CHAPTER III

NUMERICAL SCHEME

Boundary Discretization

The problem has been formulated in the form of integral
equations in the previous chapter as expressed in Eqs. 16, 17 and 19.
To solve these integral equations numerically, each section of the
boundary, such as section I, is divided, as shown in Fig. 3, into N'
intervals of equal arc length 2w'§'. The center of each interval,
being at «¢',a.') sk < 4,2,8,. N 51 = 1,2,3,...,L, is to be
considered as a nodal point. Approximating each unknown function by a
set of discrete constant values over each interval, and identifying
the integral equations, Egqs. 16, 17 and 19, successively at each nodal
point on the boundary and each point of the column location leads
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to a set of (2J2:1NJ + N_) algebraic equations in the form:
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which involves and can be solved for the same number of unknown
discrete values, i.e., either two out of the four sets of unknowns,
Vp(g',ak'), Mp(gl,ak'), w(gl,ak') and aw(g',ak')/ap in each boundary

sections and the reaction, R_, of each column.

Treatment of Improper Integral

It should be noted that, all the integrals of the influence
functions in Egs. 20 to 22 may be evaluated in a straightforward

manner as given in appendix B, except that of the function SV‘*/ap
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in Eq. 21 which, for (pJ,e]J) and (gl,ak') being coincident, is
improper. This improper integral can be evaluated by physical

interpretation as follow:

Figure 4 depicts that the term .8V‘*/ap in Eq. 21, is in
physical sense, the Kirchhoff’s shear due to a half of a unit couple
applied at a nodal point of the edge of the plate. Now, if a free
body is considered cut along a circumference as shown in the figure,
then the total transverse shear and corner forces acting on the free
body must be in.equilibrium, i.e.,
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In which aVF“(T,G)/ap = —(3-v)cos B / AMF~ is the Kirchhoff’s shear
around the indented circumference of the free body and
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represent. the two corner forces.

Substitution of the above expressions into the last equation

yields
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Evaluation of the Domain Integrals

The domain integrals which appear in Eqs. 20 to 22 may be

separately considered in two types of applied loads as follow:

In the case of uniformly distributed load of intensity gq, ,

if the unit load in the virtual system acts at a point (p,8) , the

15619



16

domain integrals may be computed as:
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If a singular load, P , acts at a point (¢ _,a)) while the
unit load in the virtual system acts at a point (p,0) , we replace

q(,a) by a Dirac delta function, 8(§.a;§o,ao) , for which
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Domain Solut.ions

Accordingly, the deflection of the plate at any point,

as written in Eq. 13, is to be approximated by:
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Eventually, desired stress resultants may be obtained by

appropriate different.iation following Eqs. 1 to 7.
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