.3 of [3]) Let f(x) be an irreducible polynomial in

Fyn[z] of degree r and a > 1. Then

AEpe[z]/(f(2)*)) = p* (" — 1),
where p*~' < a < p* for some s € NU{0}.

Following Deng and Somer, let s be the positive integer such that p*~! < a <
p°. We shall show that every element in 1 + M is of order not exceeding p*™"~1
and the order of 1+ f(z)+(f(x)®) is p*™~1, so the exponent of the group 1+ M is
p*tn=1 However, our computation is more complicated because the characteristic
of the ring R is p" and the binomial coefficients do not disappear easily like in the
extension of fields case where it is of characteristic p.

For any m € N, we write e,(m) for the maximum power of p in m, that

is, p™) | m but p™+ §m,
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The proof is started by deriving some facts on the maximum power of p is

binomial coefficients using de Polignac formula.

Theorem 2.1.2. (de Polignac formula) Let m € N and p be a prime. Then

o0

ep(ml) = 3 [,

i—1 P
We divide the computation into four lemmas as follows.
Lemma 2.1.3. ep((zl’f)) = ep((}l’:)), where 1 < ly,lo < p—1andn € N. Moreover,
Proof. Note that e,(p™!) = p" ' +p" 2+ ---+p+1. Since 1 <y, <p-—1,

ep(l1!) = e,(le!) = 0 and

(" — 1)) = [y oy

p p? "
=l " pr—1
— 21+ > I+ 4 [

= &p((p" = 1))

On the other hand,

Hence,

as desired.
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Lemma 2.1.4. Leta > 2, and s, n € N, where p° ' < a < p°. For, 0 <i<s5—2,

1<k<(p—1p*2"—1. Then:

s+n—1 s+n—1

(2) ep((pf_l_,-+ll)) = ep((pf_l_url?)), where 1 < 11,1y < p—1. Moreover,

s+n—1

s+n—1 s+n—1
(4) ep((ps,fj%pﬂl)) = ep((ps,f,lkpﬂz)), where 1 < ly,ly < p—1. Moreover,

s+n—1
ep( (=) 2 -

Proof. Note that e,((p*t"!)!) = p*™ 2 4+ p*t"3 4 ... 4+ p+ 1. For (1), we

compute

ep((ps—l-n—l o ps—l—i)!>

s+n—1 s—1—1 s+n—1 s—1—1 s+n—1 s—1—1
p —Pp p - D p - D
= P J+1 e J+-+1 = I+
ps+n—1 _ ps—l—i ps-l—n—l _ ps—l—i ps+n—1 _ ps—l—i
[ psflfi ] + [ psfi ] REE [ ps+n72 ]

— (ps-l—n—Q . ps—Q—i) + (ps+n—3 . ps—3—i) R (pn+1+i . p)+
P =D+ =)+ (0 1)

=P p ) = (P p L (R )

and

p8—2—i+.._+p+1.

ep(p))
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Thus

o (i ) = ) = e = ) ()

ps—l—z

Observe that

ep((ps-i-n—l . ps—l—i . ll)')
s+n—1 s—1—1 s+n—1 s—1—1 s+n—1 s—1—1
p —p —li, —p —h p —p —1
= ; |+ > |+
[szrnfl _ psflfi _ ll] N [ps+n71 _psflfi - ll] T [szrnfl _ psflfi _ ll]
ps—l—i ps—i ps+n—2
s+n—1 _ ,s—1—1 s+n—1 s—1—1 s+n—1 s—1—1
p p —l, P —p — b p —p —1
= | p [+ e [+ 4 praca “]+
[ps—l—n—l _ ps—l—i _ l2] N [ps+n—1 _ps—l—i _ lg] ey [ps—l—n—l _ ps—l—z _ l2]
psflfi psfi ps+n72

— 6p(<ps+n—1 _ps—l—i o 12)')

Moreover,

(P =T =)

_ <ps+n—2 _p5727i — 1)+ (ps+n—3 o psfoi — D)4t <pn+1+i —p— 1D+
P =1-D+@"" =D+ + (-1

=P+ ) (Pt p L (R i 1)+ (s =2 —14))

= (P =P 1+ (i i+ 1) + (s —2—14)
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Hence,

s+n—1
ep<( r )):ep<<ps+"-1>!>—ep<<ps+”—1—ps—1—i—z1>!>
ps—l—z+l1

—ep((pP T+ 1))

=n+s—1>n.
This proves (2). Next, we compute

ep (P —p T —kp)!) =

s+n—1 _ . s—1—t __ k stn—1 _ . s—1—1 __ k s+n—1 _ . s—1—i k
P p Py P v Plyo [P v Piy
p p p
s+n—1 _ . s—1—1 k s+n—1 _ . s—1—1 k s+n—1 _ . s—1—1 k
e e e
p p p
. , k
— (szran . p8727’L - k) + (ps+n73 - psf?)fl + [_];D et
. , k
(pn—i—l—i—z —p+ [_ 57371']) + (pn—H -1+ [_ S,Q,i])_}—
p p
e 1k 1 k
(" = =) o e sl
=@ p+ ) = (P LR+ D)
k k 1 k 1 k
(==]+-+ [_ps—Z—i]) + ([_5 - ps—l—i] oot [_pn—1+i - ps+n—3])
and
s—1—1 s—1—1
s—1—1 p + kp p + kp
(P T+ kp)) = [——+ -+ [——]
p p
s—2—1 k k
=@ ekt Db 4+ ),



Thus

and so we have (3). To prove the final statement, we compute

(P =P —kp = 1))

szrnfl . psflfi . kp _ ll

[szrnfl _ psflfi _ k’p - ll

p
ps+n—1 o ps—l—i o kp _ ll ps+n—1 _ ps—l—i _ kp o ll
[ ps—2—z' ] + [ ps—l—i ]+
[ps+n—1 _ ps—l—z‘ _ kp _ ll] T [ps+n—1 _ ps—l—z’ _ kp _ ll
psfi ps+n72
B ps+n—1 _ ps—l—i _ k’p _ l2 ps+n—1 _ ps—l—i _ k,p _ 12
- | ; + = 4+
ps+n71 _ psflf'i - kp - l2 szrnfl - psflfi - k,p . l2
[ ps—Q—i ] + [ ps—l—i ]+
[ps+n—1 _ ps—l—z‘ o /{Zp _ 12] T [ps+n—1 _ ps—l—z‘ - /{:p _ 12
ps—i ps+n—2

= e, (P —p T —kp—1y))).

]

]

+

+

18



19

Also,

e((r " =y k1))

. . k1
. s+n—2 S—2—1 s+n—3 s—3—1 1
=@ =TT k=) + (T - gDt
. k l , k l
n+1-+7 1 n-+1 1
(p e [_ps—3—i o ps—2—i]) + " -1+ [_ps—2—i o ps—l—z’])+
: 1 k l 1 k l
n—1+1 1 1
(p + [_5 - ps1-i - psfi]) +ot+ o+ [_pn—1+i - pstn—3 - ps+n72])

:(ps+n—2+__'+p+1)_<ps—2—i_|_...—|—p+1+k+1)+
ll k ll

k
—14+[—=—=]++[- _ N
( [ p pQ] [ ps—Q—z p5_1_1])
1 ]{3 ll 1 ]{I ll
([_5 - ps—1-i o ps—i] [_pn—1+i pstn—3 - ps+”—2])
and

s—1—1 s—1—1
+kp+1 + kp+1
p prhy P p+h

s—1—1
ep((p +kp+0)!) = p e

]

=@+ p+ 1)+ (B)+

Therefore,

s+n—1
ep<( P ))
Pk

= e (P — (P = p T T —kp — 1)) — e (0T kp + 1))
kol kool

> (n+i)+1—(([5+]§]+[—2—)—1§])+
k ll k ll
([ps—2—i + ps—l—i] + [_ps—Q—i o ps—l—i])>
> n.

This completes the lemma. O
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Lemma 2.1.5. Let a > 2, and s,n € N, where p°' < a < p*. Let f(2)
be a monic polynomial in GR(p",d)[z] such that the reduction f(z) in Falz] is

irreducible. Then:

s+n—1—t

(1) ep((? i ))=n—t forallteN.

(2) (L+ f(@) + (f@)))P" 7 # 14 (f(2)*) for all t €N.

Proof. Note that e,((p*" 1)) = pst= 27t ...+ p+ 1,

ep<<ps+n—1—t o ps—l)!)

s+n—1—t s—1 s+n—1—t s—1 s+n—1—t s—1
p — P p — P p — P
= | 5 ]+ p J4+ -+ = I+
[ps—i-n—l—t _ ps—l] N [ps—i-n—l—t _ ps—l] P [ps—i—n—l—t _ ps—l]
ps—l ps ps+n—2

and

=n-—"t.

which implies (1). For (2), we compute

s+n—1—t

1+ f+ ()P

s+n—1—t s+n—1—t B s+n—1—t
—1+(? F+ (P ) e+ (P £ ().
1 pit a—1
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Since a > 2 and p*~! < a < p*, we have (1 + f + (f*)P"7" " £ 1+ (f*) for

all t € N by (1). O
Lemma 2.1.6. ¢,(m!) < -2 for allm € N.
Proof. Let ¢t € N be such that pt < m < p!™!. For i >t + 2, we have

t+1
0<% <P5 <1, so[%] =0. Hence,

00 t+1 00 t+1 t+1 00
m m m m m m m
am) =30 =3 M+ S (=Y < S Dy T
j=1 P j=1 P j=t+2 P j=1 I j=1 I j=1 poop-1
as desired. O

2.2 Exponent of GR(p",d)[z]/(f(z)"), a > 2

Now, we are ready to compute the exponent of GR(p", d)[x]/(f(x)*), when a > 2.

Theorem 2.2.1. Let f(x) € GR(p",d)[x] be a monic polynomial of degree r such
that the reduction f(z) in Fplz] is irreducible, and a > 2. If s is the positive

integer such that p*~' < a < p°, then

NGR@p", d)[z]/(f(z)")) = p" " (" — 1).

Proof. Let h(z) € pGR(p™,d)[z], and I(z) € GR(p",d)|x], where degh < r, and
degl < r(a—1). Then

s+n—1

(I+h+ fl+ (P =0+ + (p .

) L+ " Tt
s+n—1 e A
<pﬁn1 - 1) (L o™ T ().

Since h(z) € pGR(p",d)[z], we have h(z)’ € pPGR(p",d)[z] for all j € N. By

Lemma 2.1.6, e,(j!) < jand s+n—1>n, so (pH;fl)hj € p*"IGR(p", d)[z] =
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{0} for all 1 < j < p*™~ 1 Tt follows that

ps+n71 h — .. = p8+n71 hp8+n—1—1 — hps+n—1 _ 0
1 ps+n—1 -1 :

Thus,

s+n—1

(L+h+ fL+(f) = L+ fO 4+ (f%)

B ps+n_1 ps+n—1 o1 ps+n—1 . u
1 (T e (Y (0 Yt

s+n—1

Lemmas 2.1.3 and 2.1.4 show that p* | (", ) for all i € {1,2,---,a — 1},

(2

s+n—1

Hence, (1 + h + fl + (f*))? = 1+ (f*). Thus, Lemma 2.1.5 implies that
p*T™~1is the order of 1+ f + (f*) € 1 + M, so exp(1 + M) = p**"~!. Therefore,

MGR(p", d)[x]/(f(x)*)) = lem(exp(1 + M), expF ) = p* 1 (p" —1). H

Taking d = 1 and n = 1 in Theorem 2.2.1, respectively, we conclude the

following corollaries.

Corollary 2.2.2. Let f(x) € Zyn[x] be a monic polynomial of degree r such that

the reduction f(x) in F,[x] is irreducible, and a > 2. Then
MZpn[2)/(f(2)*)) = p™ "7 0" = 1),
where p*~1 < a < p* for some s € N.

Corollary 2.2.3. Let f(x) € Fpa[x] be a monic irreducible polynomial of degree r,

and a > 2. Then

MEFpalz]/(f(2)") = p*(p" — 1),

where p*~t < a < p* for some s € N.



CHAPTER I11

CYCLES AND DISTANCE

In this chapter, we find necessary and sufficient conditions for the existence of
t-cycles with ¢ > 1 in ng)(R), and find the number of ¢-cycles in ng)(R) for a
finite commutative ring R with identity. Later, we compute the indegree of the
fixed point 0 and maximum distance from a vertex in the component containing

0 to 0 in ng)(R) over a finite local ring R.

3.1 Number of cycles

Let R be a finite commutative ring with identity 1 # 0 and & > 2. We set
A(R) = uv, where u is the largest divisor of A(R) relatively prime to k. Let ¢ be

a positive integer.

Theorem 3.1.1. The following statements are equivalent.
(1) There exists a t-cycle, where t > 1, in ng)(R).
(2) There exists b € R* where t is the least positive integer such that o(b) | k'—1.
(3) t =ordgk for some divisor d of u.

Proof. (1) = (2). Let a be a vertex of a t-cycle. Then ¢ is the least positive

t

integer such that a* = a, so a(a* ' —1) = 0. Since a € R*, a*~' —1 = 0. Thus,
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t is the least positive integer such that a*~! = 1, and we set b = a. Hence, we
have (2) as required.

(2) = (3). Suppose there exists b € R* such that o(b) | k' — 1, but o(b) t k! — 1,
for all 1 <[ < t. Then t is the least positive integer such that b¥'-1 = 1, and
ged(o(b), k) = 1, so o(b) | u. Set d = o(b). Thus, t = ord, k for some divisor d
of w.

(3) = (1). Suppose t = ord, k for some divisor d of w. Since R* is abelian, then

there exists a € R* such that o(a) = A(R). Set b = a7 Since ¢ = ordy k, t is

t
pri—1 _ AU

the least positive integer such that and so b € R*. This means

that b¥" = b, that is, there exists a t-cycle, where ¢ > 1, in ng)(R). O
Corollary 3.1.2. If k=1 (mod u), then every cycle in G\(R) is a fized point.

Proof. Assume that £k =1 (mod u). Hence for any divisor d of u, d | k— 1. This
means that 1 = ord, k for all divisors d of u. By Theorem 3.1.1, every cycle in

ng)(R) is a fixed point. O

Let R be a finite commutative ring with identity. The number of ¢-cycles in
G®(R) is denoted by A;(G®™(R)). For a finite local ring R with unique maximal
ideal M, let p™ be the order of R and the residue field R/M = F,» We have known

that R* = (1+ M) x F;., where 14 M is a p-group of order p" =D Assume that
1+ M =Zps1 X Lpsa X -+ X Lypsa,

for some g € N, and 0 < 51 <55 <--- <5, such that sy +s2+---+s, =r(n—1).

Then we can find the number of ¢-cycles in ng)(R) by the following theorem.
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Theorem 3.1.3. Let R be a finite local ring of order p™ with unique mazximal
ideal M and residue field R/M = F,-. Assume that R* as in the above set up,
and let k > 2, t € N. Then

1/ 1 |
4GP R) = S ([T eca™ K = 1) (ged(p’ = 1,6 = 1)) = 3~ dALG(R))).

(e dJt,dt
Proof. Let g € R* be a vertex in a t-cycle. Then t is the least positive integer
such that ¢* = ¢, so ¢* ! = 1. Notice that A in ng)(R) satisfies h¥" = h if
and only if h is a vertex in a d-cycle of ng)(R) for some d | t and the number of
vertices in a d-cycle is dAd(ng)(R)). Then the number of vertices in ng)(R) that
satisfy equation ¢ ! = 1 is equal to (ﬁ ged(p®, k' — 1)) (ged(p” — 1,k" — 1)) —
i=1

Z dAd(ng) (R)). Consequently,
d|t,d#t

AUCY(R)) = %((chd@%kt—1>><gcd<p’"—1,kt—1>>— > dad(GP(R)),

d|t,d+t
as required. O

The group of units of the Galois ring GR(p™,r) presented in Theorem 1.3.4

gives us the next result.

Theorem 3.1.4. Let R = GR(p™,r) be a Galois ring, where n, r are positive

integers and p is a prime. Let k > 2 and t € N. Then:

(1) If (p is an odd prime) or (p =2, and n < 2), then

AGP(R)) = 4 (ged (=1, K —1)(ged (" K =1)) = Y dA(GI(R))).
d|t,ds£t

(2) If p=2, and n > 3, then

AGY(R) = 1 (ABOD — 3 dAdGP(R))),

dlt,d£t
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where A = ged(2" — 1,k — 1), B =ged(2,k' — 1), C = ged(2" 2%, k! — 1) and

D = (ged(271, K — 1)),

3.2 Distance

Let R be a finite commutative ring with identity. In this section, we work on
the distance from any vertex to the unique cycle in the component of the digraph
ng)(R) and the trees attached to it. The proofs are similar to Theorems 3.6-3.8

of Meemark’s [11].

Theorem 3.2.1. Let R be a finite commutative ring with identity, and write

k= p’lﬂpg2 ...pF, where py,pa, . .., pr are distinct primes, k; > 1 for alli. Suppose

that A\(R) = exp(R*) = pi*p3*...p%m, a; > 0 for all i and ged(py ...p,,m) = 1.

For each component of ng)(R), the maximum distance from a vertex in the com-
a;

ponent to the unique cycle of the component is equal to | = max [kj—w

Proof. Let g € R*. Since o(g) | A(R), o(g) = pi'pb* ... b%s where b; < a; for

; ince & ai] . . Ta , — &
all i and s | m. Since & <[], b < a; < k[ 3] < kil where | = frgl?g}i[kﬂ
Then o(g*') = W = s. Since s | m and ged(k,m) =1, ged(k, s) = 1. Since

s | ke© — 1, g * =D — 1 and so gF'***) = gk Hence, g*' is on a cycle, and
the distance from a vertex in the component of G1(R) to the unique cycle of the
component is at most [.

Next, we assume that g € R* is a vertex on a t-cycle. Let o(g) = d. Then ¢
is the least positive integer such that d | k' — 1, so ged(k,d) = 1. We shall find

a vertex in the component to g of distance [. Since R* is abelian, there is an
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h € R* such that o(h) = A(R). Choose w = h™. Then

m\ __ O(h) _..a1,as ar
o(w) = o(h )—W—M Dy oDy

Thus, o(w) | k', this means that w* = 1. Since ged(k,d) = 1, for any j > 0

kN 0(9) —
)= edlolg) )~

o(g
Then o(wg"') = lem(o(w),0(g")) = pi'ps?...p¥d, and (wg® ¥ = whgt""" =
g¥*" for all j > 0. Hence, wgF " is the initial vertex of a directed path of length

[ tog. O

Theorem 3.2.2. Let R be a finite commutative ring with identity, and let k > 2.

Write k and A(R) as in Theorem 3.2.1. Then the set
H={weR*:w"” =1 forsome je{0,1,...,1}}

consists of all vertices of the component containing 1. Moveover, every vertex in

H is on the tree attached to the fized point 1.

Proof. For any x € H, we have ¥ =1 for some j € {0,1,...,1l}, and so x is a
vertex in the component containing 1.

Conversely, let y be a vertex in the component containing 1. Then y* = 1,
for some j € {0,1,...,(}, this means that y € H. Thus, H consists of all vertices
of the component containing 1. Finally, it is clear that every vertex in H is on

the tree attached to the fixed point 1. ]

Corollary 3.2.3. Let R be a finite commutative ring with identity. Let k > 2

and t € N. Let g € R* be a vertex on a t-cycle. Then the tree attached to g is
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1somorphic to the tree attached to 1. Moreover, any two components in ng)(R)

containing t-cycle are isomorphic.

Proof. Let ¢ € R* be a vertex on a t-cycle. The proof of Theorem 3.2.1 gives

that
Hy = {wg"”"" :w e R*, and w* =1 for some j € {0,1,...,1}}

is a vertex on the tree attached to g.

Next, we show that |H,| = |H|. Let h € R* be a vertex on this tree pointing
to g. Then hF = g for some ¢ € {0,1,...,l}. Note that s € R* is a root of
¥ = ¢ if and only if sh™! is a root of 2z = 1. Hence, we obtain a one-to-one

correspondence between  and H, preserving the tree structure. Hence, this proof

is complete. O

For the graph ng)(R), let R be a finite local ring of order p™ with unique
maximal ideal M, residue field R/M = F,-, and let s € N be the nilpotency of
M. Tt is clear that there is only one cycle in ng)(R), that is, the cycle of the fixed
point 0, so Al(Gék)(R)) =1 and At(ng)(R)) =0 fort > 2.

For the unique component of ng)(R), we shall study indeg(k) 0 and the maxi-
mum distance from a vertex in the component to the unique cycle of the compo-

nent by looking at the chain
{oyc M 'C...C MCR,

and calculating |[M7|, where 1 < j < s. Note that M?/M**! is an R/M-vector

space where the action of R/M on M'/M™! is given by (o + M)(n + M) =



29

an+ M for all @ € R and n € M*. Assume that dimp/ (M*/M™') = ¢; for
all 1 < i < s—1. Since |[M| = p"™Y and |R/M| = p", |[M/M? = p, so
T(n—l—tl—tg—m—t]'_l)

|M?| = pr™=1=t)_ Continuing this calculation gives |M7| = p

forall 1 <j <s.

Theorem 3.2.4. Let R be a finite local ring of order p™ with unique maxi-

mal ideal M, residue field R/M = F, and let s be the nilpotency of M. Let

dimp/p (M'/M™Y) = t; for all 1 < i < s —1. For the unique component of

ng)(R), let I be the mazximum distance from a vertex in the component to the

unique cycle of the component and let k > 2. Then indeg® 0 > pr®=1-T) " yhere
[£1-1

T = Z t; and | = [log s|. In particular, if k > s, then Gék)(R) has one
i=1

component and indeg(k) 0= |M|=p'™Y, that is, every directed edge terminates

at 0.

Proof. First, we assume that k¥ < s. Clearly, M'¥l C {z € M : 2* = 0}.
Thus, indeg® 0 = [{z € M : 2F = 0} > |MIE]| = pr® T where T =
ttty o+,

Next, let | = [log, s| and let # € M. Since | = [log, s], so k! > s. Then
2 = 0. Let j be the distance from z to 0. Then 2 = 0 and hence J <. Let
y be any element in M ~ M2. Then y* = 0. Since | = [log, s], | — 1 < log,, s,
k' < s, Since y € M ~ M2, y*" #£ 0. Hence, | = [log, s] is the maximum
distance from a vertex in the component to the unique cycle of the component.

If k > s, then 2F = 0 for all z € M. Thus, indeg® 0 = |M| = p™ 1 and

every directed edge terminates at 0. O]
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In particular, for a finite chain ring R with unique maximal ideal M and residue
field R/M = [F,a, we have for any § € M ~ M?, M = RO and M’ = R# for all
1 < j <'s, where s is the nilpotency of M. Since dimp/p (M’'/M"™') =t; =1 for
all 1 <4 < s—1, it follows that |M?/M™ = pd forall 1 <i < s—1,s0 |R| = p¥,
|M| = p¥==Y and |M7| = p*=9) for all 1 < j < s. Therefore, the above theorem

implies the next corollary.

Corollary 3.2.5. Let R be a finite chain ring with unique mazimal ideal M,
residue field R/M = F,a and let s be the nilpotency of M. For the unique com-
ponent of ng)(R), let | be the maximum distance from a vertex in the component
to the unique cycle of the component and let k > 2. Then indeg(k) 0 = pdt—I%D
and | = [log, s]. In particular, if k > s, then GS)(R) has one component and
indeg(k) 0=|M|= p?=Y that is, every directed edge terminates at 0. Moreover,

if R=GR(p",d) is a Galois ring, the result holds with s = n.

Proof. If £ > s, then the result is immediate. Suppose that k& < s. Clearly,
M'il C {x € M : ¥ = 0}. Let 2 € M be such that #¥ = 0 and assume that
x does not belong to M%! Suppose that z ¢ M%l. Then z = 787 for some
r € R* and j < [2]. This implies that kj < s and so 2* = r*6" #£ 0 which is

a contradiction. Hence, indeg® 0 = [{z € M : 2% = 0}| = |[MT%]| = p2-TED),

By Theorem 3.2.4, the maximum distance from a vertex in the component to the

unique cycle of the component is [log, s]. O
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Example 3.2.6. Let R = GR(2%1)[z]/(x + 2,23 '2) and k = 2. Then s =
(3 —1) + 1 = 3 is the nilpotency of maximal ideal M of R and [M| = p*~! = 4.
By Corollary 3.2.5, indeg'® 0 = 2 and the maximum distance from a vertex in the
component to the unique cycle of the component is [ = 2. The digraph GgQ)(R) is

shown below.

2 8

%
b



CHAPTER IV

SYMMETRIC DIGRAPHS

In this chapter, we present some conditions when the digraphs are symmetric
using the exponents discovered in Chapter II.

Let N > 2 be an integer. The digraph G is said to be symmetric of order
N if its set of components can be partitioned into subsets of size N and each
containing N isomorphic components.

For example, we consider the digraph G (Z,).

\/ ! ! \/

We see that its components can be partitioned into subsets of size two and each
containing two isomorphic components. Hence, the digraph G?)(Z,5) is symmetric
of order 2.

Next, we consider the digraph G (Zy).

8

I e T

It follows that its components cannot be partitioned into subsets of any size N > 2

[\
ot
o0
>

—e
«—e

and each containing N > 2 isomorphic components. Hence, the digraph G®)(Zj)
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is not symmetric of any order N > 2.
An important tool for investigating the symmetric digraphs is semiregularity.
Hence, we study semiregularity and then we determine conditions on symmetric

digraphs.

4.1 Semiregularlity

A digraph G is called semiregular if there is a positive integer d such that each
vertex of GG either has indegree 0 or d. We know the outdegree of each vertex of
G™(R) is equal to 1. We investigate the indegree of vertices in G*)(R) and show
that ng)(R) is semiregular.

For a finite local ring R with unique maximal ideal M, let p™" be an order of

R and the residue field R/M = F,. In Section 3.1, we assume that
R* = (1+M) XF;T gqu XZpsz X oo XZqu XF;r,

for some ¢ € N, and 0 < 51 <55 < ... < 5, such that sy +s2+---+s, =r(n—1).
Then we have the indegree of 1 in ng)(R) in the next theorem. We also need the

indeg(k) 1 recalled in the next theorem.

Theorem 4.1.1. (Theorem 2.3 of [14]) Let R be a finite local ring of order p™

with mazimal ideal M and residue field R/M = F,-, and let k > 2. Assume that
R*2(1+ M) xF) =2 Zpsi X Lpso X -+ X Lyyra X F,

for some g € N, and 0 < 51 < s9 < --- < s, such that sy +sa+---+s, =r(n—1).
q

Then indeg® 1 = (H ged(p™, k:)) (gcd(p'r -1, l{;))

=1
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Proof. Note that the indegree of 1 in ng)(R) is the number of solutions of z¥ = 1

in R*, so we find indeg® 1 by consider the number of solutions of kz = 0 in right

hand side. Since a cyclic group of order m contains exactly ged(m, k) solutions of

2% =1, so there are <ﬁ ged(p™, k:)) (gcd(p’" -1, k:)) directed edges entering to 1
i=1

in R*. O

Theorem 4.1.2. Let R be a finite commutative ring with identity and let k > 2.
Then for any g € R*, indeg®™ g = 0 or indeg® g = indeg™ 1. Hence, ng)(R) is

semireqular.

Proof. Assume that indeg(k) g > 0. Then there exists h € R* such that h* = g.
Since s € R* is a root of 2% = ¢ if and only if sh™! is a root of 2* = 1. Hence,

indeg(k) g= indeg(k) 1. O
Together with Theorem 1.3.4, we have:

Corollary 4.1.3. Let R = GR(p",r) be a Galois ring, where n, r are positive

integers, p 1s a prime and let k > 2.
(1) If (p is odd) or (p =2 and n < 2), then

indeg™ 1 = ged(p” — 1, k) (ged(p™ ", k)"

(2) If p=2 and n > 3, then

indeg™ 1 = ged (2" — 1, k) ged(2, k) ged (2772, k) (ged (2771, k)" L.

4.2 Symmetry

For any finite local ring, we have the following results.
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Theorem 4.2.1. Let R be a finite local ring and let k > 2. If ng)(R) is a

symmetric of order N > 2, then G®)(R) is not symmetric of order N.

Proof. Since ng)(R) has only one component and N > 2, G*¥)(R) is not sym-

metric of order V. O
Theorem 4.2.2. Let R be a finite local ring and let k > 2, and t; € N.

(1) If A, (G\P(R)) = NI; for some N > 2, and l; > 1 for any i such that there

are t;-cycle in G(lk)(R), then ng)(R) is symmetric of order N.

(2) ]fAl(ng)(R)) = Nl —1 for some N >2,1; > 1 and Ati(ng)(R)) = NI, for
some l; > 1 for any i such that there are t;-cycle in ng)(R) and Com(0) =

Com(1), then G®)(R) is symmetric of order N.

Proof. Assume that Ati(ng)(R)) = NI; for some N > 2 [; > 1 for any i such
that there are ¢;-cycle in ch)(R). By Theorem 4.1.2 and Corollary 3.2.3, G(lk)(R)
is symmetric of order N. Hence, (1) is completed.

Next, we assume that Al(ng)(R)) = Nl; — 1 for some N > 2,13 > 1, and
Ati(G(lk)(R)) = NI, for some [; > 1 for any ¢ such that there are t;-cycle in
G (R) and Com(0) = Com(1). By Theorem 4.1.2 and Corollary 3.2.3, G*)(R)

is symmetric of order N. Hence, we have (2). O
First, we study symmetric digraphs over Galois rings.

Theorem 4.2.3. Let R = GR(p™,r) be a Galois ring, where n, r are positive
integers, p is a prime and let k > 2. If k = pm, where j > n—1, pt m and

p"— 1|k —1, then G¥(R) is symmetric of order p’.



36

Proof. First we consider the case when p is an odd prime. From Theorem 1.3.4
(1), A(R) = p" ' (p"—1). Since k = pm and p" —1 | k—1, we have ged(k,p"—1) =
1 = ged(m,p” —1). Then u = p" — 1 and &k = 1 (mod u). By Corollary 3.1.2,
every cycle in ng)(R) is a fixed point. Also, Theorem 3.1.4 (1) implies that
Al(ng)(R)) = p" — 1. Since k = pPm, j > n — 1 and ged(m,p"” — 1) = 1,
[ = [”T’W =1 by Theorem 3.2.1 if j > 0. Because j > n—1, k = p?m > n and by
Theorem 3.2.4, G(zk)(R) has one component and indeg®) 0 = |R| — |R*|. Corollary

4.1.3 (1) gives
indeg(k) 1= p=br — |R| — |R*| = indeg(k) 0.

Since [ = 1, Com(0) = Com(1). Corollary 3.2.3 and Al(ng)(R)) =p" — 1 allow
us to conclude that G (R) is symmetric of order p". For j = 0, we have n = 1,
so indeg® 1 = 1 = indeg® 0 and Al(ng)(R)) = p" — 1. Hence, G®(R) is also
symmetric of order p”. The proof of the case p = 2 can be done in a similar

way. O

Theorem 4.2.4. Let R = GR(2",r) be a Galois ring, where n, r are positive
integers and let k > 2. If 2" — 1 is a prime for some r > 3, k = 27, where

j>n—1 and gcd(j,r) = 1, then G®(R) is symmetric of order 2.

Proof. From Theorem 1.3.4, A(R) = 2" (2" — 1), so u = 2" — 1, and is an odd
prime. So, the divisors d of v are 1 and u. If d = 1, then ¢t = 1 (ord; 2/ = 1), so
Al(ng)(R)) =1 by Theorem 3.1.4. Assume that d = u. Then ¢t = ord, 2/ which
is the least positive integer such that u =d = 2" — 1| 2t — 1. Since ged(j,7) = 1,

r | t. Since 2" — 1 is a prime for some r > 3, r is an odd prime. Let t = 2m for
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some integer ¢ > 0 and some positive odd integer m. If i > 0, then r | 2'm and

r | m which is a contradiction because m < t. Thus, t is odd. By Theorem 3.1.4,
(k) 1 r jt 1 r—1
AGPR) = T (ged(2 — 1,2~ 1) 1) = 1)@ 1),

Since At(ng)(R)) is a positive integer and ¢ is odd, At(GSk)(R)) is even. From
j>mn—1 50k =2 >mn. This implies that Gék)(R) has one component and
indeg®) 0 = |R| — |R*| by Theorem 3.2.4. Theorem 3.2.1 gives [ = (”T*W = 1.

Thus, it follows from Corollary 4.1.3 that
indeg® 1 = 20" — |R| — |R*| = indeg™ 0.

Since [ = 1, Com(0) = Com(1). By Corollary 3.2.3 and At(ng)(R)) is an even

(t > 1), we finally have G (R) is symmetric of order 2. O

Next, we study symmetry for digraphs of the kth power mapping over local
rings R = GR(p™,d)[z]/(f(z)*), @ > 2, in Theorems 4.2.5-4.2.7. To use the
exponent of R discovered in Section 2.2, let s be the positive integer such that

psfl <a S ps.

Theorem 4.2.5. If k = pPm, where 0 < j < s+n—1, ptm and k > na, then

G®(R) is not symmetric of any order N > 2.

Proof. The result is clear for j = 0 because p 1 indeg(k)l by Theorem 4.1.1
but p | indeg® 0 by Theorem 3.2.4. Assume that j > 1. By Theorem 2.2.1,
MR) = p*™ (p —1). By Theorem 3.2.1, for each component of ng)(R) has
maximum distance [ > [SJ“?—_W > 2. Since k > na, ng)(R) has one component
and the maximum distance is 1 by Theorem 3.2.4. Hence, G*)( R) is not symmetric

of any order N > 2. O
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Theorem 4.2.6. If k > na and p 1t k, then G¥)(R) is not symmetric of any order

N > 2.

Proof. Since k 1 p, by Theorem 4.1.1, indeg® 1 = ged(p® — 1, k) which is not a
power of p. However, because k > na, it follows from Theorem 3.2.4 that ng)(R)
has one component and indeg®) 0 = |R| — |R*| = p®"*=1 which is a power of p.

Hence, G (R) is not symmetric of any order N > 2. O

Theorem 4.2.7. If k = p'm, where j > s+n—1, ptm and p — 1| k—1, then

G™(R) is symmetric of order p™.

Proof. By Theorem 2.2.1, A\(R) = p*™~1(p? — 1). Since k = p’m and p¥ — 1 |
k—1, ged(k,p?—1) = 1 = ged(m, p —1). Thenu = p¥—1. Since k = 1 (mod u),
every cycle in ng)(R) is a fixed point by Corollary 3.1.2. Also, Al(ng)(R)) =
p? — 1 by Theorem 3.1.3. Since j > s+n — 1, k > na, and so ng)(R) has one
component and indeg® 0 = |R| — |R*| = p? (=1 by Theorem 3.2.4. In addition,
[ = fSJ”;—_IW = 1 by Theorem 3.2.1. Recall that |[R*| = p®(a=D(p?" — 1) and

A(GP(R) = p =1, 50
indeg(k) 1 = pirlna—1) — |R| — |R*| = indeg(k) 0.

Hence, Com(0) & Com(1). Since there are p — 1 component with 1-cycles in

ng)(R) and they are all isomorphic by Corollary 3.2.3, together with Com(0) =

U

Com(1), we can conclude that G*)(R) is symmetric of order p?.

Finally, let R = GR(p", d)[z]/(z(z), p" *x*~(~Y¢) be a finite chain ring with

s > 2. We end this work by giving some results for symmetric digraphs over R.
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Theorem 4.2.8. If k = p'm, where pt m and ged(m, p® — 1) # 1, then G®(R)

1s not symmetric of any order N > 2.

Proof. Since k = p/m and ged(m, p? —1) # 1, it follows from Theorem 4.1.1 that
indeg™ 1 is not a power of p. However, indeg® 0 is a power of p by Corollary
3.2.5. Hence, Corollary 3.2.3 implies that G*)(R) is not symmetric of any order

N > 2. O
Theorem 4.2.9. If p{ k, then G®(R) is not symmetric of any order N > 2.

Proof. Clearly, Al(ng)(R)) > 1. Recall that indeg® 1 = ged(p? — 1, k) and
p 1 ged(p? — 1,k). By Corollary 3.2.5, we have p | indeg™ 0. Hence, it follows

from Corollary 3.2.3 that G*)(R) is not symmetric of any order N > 2. O

Theorem 4.2.10. If k = p’m, where pfm, p?—1 | k—1 and Com(1) = Com(0),

then G (R) is symmetric of order p.

Proof. Its proof is similar to Theorem 4.2.3 and omitted. O



CHAPTER V

EXAMPLES

We illustrate the results of the previous chapters by the following five examples.

(1) Let R = GR(3%2) and k = 3. Then |R*| = 32~Y2(32 — 1) = 72. It fol-
lows from Theorem 1.3.4 (1) that A(R) = 371(32 — 1) = 3(8). We have
u = 8, so all divisors d of u are 1, 2, 4, 8. By Theorem 3.1.1, GEB)(R) con-
tains 1-cycles and 2-cycles. From Theorem 3.1.4 (1), Al(Gg?’)(R)) =2 and
Ay(GP(R)) = 3. For each component of G{¥(R), the maximum distance
from a vertex in the component to the unique cycle of the component is
I = [1] = 1 by Theorem 3.2.1. It follows from Corollary 4.1.3 (1) that
indeg® 1 = ged(32—1,3)(ged(3%71,3))? = 9. Since k = 3 > n = 2, by Theo-
rem 3.2.4, Ggg)(R) has one component and indeg® 0 = |R|—|R*| = 8172 =
9. Observe that [ = 1 and indeg® 1 = indeg® 0 = 9, so Com(1) 2 Com(0).
Thus, set N =3, [; = 1 = I, and so by Theorem 4.2.2 (2), we have G®)(R)

is symmetric of order 3. We display the digraph G (R) below.
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GP(R)

(2) Let R = GR(3%2) and k = 4. Then |R*| = 327V2(32 — 1) = 72. By
Theorem 1.3.4 (1), A(R) = 3(8). Then u = 3 and all divisors d of u are 1
and 3. By Theorem 3.1.1, G§4)(R) contains only 1-cycles. From Theorem
3.1.4 (1), A (G(R)) = ged(32—1,4—1)(ged (3%, 4—1))2 = 9, By Theorem
3.2.1, any component of G§4)(R) has maximum distance [ = [2] = 2. By

Corollary 4.1.3 (1), indeg™® 1 = ged (3% — 1,4)(ged(3271,4))% = 4. Observe
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that k = 4 > n = 2, by Theorem 3.2.4, Ggl)(R) has one component and
indeg® 0 = 9. Since 4 = indeg® 1 # indeg® 0 = 9, Com(1) and Com(0)
are not isomorphic. Thus, set N = 3, [; = 3, by Theorem 4.2.2 (1), GYQ(R)
is symmetric of order 3, but by Theorem 4.2.1, G®(R) is not symmetric of

order 3. The digraph G®(R) is shown below.

9 copies
G (R)
a5 (R)

(3) Let R = Zo[z]/((x + 1)?) and k = 4. From Theorem 2.2.1, we have s = 1
and A\(R) = 2'7271(2! —1) = 4. Then v = 1 and all divisors d of u is 1. By
Theorem 3.1.1, GgA‘) (R) contains 1-cycles. It follows from Theorem 3.1.3 that
A (GY(R)) = ged(2' — 1,4 — 1) = 1. For each component of G{"(R), the
maximum distance from a vertex in the component to the unique cycle of the

component is [ = [2] = 1 by Theorem 3.2.1. Then indeg” 1 = |R¥| = 8.
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Since k = 22 and r = 1, by Theorem 4.2.7, G®(R) is symmetric of order 2

and we can draw the digraph G (R) below.

GV(R) GH(R)

(4) Let R = Fy[z]/((z+3)?) and k = 2. From Theorem 2.2.1, s = 1 and A(R) =

(5)

2(2%2 — 1) = 2(3). Then u = 3 and all divisors d of u are 1, 3. By Theorem
3.1.1, G (R) contains 1-cycles and 2-cycles. It follows from Theorem 3.1.3
that A;(G”(R)) =1 and AQ(G?)(R)) = 1. For each component of G?)(R),
the maximum distance from a vertex in the component to the unique cycle
of the component is { = [1] = 1 by Theorem 3.2.1. Since |R*| = 4(3)
and by Corollary 3.2.3, indeg'® 1 = 4. Since k = 2 > a = 2, by Theorem
3.2.4, GgQ)(R) has one component and indeg® 0 = 4. The digraph G®(R)

is shown below.

.\é/. @/ .\é/
GP(R) G (R)

Let R = GR(3?,1)[z]/(z* + 1) and k = 2. Then by Theorem 2.3 (2) in [2],
R = GR(3?,2). Then it suffices to consider the digraph over GR(32,2). By
Theorem 1.3.4 (1), A(R) = 3(8). We have u = 3, so all divisors d of u are 1
and 3. By Theorem 3.1.1, ng) (R) contains 1-cycles and 2-cycles. From The-

orem 3.1.4 (1), A(GP(R)) = 1 and A5(G”(R)) = 4. For each component
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of GP(R), the maximum distance from a vertex in the component to the
unique cycle of the component is I = [2] = 3 by Theorem 3.2.1. Tt follows
from Corollary 4.1.3 (1) that indeg® 1 = ged(3% — 1,2)(ged(3*71,2))% = 2.
Since k = 2 > n = 2, by Theorem 3.2.4, Géz)(R) has one component and

indeg® 0 = 9. The digraph G@(R) is displayed below.

\ |/

4 copies

GP(R)
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