CHAPTER III

IMPORTANT THERMODYAMIC FUNCTIONS

FROM EQUATION OF STATE

3.1 Used In Process Calculations.

In chemical engineering calculation, we often need to know the values of some
thermodynamic properties of the system (fluid, solution, mixture). Among the
properties that appear frequently are PV, T,H,U,f, ¢, ¥:€,, and ¢,. These
thermodynamic properties can be calculated from equations of state by using equations
that relate the thermodynamic properties. In the process calculations, the important
thermodynamic properties are enthalpy, entropy, fugacity coefficient functions, vapor

pressure, and liquid and vapor compressibility factors.

3.2 Formula In Terms Of P-V-T.

Edmister and Lee (1984)[1], The basic information needed in applying
thermodynamics to the solution of scientific and engineering problems are pressure,
volume, temperature, and composition for the fluids of interest. Because of its
practical and theoretical importance, a large amount of P-V-T and mixture data have
been measured and accumulated for most of the essential fluids such as air, water
(stream), many hydrocarbons, and other chemicals. Though not .essential for

hydrocarbon systems, the P-V-T data of monoatomic gases, such as argon, have also
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been extensively measured with high precision to study the effect of molecular
dynamics and interactions on the volumetric behavior or vice versa.  The

measurements are expected to provide more knowledge and deeper understanding of

the P-V-T behavior of many different kind of fluids.

3.2.1 Thermodynamic Functions.

Internal energy:

AU =Q0+W (3-1)
Enthalpy:
H=U+PV (3-2)

Helmbholtz free energy:

A=U~T8 (3-3)
Gibbs free energy:
G=H-18. (3-4)

Because thermodynamics is only capable of describing the changes of system

properties, it is more convenient to express the four defined functions in diferential

forms.
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dU=1dS - Pdv . (3-5)

Differentiating Equations (3-2) and (3-3), and combining with Equation (3-5) gives

dH = TdS +VdP, (3-6)

dA = -SdT - PdV . (3-7)

Differentiating Equation (3-4) and combining with Equation (3-6) gives

dG = -SdT +VdP (3-8)

3.2.2 Properties as Functions of 7 and

Now the change in ,H, A4, or G between any two states can, in principle, be
calculated by integrating the appropriate differential Equation, (3-5), (3-6), (3-7), or
(3-8). Derivations of equations for thermodynamic functions as functions of 7" and

are presented here.

3.2.2.1 Enthalpy, H(T,V).

{dH = d(PV) J{ %) - P-JIdV} (3;9)
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Integrating Equation (3-9) at constant 7" from zero pressure condition to actual
condition, and recognizing that =co and PV =RT, at P=0, results in Equation

(3-10).

H-H" 1 [5V 1
- A TR L_sim 3-10
Z-1+ { 1/ PJdV ( )

Equations of state provide the P-V-T relation required to evaluate the right side of the
above equation. The values of the ideal gas state enthalpy, H", in the left side of

Equation (3-10) are give for pure substances, and can be calculated for equation:
N
H' = x,H' for mixtures. (3-11)
3.2.2.2 Entropy, S(T.,V).

The entropy expression may be derived in a similar manner to the enthalpy, except
that the ideal gas state expression require a special mathematical manipulation. The
isothermal form is more practical for the integration of Equation (3-12) from (T, P')

to (7T,P) along real path gives Equation (3-13).

oP) |
ds = (ﬁl dVJ (3-12)
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Now, (T,P*) can be safely replaced by o0, as the integrands no longer are infinite at

P =0 (orat =o0). For mixtures, it gives

N

Sy = xS - Rlnx,) (3-14)

1

3.2.2.3 Fugacity Coeficient, 1/ P(T,V) (¢).

Vil _ ﬂV_) (i i
ding+dIn(PY) = d| o |4\ 57~ 2 |V | (3-15)

Integrating the above equation and also noting that PV =RT and =o at P=0

results in
¥ 1 {RT )d
In—==2Z-1- grocad ] L =
nP Z-1 ]nZ+RT°° v vV (3-16)

3.2.2.4 Vapor Pressure.

For a system containing N components and M phases, it provides an alternative

phase equilibrium criterion as follows:

~ (1) ~ (2) ~ (M)

f.oe5f, sy, PeEliuN) (3-17)

The fugacity of each component in a mixture is identical in all phases at equilibrium.
This is equally true for a single component system having vapor and liquid phases at

equilibrium. In this case, Equation (3-17) reduces to,
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fr=1" (3-18)

where f,” and f," are the pure component fugacities of vapor and liquid

respectively. This equation is valid at any point on the saturation curve, where the

vapor and liquid coexist in equilibrium.

The pure component fugacity expression is derived from Equation (3-16) in the

fugacity coefficient form. Writing Equation (3-16) for both vapor and liquid,

substracting the two expressions and combining with Equation (3-18) gives

ﬂj_ :
l“(fL =0 (3-19)

Equation (3-19) is valid for pure fluids along the saturation curve where the vapor
and liquid phases coexist in equilibrium. And at this condition, the pressure is the

saturated vapor pressure.
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