CHAPTER 2

CHARACTERISTICS AND FLUCTUATION OF

STATE-OF-POLARIZATION IN A SINGLE-MODE OPTICAL FIBER

2.1. Introduction

In this chapter, we look at characteristics and
fluctuations of SOP of light transmitted through a
single-mode fiber. We first present general expressions
used to characterize SOP of a polarized light. Recent
theoretical studies and measurements of polarization
fluctuation in single-mode optical fiber are then

reviewed.

2.2. Mathematical expressions of general state-of-

polarization

2.2.1. Elliptical, linear and circular polarization of

completely polarized light (monochromatic

light)

A light is considered to be completely polarized
if the end point of its electric (and also of magnetic)
vector observed at a tybical point in space
(x,y,z-coordinates) moves periodically along a straight
line, or a circle or an ellipse. In general, an ellipse
is described and the light is said to be elliptically

polarized. We shall now give the equation of the
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ellipse in the x-y-z system. Suppose the 1light

propagates in z direction, the electric components can

be written as

~a) elliptical polarization:

EX = axexp[i(wt - kr + SX)]
Ey = ayexp[i(wt - kr + 6y)]
E. =1 (1)

where r 1is a position vector of a point in x-y-z
system, k 1is called wave number, w is the 1light
frequency in space, 6X and 6y arg the lightwave phase
in x and y coordinates. a is the amplitude of ﬁhe
lightwave.

By simple mathematical manipulation, the equation

of an ellipse (conic) can be determined from eq.(1) as

{32]
(—F—'><:)2 i (‘_E_ )2 - 2 EXE cosd’ = sinZ(S
a ay a ay
= Yy Xy
(2)
where § = Gy - 6x is the phase difference.

b) linear polarization:
In special cases, the ellipse can degenerate into
a straight line or a circle. According to eq.(1), the

ellipse will reduce to a straight line, when
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E = (-1)a

M x

(3)

In this case, only one component may remain along

this [Line; €©.gs EX, and we say that electric field
(E) is linearly polarized in the x direction.

c) circular polarization:

For circularly polarized wave, special conditions
are also necessary, i.e. a_ = B = a, and § = mn/2 (m

=odd integer). Then eq.(2) reduces to the equation of

the circle

For right-handed circular polarization :

§ =/mn/2
E # e-lﬂ/z AN
B
(5)
For left-handed circular polarization
§ = -m/2
B r eln/Z = g
oM -
(6)

Figure 2 illustrates how the polarization ellipse
changes with varying &§. We shall see later how the
above equation can be applied to express the property

of a completely polarized light (coherency matrix).
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Figs

Elliptical polarization with various values of the
phase difference §.
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2.2.2. Expression of partially polarized light

(quasi-monochrometric light)

In general, the variation of the field vectors is
neither completely regular nor completely random and we
may say that a light having properties between these
two extremes is partially polarized.

Consider such a light of average angular frequency
propagated in the =z-direction. The electric field
components in the x and y directions at right angles to

the direction of propagation can be expressed as

Ex(t) = ax(t) expli(wt + Gx(t)]
Ey(t) = ay(t) expli(wt + 6y(t)]
(7)
where ai(t) and éi(t) denote amplitude and phase

noises in the respective directions, respectively. If
the light were completely polarized, the guantities
would be constant see eq.(1). For a partially polarized
light these gquantities depend on the time, but they
change only by small relative amounts in any time
interval At that is small compared to the coherence
time 1/Av, i.e. At < 1/Av for v 1is the effective
spectral width of the light.

Next, we —consider the intensity. of such a

partially polarized light. Suppose that a phase delay
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e is given to the y-component using for example, a
Babinet-Soleil compensator (BSC), and observe the
intensity after the 1light passes through =a linear
polarizer oriented at 6 with respect to the
x-direction. Then the component of the electric vector

in the 6 direction can be expressed as

1E

E(t:8,e) = EXCOSG + Eye sin®
(8)
Therefore, the intensity is given as
I(ele) = < E(t;@,e).E*(t;G,a) >
2 AN ie :
= J _cos”® A>3 4sin“B.+ J__e cosfsinb
XX Y Xy
+ J Xe_lesinecose
® (9)
where * denotes complex conjugate, S Jyy’ ny and
Jyx are the elements of the following matrix
CE_E_*> <E_E_*> T <a_a el(ax_dy)>
%% - AN X X"y
J = =
<E_E_*> <E_E_*> <a_a e—i(SX"éy)> a2y
| ¥ E — ¥ ¥ X'y y

(10)

Matrix J is called the coherency matrix. The

diagonal elements J and J are real and
XX vy

represent the intensities in the x- and y- direction,

respectively. The total intensity of the light is given
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by the sum of these elements i.e., the trace of the

matrix,

TriJ] = J + J = <E_ E *> + <E_E_*>
XX yy D 4 yy

(11)

The non-diagonal elements ny and Jyx are
always complex-conjugate with each other.

The measurements method to determine the four
elements of the coherency matrix will be discussed
later in chapter 4. We shall now consider the forms
of coherency matrix for completely unpolarized and
completely polarized lights.

a) completely unpolarized light:

For a completely unpolarized 1light 1I(6,e) 1is

independent of ¢ and 8. In other words

™O,e) = constanty
(12)
and it follows that the coherency matrix J of

such a light is

§ 535

where I = J + J under the conditions of J e
o 17 vy Xy yX

= 0 and J — I R
XX vy

b) completely polarized3j
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As stated previously, for a completely polarized,
the amplitudes a, and ay and the phase noises Gx and

6y in eg.(7) do not depend on the time, and coherency

matrix has the form

(14)
where § = GX - 6y.
In this case, the determinant of the coherency

matrix is

det[Jc] £/

gy T Txylyx = O
(15)
We shall consider now for special cases when the
light is linearly and circularly polarized.
According to eq.(3) the coherency matrices J
and Jy represent lineafly polarized light of intensity
I, with the electric field vector in the x-direction

and the y-direction respectively can be expressed as

(16)

and the coherency matrix J450 and J1350 represents

linearly polarized 1light of intensity I, with the

electric vector tilted 45° and 135° with the

22



¢

x-direction, respectively are given by

Jsee = 11 and J ° 13
= Z |4 & 13 S S
(17)
where, in eq.(3), 3, = ay, m = 0 and Bl = ay, m =1,
respectively
For <circularly-polarized 1light, the coherency
matrix can be expressed as
Rzt 1
i/ /7 1\ Bk
2000 1
(18)
where I is the intensity of the light, and o ay, § =

mn/2 (m: odd integer) according to eg.(5) and (6). The
upper or lower sign is for the respective right or left

handed polarization.

2.2.3. Degree of polarization

Any partially polarized 1light can be regarded
as the sum of a completely unpolarized and a completely
polarized lights which are independent of each other.

From this statement, any éoherency matrix of a

partially polarized light can be expressed uniquely as

(19)
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where J  and J denote the uncompletely polarized

and completely polarized coherency matrices, in
accordance with eq.(13) and (14), we write Ju and Jc

as

A 0 B D
J = ’ J =
e 0 A . D* C
(20)
Hence, we have
A+B D
J =
D* A+C
(21 )

with A > 0, B > 0,/ ¢ /Y0 fand BC.- DD* = 0. We can

obtain immediately from eg.(19) and (20),

D*

1]
o]

(22)

where the J elements denote those of the given
partially polarized light. Substituting from eqg.(21)

to BC-DD*=0, we obtain the following equation for A :

(JXX— A)(Jyy— A) - ny JYX =

(23)

The two roots of eqg.(22) can be found as
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2
(Tpy + Typ) 00 + 3,07 - sdet|J|

(24)

From eg.(20) it follows that B and C must be positive.
This condition is satisfied when we take the negative
sign in front of the square root in ed.(22).

Hence, we have

BT # Ty = A, # T 00 = 2get]a]
5 XX YY) > XX vy
, (25)
B = 1(d.. - Jo. - Wa,, + 3,)% - adet| 3]
> 667 vy) el b -4 vy
(26)
2
C=100yy = Tyxp= l/fﬁxx =) - 4det| J|
2 2 (27)
B = and D*s= J
X vX (28)

These are solutions for elements of the coherency
matrices in eq.(20).

According tore.q.(11) the trace of the matrix of
&.q. (27) is the Jtetal intensity of a partially

polarized light and it is given by

Itotal = Tr[J] = 2A + B + C a
(29
and the total intensity of its completely polarized

part is

(30)

25



The ratio of polarized component intensity to

total intensity is called the degree of polarization

(hereafter. DOP) P, and is given by

B B Ty E B + C
Itotal 2A + B + C
(31)
Hence from eqg.(25) to eq.(28), P is
i
P =/1 - 4det]| 7|
2
(JXX + Jyy)
(32)

From eq.(32) and (25), it follows that 0 £ P <1 the
property of a light can be characterized by the degree
of polarization.

(1) For a completely polarized light, i.e. there
is no unpolarized component, P = 1 ‘and hence, detlJ|=
0

(2) For a completely unpolarized light, i.e. when
the polarized component is absent, P = 0 and hence (J

2

+3,)° = 4det]d]

(3) For a partially polarized Iight, 0 < P <€ 1.

XX

Thus, for eq.(31) the condition

det|d| < Texdyy < % (T + Ty

(33)

always hold.
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2.3. Graphical representation of the SOP of a

completely polarized light

There are two methods for geometrical
representation of all the different SOP's: the Poincare
and the planar chart. The former method is well-known
and widely used for expressing any SOP of a completlely

polarized light. This will be discussed first.

2.3.1. Poincare sphere

The geometrical representation of different SOP's
by points on a sphere is proposed by Poincare in 1982
[33], and is now well-known as the Poincare sphere.
Figure 3 shows the Poincare sphere representation of
polarization. Any general elliptical polarization state
which is characterized by its inclination angle o and
ellipticity ¢ = + arcean bs/as can be represented
by a unique point C of longitude 2¢ and latitude 2a on
the surface of a wunit sphere. Hence, all linear
polarization states 1lie on the equator and the poles
represent the left L and right R circular polarization
states. X and Y are the horizontal and vertical linear
polarizations. P and Q represent the linear
polarization at +45° to the polarization mode. The
remainder of the surface of the sphere represents all
possible elliptical polarization states of which the

state C is one.
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2.3.2. Planar chart

The Poincare sphere has widely been used to
express the SOP of a light. However, it has a drawback
in that it can not be drawn or printed on a paper
because it is curve.

A solution to this problem is to project the
Poincare sphere onto a planar chart. Recently, Okoshi
(1986,[34]) proposed one method using the stereoscopic
projection of the Poincare sphere from a fictitious
light source at the North Pole R onto a phase touching
the sphere at the South Pole L; for details, see [34].

Figure 4 shows this chart drawn by a computer.
In this figure, four groups of characteristic curves
exist : equi R-circles, equi-¢ circles, the concentric
equi-y circles and radial straight lines giving equi-a
contours. The application of the <chart to the
understanding of SOP-control device proposed in this

thesis will be shown latter.

2.4. Review of theoretical analysis of degree of

polarization and measurements of state-of

polarization (SOP) fluctuation in single-mode

optical fiber.

2.4.1. Degradation of degree of polarization in

single-mode fiber

The degree of polarization (DOP) defined 1in

eg.(31) of Subsection 2.2.3 is an important quantity
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in optical fiber application that involve interference,

such as coherent optical fiber communication systems
and fiber optic interferometric sensors. These systems
rely on some way on the SOP of light both along the
fiber and at its output. It 1is well-known that
polarization mode dispersion known as depolarization
contributes to the deterioration of DOP along the fiber
[35]. Preservation of a high DOP 1is required in
coherent optical fiber transmission line, while
depolarization is desirable in certain sensors such as
fiber optic gyroscope, for reducing noise in the signal
[36,37]. This section reviews the theoretical analysis
and measurement of polarization fluctuation in
single-mode fiber that have been reported in the past
years. |

Monerie and Jeunhomme (1980, [38]1) have shown that
for uniform mode coupling, the DOP depends on the fiber
birefringence, the incident condition, and is
oscillating with the fiber length. Deterioration in
the DOP after a long distance transmission has been
shown to be recovered by a phase-compensation technique
at the fiber outpu£ £39].

Sakai et al. (1982, [40]) have presented a general
expression for the DOP in anisotropic single-mode
fiber without mode coupling effect, as a function of
the degree of coherence, associated with the fiber

parameters, light source spectrum , and the input

31



conditions. It has been pointed that any incident light

at the fiber input <can be splitted into two
eigenpolarization modes which propagate at different
group velocities with each other along the fiber. The
DOP depends on the mutual correlation function of the
two eigenpolarization modes, and DOP = 1 can be
obtained (i.e. for completely polarized light at the
fiber exit) when only one of these modes is excited
at the fiber input. If two eigenpolarization modes are
excited identically, the DOP will reduce to zero with
increasing fiber length. However, this analysis cannot
be applied to practical fibers where mode couplings
between the polarization modes take place due to
irregular imperfections and external disturbances along
the fiber [38].

Burns et al. (1983, [41]) have shown that the DOP
of broad-band light at the fiber output depeﬁds on the
position of the coupling center and the coupled power
for the fiber model with one discrete mode-coupling.
Experimental results on the measurements of DOPAas a
function of fiber 1length for 1-km-long fibe; with
different incident conditions were given. The results
indicated that DOP did not reduce to zero with
increasing fiber length. The existence of nonzero DOP
in long lengths of fiber is shown to be due to mode
coupling at particular positions along the fiber.

In the same year, results on polarization tests
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for long fibers reported by British Telecom [42] and

KDD [43] researches showed that there is still a high

DOP even after a 30-50 km-long fiber transmission.

In 1984, Sakai [44] has presented another
theoretical analysis for the DOP considering the mode
coupling effect. He concluded that the DOP depended on
the 1light source spectrum, the fiber polarization
dispersion, the incident condition, and would approach
zero value with increasing fiber length. However, from
a mathematical point of view, the convergence of the
successive interations is not likely to hold when the
fiber is sufficiently long.

Grundinin and Sulimov [45] have also derived an
expression for the DOP which is found to decrease with
the decreasing source coherence time and depends on the
fiber characteristics and the incident condition.

The more recent theoretical treatment has been
presented by Shangyunan et al. (1986, [46]). The DOP is
analized with discrete mode-coupling centers having
random coupling coefficients at regular intervals.
Their results di?fer from the results of the iteration
method used by Sakai [44] in some aspects such as the
DOP with random mode coupling does not reduce to zero
with increasing fiber length but approaches a nonzero
value the magnitude of which depends on the coupling
intensity, the light source spectrum, the fiber

birefringence, and is independent of incident
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condition.
Tian et al. (1987, [47])) has presented the first

theoretical expression for the polarization in
single-mode fibers with random coupling between the
two eigenpolarization modes. The calculation formulae
for the polarization fluctuation are given, and can be
used to calculate the fluctuation noise and estimate
the effect of polarization on coherent optical fiber
communication systems. They concluded that the effect
of polarization fluctuation on long distance coherent
transmission system could be minimized, if fibers with
shorter correlation 1lengths and small disturbances
variances were chosen.

So far, the measurement of DOP as functions of the
fiber properties, the fiber length, and source spectrum
linewidth has not yet been reported. Such measurement
will be worthwide at least to evaluate the validity of
the theory.

2.4.2. Measurements of polarization fluctuation in

single-mode fiber

Measurement of polarization fluctuations is
impof£ént for the study of the propagation
characteristics of the polarization state of light in
single-mode optical fibers.

Since mechanical vibration, pressure changes, and

temperature fluctuations all affect the residual

birefringence, the polarization state of the light
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along the fiber and at its output 1is not temporally

constant. Measurements of the polarization stability of
a conventional single-mode fiber over a period of 96
hours reported by Smith et al. (1983, [48]) are shown
in Fig. 5 for fiber wound on a drum and a cable fiber
in underground ducts. For these measurements, it
is clear that polarization changes do occur, but only
over periods of minutes or hours. They have also been
reported that the polarization characteristics in the
optical fiber submarine under various étress conditions
were stable [49-51]. Recent polarization fluctuation
characteristics measured during and after the submarine
cable installation [52] is shown in Fig; 6.

Since measurements of the polarization on
long cable fibers have shown that the
polarization state drifts slow it suggests that
polarization compensation on conventional single-mode
optical fiber can be performed using various

SOP-conversion devices.

2.5. Summary

The mathematical expression of degree of
polarization (DOP) defined as the ratio of the power of
the polarized component to the total power is given.
Theoretically, the deterioration in DOP depends on the
light source spéctrum, fiber properties; and fiber

length. Mode coupling caused by various kinds of

17409405
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imperfection in the fiber and external disturbances

along the fiber contributes to the polarization

fluctuations. It has been shown experimentally that
there is still a high DOP even after along fiber (>30
km) transmission, and polarization-state drifts slowly.
In addition, polarization fluctuations in installed
fiber cables have also been measured and found to be

quite stable under the static stress conditions.
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