CHAPTER IV

NUMERICAL RESULTS AND CONCLUSIONS

The formulation which have been derived in Chapter 3, have
been used to develop a computer program in FORTRAN 77 language, which
is included in Appendix C for practical applications of this study.
The program computes deflection, normal and transverse bending moment
and twisting moment at any interior point (p,0) of circular and
annular plates with arbitrary combination of boundary conditions and
interior columns subject. to concentrated loads and uniformly
distributed load. Two circular and two annular plates of different
boundary conditions have been tested and compared with the results by
other investigators and those from a finite element method. In each

case Poisson’s ratio is taken to be 0.3.

Computation has been performed on a PRIME 9750 computer using
double precision arithmetic but this program can run also on an IBM
personal computer with little modification on input./output unit

specifier.

In the first example, a clamped circular plate under a
singular load, P , acting at the center and at location (0.5,0.0), as
shown in Fig. 5a, is computed by subdividing the boundary into 36
intervals. The deflections, normal and transverse bending moments of

this study, which are plotted against the argument of p in Fig. 5b
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and 5c, are in very close agreement with the analytical results which

proposed by Timoshenko and Woinowsky-Krieger [131.

The second example is a uniformly loaded circular plate
clamped over a section of the boundary subtending an angle 2€¢ at the
plate center, and simply supported over the remainder of the edge as
shown in Fig. 6a. The problem is computed by subdividing the boundary
into 36 intervals and the results in terms of deflections and normal
bending moments are plotted in Figs. 6b and 6c along the diameter of
symmetry, for € = 457, 90", and 135°. Corresponding results of

deflections and the normal bending moments by Conway and Farnham (2]

are also shown for comparison.

A uniformly loaded annular plate, b/a = 0.25, with mixed
boundary conditions (Fig. 7a) is calculated in the third example by
subdividing the outer and inner boundary into 38 and 18 intervals
respectively. The deflections and normal bending moments which are
plotted against the argument of p in Fig. 7b, 7c, 7d and 7e show good

agreement, with those of Sriswasdi [43].

The last example is purposely presented to show that arbitrary
combination of boundary conditions and interior supports such as a
uniformly loaded annular plate, b/a = 0.25, with three interior
columns, as shown in Fig. 8a, may be examined. The results in Figs.
8b, 8c and 8d are computed by subdividing the outer and inner boundary
into 36 and 18 intervals respectively. The results when compared with
those from a finite element program, SAP IV, in which the symmetrical

half of the plate is modeled by 230 trapezoidal elements, are in good
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harmony. However, while the present method used only 1 min. 34 sec.
of PRIME 9750 computer time, the SAP IV consumed 6. min. 8 sec.
Moreover, less data preparation is obviously achieved by this type of

boundary technique.

In this present study, the boundary element technique has been
applied to circular and annular plate with aribitrary combination of
boundary conditions and interior columns subjected to concentrated
loads and uniformly distributed load. By approximating each unknown
function on the boundary by a set of discrete constant values over
each interval, the boundary integral equations can be replaced by a
set. of algebraic equations. Numerical results obtained by the present

study are in good agreement with those from other method of approach.

The unknown discrete values of normal slope, normal bending
moment. and Kirchhoff’s shear along the mixed boundary conditions of
the plate problems in Example 2 to 4 are plotted in Figs. 9 to 11
respectively. Normal bending moments show a square root. singularity
at the brink of the clamped supports (3,41, but Kirchhoff’s shear
cannot. be plotted in smooth curves. However, this variation has no
appreciable effects on the result at points of the sufficiently large
distance away from the edge as discussed in Saint-Venant Principle
[14]. To improve this variation, a suitable shape function other than

rectangular may be used in the discrete intervals.
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