CHAPTER II

GENERALIZED SEMIFIELDS

We shall now generalize the concept of semifield by giving a
new definition which contains P.Sinutoke's definition as a special

case.

Definition 2.1 A semiring (K,+,¢) is said to be a generalized

semifield iff there exists an element a in K such that (K\{a},*) is

a group.

Example 2.2

+

(1) Qg and R

with the usual addition and multiplication are

generalized semifields.

(2) Let D be a ratio semiring. Let a be a symbol not
*
representing any element of D. We can extend + and * to D = D v {al
* * ?
by a*x = x*a = a and a+x = x+a = a for all x € D . Then (D ,+,*) is

a generalized semifield.

(3) Let K = {a,e}. Define * and + on K by

and

Then K is a generalized semifield.
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Example 2.3 Let (G,*) be a commutative group with zero element .

We can define + on G so that (G,+,°*) is a generalized semifield by

(1) x+y o for all x, y e G,

(2) x+ty = @ if x # y and x+y = x if x = y for all x, y € G.

Example 2.4 Let D be a ratio semiring and a a symbol not representing
any element of D. Extend + and * from D to D v {a} by

(1) ax = xa = a for all x € D v {a},

(2) a+x = x+a = 1+x for all x € D,

(3) a+a 1+1.

It is easy to show that D v fa} is a generalized semifield.

Example 2.5 Let D be a ratio semiring, a a symbol not representing

any element of D and d D. Extend + and * from D to D v {a} by

(1) ax = xa = dx Vx € D and a2=d2,

(2) a+x = x+a = d+x YV x ¢ D,

(3) a+a d+d .

It is easy to show that D v {a} is a generalized semifield.

From now on the word "semifield" will mean a generalized semi-

field.

Theorem 2.6 Let (K,+,°*) be a semifield and a an element in K such
that (K\{a}l,*) is a group. Then ax = a for all x € K or ax = x for

all x € K or az# a and ae # a where e is the identity of (K \{a},*).

Proof. Let e be the identity of (K\{al,*). Consider ae and a2.

Case 1 ae = a and a2= a. Claim that ax = a for all x € K. Let

x € K\ {a}. Suppose that ax # a. Since (K\{a},*) is a group,



11

dy € K\ {a} such that xy = e, so a = ae = a(xy) = (ax)y. Thus
(ax)y = a, a contradiction since ax, y € K\ {a} which is a group.

Hence ax = a for all x € K. So we have the claim.

I

Case 2 ae = a and a’# a. Claim that ax = a for all x € K\{a}. Let
x € K\{a}. Suppose that ax # a. Then Iy e K\{a}l such that xy = e.
Then a = ae = a(xy) = (ax)y. Thus (ax)y = a, a contradiction since
ax, y € K\ {a} which is a group. Hence ax = a for all x € K\ {a}.
So we have the claim. Since az# a,3z e K\ {a} such that azz =8,

2 2 ; 2
Then e = a" z = a(az) = aa = a~ by the claim. Thus a = e. Hence

(K,*) is a group. Therefore K is a ratio semiring. Suppose that

|K| > 2. Let x € K\ {a,e}. By the claim we get ax = a. Then x = ex

2 3 : ; :
= a x a(ax) = aa = a"= e, so x = e which is a contradiction. Thus
|K| = 2. So we have that K is a ratio semiring of order 2 which

contradicts the Theorem 1.13. Therefore this case cannot occur.

Case 3 ae # a and a2= a. Since (ae)(ae) = a(e(ae)) = alae) = (aa)e

ae,we get that (ae)(ae) = ae, so ae = e. Let x € K\{a}l, ax = a(ex)

(ae)x = ex = X, so ax = X. Thus ax = x for all x € K.

Case 4 ae # a and az# a. So we have the theorem.

#

From Theorem 2.6 we see that there are three types of semi-
fields

(1) Semifields with ax = a for all x € K (called type I sem%f>
fields'ytr.tiwa),

(2) Semifields with ax = x for all x € K (called typg_{;wsemi—
fields w.r.t. a),

(3) Semifield with az# a and ae # a where e is the identity

of (k\{al,*) (called type III semifield w.r.t. a).
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Note that Example 2.2(1),(2) and Example 2.3 are semifields of type I,
Example 2.4 1is a semifield of type II, Example 2.2(3) and Example 2.5

are semifields of type III.

definition and it has been already studied in [4].

Proposition 2.7 Let K be a semifield and a £ K be such that

(K\{a},*) is a group. Then K is a semifield of type III w.r.t. a iff

there exists a unique d in K\ {a} such that ax = dx for all x £ K.

Proof Assume that K is a semifield of type III. Let e be the identity

of (K\{a},*). Then ae # a and a2;£ a.v.bet. d = ae,;*so d £ K\ {a}.

Let x € K\ {a} then ax = a(ex) = (ae)x = dx. Thus ax

x € K\ {a}. sSince a2;£ & a2= a2e = a(ae) = ad, so aa

dx for all

ad. So we

get that ax = dx for all x € K. To show the uniqueness of d, let
d’e K\ {a} be such that ax = d’x for all x e K. Thend’ =d’e = ae =
de = d. Thus 4’ = 4.

Conversely assume that 3! d in K \ {a} such that ax = dx for
all x € K. Then ae = de =4d # a anda2=aa=da=dd=d2;éa since
d € K\ {a}, which is a group. Thus ae # a and a2;£ a. Therefore K is

a semifield of type III.

Remark 2.8 Let K = {a,e}. Define ¢ and + on K as the following

tables.
(1) . a e and + a e
a a a a a a
e a e e a a
2) . a e and + a e
a a e a a e
e e e e e e
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Clearly (1) is a semifield of type I w.r.t. a and (2), a semi-
field of type II w.r.t. a. In these cases there does not exist a
unique b in K such that (K\{b},*) is a group. However if K is a
semifield of type I or type II and |K| > 2 then we get uniqueness as

the following Theorem shows.

%Theorem 2.9 Let (K,+,*) be a semifield of type I or type IT w.r.t.a
of order > 2. If there is an element b in K such that (K\ {b},*) is

a group then b = a.

Proof. Let e denote the identity of (K\ {a},*). Suppose that b # a.

Since K is a semifield of type I or type II, a2= a. . Thus

a2= a e K\{b}, so a is/the identity of (K\{b},*). Let x e K\ {b,a}.

Then 3y € K\{b} such that xy = a. If y = a thena =xy =xa = x, a
contradiction. Hence y # a, so we have that x # a, y # a but xy = a

which contradicts the fact that (K\{a},*) is a group. Thus b = a. 4

Theorem 2.10 Let K be a semifield of type III w.r.t. a. If there

exists an element b in K such that (K \{b},+) is a group then b = a.

Proof. Let e be the identity of (K\ {a},+) and f be the identity of
(K\ {b},¢). Suppose that b # a. Then a € K\{b}, so af = a. Since
K is a type III semifield, a2;£ a. Thus e is the only idempotent of K.
Since f2= f, £f = e. Thus a = af = ae, a contradiction. Therefore

b =a: 4

Let K be a semifield of type I w.r.t. a then by Theorem 1.20,
we know that there are two types of semifields of this type. If a is

additive identity, then we call K a semifield of zero type and if a

is an additive zero, then we call K a semifield of infinity type.
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The following theorems will prove the most basic properties of a semi-

field of type I.

Proposition 2.11 Let K be a semifield of type I w.r.t. a and let x,

Vv ¢ . Ki. Then xy'= a iff:x = a or y = a.

2{925 Let x, y € K be such that xy = a. Suppose that x # a, We
must show that y = a. If y # a, then we have that x # a, y # a but
Xy = a which is a contradiction because (K \{a},*) is a group. Hence
o - 8

a = 6
Conversely if x = a or y = a, then obviously xy = a.

#

Definition 2.12 Let S be a semiring with multiplicative zero a.

Then S is said to be zero multiplicatively cancellative (0-M.C.) iff

for all x,y,z € S, Xy = xz/andREGEaoamply v = z.

Proposition 2.13 If S is a finite 0-M.C. semiring, then S must be a

semifield of type I.

Proof Let a be the multiplicative zero of S. Since S is 0-M.C.,

(s \{a},*) is a finite cancellative semigroup. By Theorem 1.19,
(s\{a}l,*) is a group. So we get a € S and (S\1{a},*) is a group.

Therefore S is a semifield and clearly S is a semifield of type I.

#

Definition 2.14 Let S be a semifield with «. Let y € S. Then z € S

is said to be a complement of y iff y+z = =.

Definition 2.15 Let S be a semifield with . Let y ¢ S. Then y is

said to be limited iff the only complement of y is . If every non-

infinity element of S is limited then S is called limited.
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Definition 2.16 Let S be a semifield with ©. Then S is said to be

infinity additively cancellative («-A.C.) iff for all x,y,z e S,

X+y = x+z and x # ® imply y = z.

Proposition 2.17 Let K be a semifield of infinity type. If K is

®_A.C., then K is limited.

Proof Let x ¢ K\ {®} and y b a complement of x. Thus x+y = o.
Then x+y = X+®, so y = ® since K is «-A.C. Hence x is limited. Thus

K is limited.

Corollary 2.18 Let K be a semifield of infinity type. If K is ®-A.C.,

then (K\{«},+,¢) is a ratio semiring.

T

Proof By Proposition 2.1%, K is limited. Thus x+y # @ \/x,y e K\{=}.
Hence (K\ {®},+) is a semigroup. Since (K\ {®},*) is a group, so

(K\ {w} ,+,+) is a ratio semiring.

#

Definition 2.19 Let K be a semifield of infinity type and let x e K.

The core of x, denoted by Cor(x) = {y e K | X+y = ®} -

Theorem 2.20 Let K be a semifield of iﬁfinity type and e be the

identity of (K\ {=},¢). Then

(1) & g Cor(x) -for all % eiK.

(2) For all xue K, Cor(x) is an additive-ideal of K.

(3) Por al) x, vy & KX\{®}, vy & Cor(x) iff yx—1e Cor(e).

(4) For all: 'x, yvie K, x € Cor({y) iff 'y € Corix):

(5) For all x € K\ {®}, Cor(x) = Cor(e)°*x .

(6)-For all x e K; X e Corl(y) implies Xz € :Cor(yz) for all
z ¢ K. The converse is true if Z # o,

(7)) For all - x,y,z €K, ¥ eiCoply+z) Aiff %ty € Coriz) s

009349

V9904 2.0
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Proof (1) Since X4+o = © for all x ¢ K, ® € Cor(x) for all x € K.

(2) Let x ¢ K. Let y g Cor(x) and z € K. We must show that
y+z ¢ Cor(x). Since y € Cor(x), x+y = ®. Then x+(y+z) = (x+y)+z =
otz = o. Thus y+z g Cor(x). Hence Cor(x) is an additive ideal of K.

(3) Let x,y ¢ K\ {®}. Assume y € Cor(x). Thus x+y = ®. Then

=3 X | -1 5 o7 <1
e+tyXx = XX 4+ yX = (x+y)x = ox = ®, Thus yx € Cor(e).
Conversely, assume that yx_1s Cor(e). Thus e+yx—1= ©, Then

X+y = ex+ey = ex+y(x_1x) = ex+(yx-1 )X = (e+yx_‘I )X = ®x = ®_  Thus

y € Cor(x).
(4) Obvious.

(5) Let x ¢ K. To show Cor(x) C Cor(e)e+x, let y € Cor(x).
By (3),yx—1e Cor(e). Thus vy = (yx~1 )x € Cor(e)*x. Conversely, let
z ¢ Cor(e). Thus e+z = ®. Then x+zx = (e+z)x = ®x = ®, so zx € Cor(x).

Hence Cor(e) «x C© Cor(x).

(6) Let x ¢ K. _Let y € K be such that x € Cor(y) and z € K.
Thus y+X = ®, S0 yz+xz = (y+x)z = ®z = o, Thus xz € Cor(yz).
Conversely, assume that x,y € K,z € K\ {®} and xz € Cor(yz).
' !

Thus yz+xXz = ®. SO y+X = (y+x)zz_1= (yz+xz)z_1= ©z = ®, Thus

X 6 Cor(y).

(7) Let x,y,z € K. x e Cor(y+z)<=> (y+z)4x = @ = (2+y)4xX = @

= z+(y+X) = ©® T2 z4(x+y) = ® E>x+y ¢ Cor(z). +

Theorem 2.21 Let K be a semifield of infinity type and let x,

y € K\ {®}. Then the cardinality of Cor(x) equals the cardinality

of Cor(y) and each one is a multiplicative translate of the other.

Proof Let e be the identity of (K\{al,*)
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For z € Cor(x), by Theorem 2.20(5), there is a u € Cor(e) such
that z = ux. Define f: Cor(x) — Cor(y) by f£(z) = uy. By Theorem 2.20

(5), uy € Cor(y). To show f is well-defined, let z,= 2,€ Cor(x). Let

u U, € Cor(e) be such that z,= U x and z,= UyX. Thus U X = upX.

Since x # ® so u,= u

1 ¢ Thus u1y = u2y. To show f is one-to-one, let

2,52 € Cor(x) be such that f(z1) = f(zz). Let u, »u € Cor(e) be such

2 2

that z. = u,x and z_.= v, x.  Thus Wy = u,y. Since y # ®, u .= u Thus

1 1 2 2 1 27

Z,= 2,. To show f is onto, Let w € Cor(y). Let v € Cor(e) be such
that w = vey. Then vex € Cor(x). Thus f(vx) = vy = w. Therefore £
is one-to-one and onto. To show Cor(x) is a multiplication translate
of Cor(y), let z e Cor(x). By Theorem 2.20(3),zx_1e Cor(e). By
Theorem 2.20(5), zx—1y e Cor(y). Thus z = (zx_1y)y-1x € Cor(y)-y_1x.
Hence Cor(x) C Cor(y)~y_1x. Now let w € Cor(y). By Theorem 2.20(3),

wy_1s Cor(e). By Theorem 2.20(5), wy_1x € Cor(x). Thus Cor(y)'y-1x

Cor(x). Therefore Cor(x) = Cor(y)-y-1x. 4

Proposition 2.22 Let K be a semifield of zero type and let B =

{x e K | x is A.C.}. Then B is an ideal of (K,*) and B is an additive

subsemigroup of K.

Proof Since 0 € B B # &. To show B is an ideal of (K,+), let

€ K be such that zx+z = zx+z,. If x =0,

x € K and z € B. Let z1,z2 1 2

Assume that x # 0. Thus z+z x_1= (zx+z1)x_1= (zx+z2)x_1

then z,= 2z 1

1 2"

- . -1 -1
= Z+Z.X 1. Since z.€ B; z. kX &2 % - 7:Thus iz, = 2

2 1 2 1 2? so zx € B. Thus

BK C B. Therefore B is an ideal of (K,*). By proposition 1.25, B is

an additive subsemigroup of K. #

Proposition 2.23 Let K be a semifield of infinity type and let B =

{x eX | x is A.c.}. If x € B and y € K\ {=}, then xy e B.
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Proof Let x € Band y € K\ {»}. Let z, ,z

1 € K be such that xy+z_=

2 1

Then x+z .y = (xy+z1)y-1= (xy+zz)y—1= x+zzy—1. Since x € B,

2 = 28 - Thus z .= z

1 27 so Xy € B. #

Proposition 2.24 Let K be a semifield of type I. Then if one non-

zero element of K is additively cancellative, then all nonzero

elements are additively cancellative.

Proof Let a be a zero of K and e the identity of (K\{al,*). Let
x € K\ {a} be additively cancellative. Let y be an element in K\ {a}

and z,,2,€ K be such that y+z,= y+z,. Then e+z1y_1= (y+z1)y_1

2

-1 -1 =1 -1 : -1
(y+zz)y = etz,y , 8o X+Z,y X = X+2,y X. By assumption, 2y X

21 ; 4
z,y  X. Since y x # a, z,'e = z,%e.

If z_.= a, then a/& AYe =2ite ='2,%e. “Thus z,*e = a.. By

1 1 2 2
Proposition 2.11, z,= a. Hence z.= 2,.
It z1;£ a, then z1= z,l e = zz'e. Thus zz-e # a. By Proposition
25005 22;4 a. Then z1= z1-e = zzoe = z2. Thus z1= ZZ' Therefore y is

additively cancellative.

Proposition 2.25 Let K be a semifield of zero type. If x ¢ K\ {0}

is such that x has an additive inverse, then every element in K as an

additive inverse and K is a field.
Proof See [4], page 22. $

\ Proposition 2.26 Let K be a semifield of zero type which is not a

field. Then (K\ {0},+,¢) is a ratio semiring.

Proof Since (K\ {0},+) is a group, so we only show that (K\ {0} ,+)
is a semigroup. Let x,y € K\{0}. Must show that x+y # 0. Suppose

x+y = 0. Thus x is a nonzero element which has an additive inverse.
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By Proposition 2.25, K is a field, a contradiction. Hence x+y # 0.

Therefore (K\ {0},+,*) is a ratio semiring. 4

Note that @'v {0} with the usual addition and multiplication is a semi-
field of zero type which is not a field and we see that Q+ is a ratio

semiring.
From now we shall study semifields of types II and III.

Prpposition 2.27 Let K be a semifield of type II w.r.t. a and let

X,y € K. Then xy = a iff xx=a’and‘y-=:a.

Proof Suppose that xy = a. If y = a, then a = Xy = xa = X since

K is a semifield of type IT wir.t. a. Thus a = x =y.

Conversely if x = a and y = a, then obviously xy

I
o

Proposition 2.28 Let K be a semifield of type III w.r.t.a. Then

xy # a for all x, y € K.

Proof Let e be the identity of (K\{a},*). We want to show that
xy # a for all x, ye K. Let x, y€ K. Since K is a type III semi-
field, aZ# a and ae # a. If x # a and y = a then xy = xa = (xe)a = x
x(ea) # a since x, ea € K\{a}, which is a group. Hence xy # a for

all x,.y:€ K.

Theorem 2.29 Let K be a semifield of type II w.r.t.a. Then

(K\ {a} ,+,*) is a ratio semiring.

Proof Let e be the identity of (K\{a},*). Let x, y e K\{a}l. Then
xy € K\ {a}. We must show that x+y € K\{a}. Suppose not. Then
X+y = a. S0 a = X+y = Xe+ye = (xX+y)e = ae = e, a contradiction. Thus

x+y € K\ {a}. Hence (K\{a}l,+,*) is a ratio semiring.
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Theorem 2.30 Let K be a semifield of type II w.r.t.a. and e the

identity of (K\ {a},*). Then the following hold

(1) If a+a = a then (K,+) is a band.

(2) If a+a # a then a+a = e+e and for all x, y € K\ {a}

x+x = y+y iff x = y.

(3) a+x a or a+x = e+x for all x # a.

Proof (1) Suppose that a+a = a. Then x+x = ax+ax = (a+a)x = ax = X
for all x € K. Thus (K,+) is a band.
(2) Suppose that a+a # a. Then a+a = (a+a)e = aetae = e+e.

Thus a+a = e+e. Let x, y € K {al be such that x+x = y+y. Then (a+a
(a+a)x = ax+ax = X+X = y+y = ay+ay = (a+a)y. Thus (a+a)x = (a+aly.

Since a+a # a, X =Y.

(3) Let xe K\{a}. If a+x # a, then a+x = (a+x)e = ae+xe =

e+x. Thus a+x = e+X. #

Theorem 2.31 Let K be a semifield of type II w.r.t.a and e the

identity (K\{a},*). Define D = K\{a} and s = {xe D | a+x = a}.

Then
(1) S =® or S is an additive subsemigroup of ID(e).
(2) If ee S then S = ID(e).
(3) D\ S = ® or D\'S is an ideal of (D,+).
Proof (1) Suppose that S # ®. Let x € S, then a+x = a. Then
e = ae = (a+x)e = ae+xe = e+x. Thus x € ID(e), so S Q;ID(e). Let

X, y € S. Then a+(x+y) = (a+x)+y = a+y = a, so x+y € S. Hence S is

an additive subsemigroup of ID(e).
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(2) Suppose that e € S. Let x € ID(e). Then e+x = e. Hence
a = a+e = a+(e+x) = (a+e)+x = a+x. Thus a+x = a, so x € S. Therefore

CE =
ID(e) = S. Bom (1),  SC& ID(e). Hence S ID(e).

(3) Suppose that D\S # ®. Let x € D\'S, y € D. We want to
show that x+y € D\ S. By Theorem 2.29, (k \{a},+,*) is a ratio semi-
ring, so (a+x)+y € K\ {a}l. Since a+(x+y) = (a+x)+y, a+(x+y) # a.

Thus x+y € D\ S. "

Proposition 2.32 Let K be a semifield of type II w.r.t.a. If a+x = a

for all x # a then |K| = 2.

Proof  Suppose that a+x = a for all x # a. Let D = K\{al and
s=1{xeD a+x = a}l. Then S = K\{a}l. By Theorem 2.31, S C ID(e)
where e is the identity of (K\ {a}l,*). Thus ID(e) =K\{a}, soe is
an additive zero of K\ {a} which is a ratio semiring. By Proposition

1.15 and Theorem 1.13, |K\ {a}| = 1. Therefore |K| = 2. 4

Proposition 2.33 Let K be a finite semifield of type II. Then

x| = 2.

Proof By Theorem 2.29, K\ {al is a ratio semiring. Since K is

finite so is K\ {a}. By Theorem 1.13, |k\{a}| = 1. Thus |K|

1
N
.

Proposition 2.34 Let K be a semifield of type II w.r.t. a, D = K \ {a}

and S = {x e D | a+x = a}. If y e D\'S then y is not A.C..

Proof Let e be the identity of (K\ {a},*). Suppose that y € D\ S.

By Theorem 2.30(3), a+y = e+y. Since a # e, y is not A.C.. "

Corollary 2.35 Let K be an infinite semifield of type II w.r.t.a.

Then K contains an element y € K\ {a} such that y is not A.C. .
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Proof Let D =K\{a} and S = {x e D | a+x = a}. By Proposition 2.32
we have that D\ S # &. Let y € D\ S, then by Proposition 2.34, y is

A ..
not c #

Proposition 2.36 Let K be a semifield of type II w.r.t.a and e the

identity of (K\ {a},¢). Then K is A.C. iff K = {a,e} with a2= ay

a*e = e*a = e, e2= e and + is defined by

Proof  Assume that K is A.C. By Corollary 2.35, |K| = 2. Hence

K = {a,e} with a2= a, a*e = e*a = e and e2= e. By Theorem 2.29,

K\ {a} is a ratio semiring, so e+e = e. By Proposition 2.34, a+e = a.
By Theorem 2.30(2), a+a = a or a+a = e+e. Thus a+a = a or a+a = e.

If ata = a, then a+a = a+e but a # e which is a contradiction. Thus
a+a = e. Therefo;e K = {a,e} with the above structure.

Conversely, assume that K = {a,e} with the above structure. It

is easy to show that K is A.C. since a+a # a+e and e+a # e+e.

#

_Theorem 2.37 Let K be an infinite semifield of type II. Then K

contains no additive zero.

Proof Let a € K be such that (K\{al},*) is a group.

Suppose thaﬁjz is an additive zero of K. By Theorem 2.29,
K\ {a} is a ratio semiring. Thus K\ {a} is an infinite ratio semiring.
By Proposition 1.15, z = a. Then by Proposition 2.32, |K| =2, a

contradiction. Hence K contains no additive zero.

Theorem 2.38 Let K be an infinite semifield of type II. Then K

contains no additive identity.
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Proof Let a € K be such that (K \{a},+) is a group.

Suppose that z is an additive identity of K.. By Theorem 2.29,
- K\ {a} is a ratio semiring. Thus K\ {a} is an infinite ratio semiring.
By Proposition 1.4, z = a. Then a+x = X for all x ¢ K. Let e be the
identity of (K\ {a},*). By Theorem 2.30(3), a+x = a or a+x = e+Xx for
all x # a. Thus x = a+x = e+x for all x # a, so e is an additive
identity of K\ {a} which contradicts Proposition 1.14. Hence K

contains no additive identity. #

Theorem 2.39 Let D be a ratio semiring, a a symbol not representing

any element in D and let S C ID(1) have the property that either S = @
or S is an additive subsemigroup of ID(1) such that D\ S is an ideal
of (D,+) if D is infinite. Then we can extend the binary operations

of D to K = D v {a} making K into a semifield of type II such that
(1) ax = xa = x for all x e K,

(2) a+x = x+a = a for all x € S and

a+x = x+a = 1+x for all x € D\ S,

1,

a or 1 if 1+1
(3) a+a {

1+1 if “f41 #£0.

Proof Suppose that S = &. Extend + and + from D to K=D v {al} as

in (1), (2) and (3) above. Then ax

xa = x for all x € K, a+x = 1+x

for all x e D and

{aor1 if 1+1 15

1+1 1F 9+t £:1

To show K is a semifield, we must show that (a) (xy)z = x(yz)
for all x, y € K, (b) (x+y)+z = x+(y+z) for all x,y, z € K and (c)

(x+y)z = xz+yz for all x, y € K. To show (a), we will consider the
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following cases

Case 1 z = a.

(xy)z = (xy)a = xy = x(ya) = x(yz).
Case 2 zZ #a, X = a.

(xy)z = (ay)z ='yz:=;alyz) = x(yz);
Case 3 z #a, y = a.

(xy)z = (x%a)z = xz ="x(az) = x(yz).

Case 4 z #£#a, x #a,y# a - Then/Xy3v,z ¢ D, so (xy)z = x(yz).
To show (b), we will consider the following cases

Case 1 X=y=2-=a.

(x+y)+z = (a+a)+a = a+(a+a) = x+(y+z) since u+v = v+u for all u, v € K.
Case 2 x =y =a, z # a.

Subcase 2.1 a+a = a. Then 1+1 = 1.

A(x+y)+z = (a+a)+z = a+z = 14z, x+(y+z) = a+(a+z) = a+(1+2) = 1+(1+z)

= (1+1)+z = 1+4z.

Subcase 2.2 a+a = 1. Then 141 = 1.

(x+y)+z = (a+a)+z 1+z, x+(y+z) = a+(a+z) = a+(1+z) = 1+(1+2)

= (1+1)+z = 1+z.

Subcase 2.3 a+a = 1+1.

(x+y)+z = (a+a)+z = (1+1)+2, x+(y+z) = a+(a+z) = a+(1+2) = 1+(142)
= (1+1)+z since 1, z € D.
Case 3 X =g =@, Poknag
(x+y)+z = (a+y)+a = (1+y)+a = (1+y)+1, x+(y+z) = a+(y+a) = a+(y+1)

= 14+4(y+1) = (1+y)+1 since 1, y € D.
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Cager-du .y =% '2 = aux #:a,
(x+y)+z = (x+a)+a = (a+x)+a = a+(x+a) = a+(a+x) = (a+a)+x = x+(a+a)

= x+(y+z) by case 2 and case 3 and since u+v = v+u Vs ve K.

Case 5 %= &5 Vo# a2 =-a.

(x+y)4z = (x+y)+a = (x+y)+1, x+(y+2) = x+(y+a) = x+(y+1) = (x+y)+1
gince 'x, ¥y#1 €:Ds

Case 6 X # a;.y = ayzt a.

(x+y)+z = (x+a)+z = (x+1)+2, x+(y+2) = x+(a+z) = x+(1+2) = (x+1)+2
since"x, ‘zg 1 e 'DJ

Case 7 X'=a, Yy # a,z #a.

(x+y)+z = (a+y)+z = (1+y)+2z, x+(y+z) = a+(y+z) = 1+(y+z) = (1+y)+z

since y;+z,wl €.D3
Case 8 x#a,y#a, z#a. Then x, y, z € D, so (x+y)+z = x+(y+z).
To show (c), we will consider the following cases

Case 1 Z a.

(x+y)z (x+y)a

X+y = Xatya = Xz+yz.

Case 2 z #-a, x sgyalbA¥X(N

1
]
]

(x+y)z (a+y)z (1+y)z 1z+yz = z+yz = az+yz = Xz+yz since y, z,

1 €D

Case 3 z #a,x#a,y

Il
V]

(x+y)z (x+a)z (a+x)z

az+xz = xz+az = xz+yz by Case 2.

Case 4 Z #£ a, x=y =.4a.

Subcase 4.1 a+a = a. Then 1+1 = 1, so u+u = u for all u e K.

(x+y)z = (a+a)z = az = z = 2+z = az+az = Xz+yz.
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Subcase 4.2 a4+a. =.1.. Then 1+1 = 1, so u+u =-usfor all a1 # a.

(x+y)z = (a+a)z = 1z = z = z+zZ = az+az = Xz+yz.

Subcase 4.3 a+a = 1+1.

(1+1)z = 1z+1z = 2+2 = az+az = Xz+yz.

(x+y)z = (a+a)z

Case 5 =z #a, x#a,y#a. Thenx, y, 2z € D, so (x+y)z = xz+yz.

Therefore K = D v {a} is a semifield of type II.

Suppose that S # ® and |D| = 1. Then S is an additive subsemi-

group of ID(1) and D\ S = ®&. Thus S D= {1}, so 1+1 = 1. Extend +
and * from D to K = D v {a} as in (1), (2) and (3), then a2= a, atl =

1a =1, 1*1 =1, ata = a or 1 and a+1 = 1+a = a. Thus we have two

cases to consider. They are given by the following tables

(1) e beeaat or (2)

It is easy to show that they are all semifields of type II.

Suppose that S is an additive subsemigroup of ID(1) and D\ S
is an ideal of (D,+). Extend + and ®* from D to K =D v {a} as in (1),
(2) and (3) above. Then ax = xa = x for all x € K, a+x = a for all

Xx €S, a+x = 14x for all x e D S and

a or 1 1f “I#li=15
a+a = '(

1+1 if 181 #1714

To show K = D v {a} is a semifield of type II, we must show that

(d) (xy)z = x(yz) for all x, y, z € K, (B) (x+y)+z = x+(y+z) for
all x, y, z € K and (<) (x+y)z = xz+yz for all x, y, z € K. The
proof of (d) is the same as the proof of (a) in the case S = 9.

To show (B) , we will consider the following cases
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Case 1 X =y =2 = a.

(x+y)+z = (a+a)+a = a+(a+a) = x+(y+z) since u+v = v+u for all u, ve K.
Case 2 X =y =.8; 2 ¥ a.

Subcase 2.1 a+a = a and z g S.

(x+y)+z = (a+a)+z = a+z = a, x+(y+z) = a+(a+z) = a+a = a.

Subcase 2.2 a+a = a and z ¢ D\ S.

Since z € D\ S, which is an ideal of (D,+), 1+z € D\ S. Thus (x+y)+z

(a+a)+z = a+z 142, x+(y+2) = a+(a+z) = a+(1+z) = 1+(1+z) = (1+1)+z

1+z (since 1+1 = 1).

Subcase 2.3 a+a 7 and z g S.

(x+y)+z = (a+a)+z

142z =/1/(sincelz € S(;'.ID(1)).

I
—_
.

x+(y+z) = a+(a+z) a+a

Subcase 2.4 a+a Vs 2 £ DG .
Since z € D\ S, which is an ideal of (D,+), 14z € D\ S. Thus

(x+y)+z = (a+a)+z = 1+2, xX+(y+z) = a+(a+z) = a+(1+z) = 1+(1+z)

= (1+1)+z = 14z (since 1+1 = 1).

Subcase 2.5 a+a = 1+1, z € S.

(x+y)+z (a+a)+z = (1+1)+z = 1+(14z) = 1+1 since z € S C ID(1).

x+(y+2z) a+(a+z) a+a = 1+1.

Subcase 2.6 a+a = 1+1, z € D\ S.
Since z € D\ S, which is an ideal of (D,+), 1+z € D\ S. Thus
(x+y)+z = (a+a)+z = (1+1)+z, x+(y+z) = a+(a+z) = a+(1+z) = 1+(1+2)

= (1+1)+z.
Case 3 X2 2= a,. -y #.a.

Subcase 3.1 y & S.

(x+y)+z = (a+y)+a = a+a, x+(y+z) = a+(y+a) = a+a.
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Subcase 3.2 y & D\ S.

Since y € D\ S, which is an ideal of (D,+) , 14y € D\ S. Thus

(x+y)+z = (a+y)+a = (1+y)+a = (1+y)+1, x+(y+z) = a+(y+a) = a+(y+1)
= 1+(y+1) = (1+y)+1.

Case 4 Vi 12 e vl b

(x+y)+z = (x+a)+a = a+(x+a) = a+(a+x) = (a+a)+x = x+(a+a) = x+(y+z)

by Case 2 and since u+v = v+u for all u, v ¢ K.
Case 5 xsb 4, 'y £ ayoz =@,

Subcase 5.1 X, y €S. Then

(x+y) +2

(x+y)+a = a since S is an additive subsemigroup of ID(1).

x+(y+z) = x+(y+a)

X+a = a.

Subcase 5.2 x.€ 9,y & D\S.
Since y € D\ S, which is an ideal of (D,+), x+y € D\ S. Thus

(x+y) +z

(x+y)+a = (x+y)+1;, x+(y+2) = x+(y+a) = x+(y+1) = (x+y)+1

(since x, y, 1 € D).

Subcase 5.3 x € D\S, y € S. Then x+y € D\S. Thus
(x+y)+z = (x+y)+a = (x+y)+1 = x+(y+1) = X+1 since X, y, 1 € D and

y € S Q;ID(1). X+(y+z) = x+(y+a) = x+a = x+1.

Subcase 5.4 x € D\'S, y € D\ S. Then x+y € D\ S. Thus
(x+y)+z = (x+y)+a = (x+y)+1, x+(y+2) = x+(y+a) = x+(y+1) = (x+y)+1

(since x, y, 1 € D).

Case 6 X.=@ y#a,; z.# a.

(x+y)+z = (a+y)+z = z+(a+y) = z+(y+a) = (z+y)+a = a+(z+y) a+(y+z)

= x+(y+z) by Case 5 and since u+v = v+u for all u, v € K.

Case 7 X #va; y a, z # a.

(X+y)+z = (x+a)+z

(a+x)4z = a+(x+z) = (x+z)+a = x+(z+a) = x+(a+z)



= x+(y+z) by Case 5,

x #

Case 8 Q5 Vo# @ 2t d.

To show (&), we

. Case 1 z = a. (x+y)z = (x+yla =
Case 2 Z # @y X = y =as
Subcase 2.1 a+a = a. Then 1+1
(x+y)z = (a+a)z = az = z = z+z = az+az =
Subcase 2.2 a+ta = 1. Then 1+1
(x+y)z = (a+a)z = 1z = z = z+2Z = az+az =
Subcase 2.3 a+a = 1+1.
(x+y)z = (a+a)z = (1+1)z = 1z+12z = z+z =
Z g D)
Case 3 Zz # gk =ra, Ty ey
Subcase 3.1 y € S.
(x+y)z = (a+y)z = az = 2= 12 = (1+y)z'=

(since y € S C;ID(1) and-li, vy, Z.€:D).

Subcase 3.2 y € D\S.
(x+y) z = (a+y)z = (1+4y)z = l1z4+yz = z+yz
z. g D)
Case 4 2z # a8, X # ay =-a.
(x+y)z = (x+a)z = (a+x)z = az+xz = xz+az
Case 5 Ziog a, X #.ay ¥ #a.

Therefore K is a semifield of type II.

Example 2.40 Let Q+ have

by x+y = max {x,y}.

Case 6 and since u+v

29

= v+u Vu, v K.

Then x, y, z €D, so (x+y)+z =

will consider the following cases

= 1580

XZ+YZ.

=i 1780

XZ+YZ.

az+az =

1z4yz =

az+yz

XZ+yZ

Then x, y, z € D, so (x+y)z =

the usual multiplication.

x+(y+z) .

X+y = Xat+ya = Xz+yzZ.

U+l = u -foriall uie K.
u+u = u for all u # a.
xz+yz (since 1 and
Z+yZ = az+yz = Xz+yz

xz+yz (since 1, vy,

by Case 3.

XZ4YZ.

Define + on Q+

Then (Q*,4,+) is a ratio semiring and we see that
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I +(1) ik e Q+| e k. iorEt 8 % {xe Q+| x < %}. Clearly S is an

Q
additive subsemigroup of I +(1) and Q+\\S is an ideal of (Q+,+). Let

Q
a be a symbol not representing any element in Q+. Extend + and * from

ot to k = 0'v {a} by
(1) ax = xa = x for all x € K,

(2) a+4x = x+a = a for all x € S and

a+x = x+a = 1+x for all x € Q+\S,

(3) a+a & orinl.

By Theorem 2.39, K = Q+u {a} is a semifield of type II.

Theorem 2.41 Let K be a semifield of type III w.r.t.a. Then

(k\ {a},+,*) is a ratio semiring.

Proof Let e be the identity of (K\{a},*). Then ae # a. Let x,

y € K\{a}. Then xy € K\ {a} because (k\{a},*) is a group. We want
to show that x+y € K\{a}l. Suppose that x+y=a. Then a = x+y = xe+ye =
(x+y)e = ae. Thus ae = a which is a contradiction. So x+y # a.

Therefore (K\{a},+,*) is a ratio semiring.

Corollary 2.42 Let K be a finite a semifield of type III. Then

|k| = 2.

Proof Let a € K be such that (K\ {al,*) is a group. Then by Theorem
2.41, K\ {a} is a ratio semiring. Since K is finite; 80 1is k\1{a}.

By Theorem 1.13, |K\{a}| = 1. Hence |K| = 125 #

Theorem 2.43 Let K be a semifield of type III and a € K, de K \tal)

be such that (K\{al,*) is a group and ax = dx for all x € K. Then

(1) If a+a = a then (X,+) is a band.



31

(2) If a+a # a then a+a = d+d and for all x, ye K\{a}

x+x = y+y 1iff x = y.

(3) a+x = a or a+x = d+x for all x # a.

Proof Let e be the identity of (K\ {a}, ).

(1) If a+a = a. Let x ¢ K\ {a}. Since ae # a,3y e K\ {a}

such that (ae)y = e. Since (ae)y = a(ey) = ay, ay = e. Then x+x =

]

ex+ex = (ay)x+(ay)x = al(yx)+a(yx)

(a+ta)yx = a(yx) = (ay)x = ex = x,

SO0 X+X = X. Hence (K,+) is a band -

(2) If a+a # a, then a+a = (at+a)e = ae+ae = de+de = d+d.
Thus a+a = d+d. Let x, y € KN\ {a}. Since ae # a,az e K\ {a} such
that (ae)z = e. Since (ae)z = a(ez) = az, az = e. Then x+x = ex+ex
= (az)x+(az)x = a(zx)+alzx) = (a+a)zx. Thus x+x = (a+a)zx. Similarly,

y+y = (a+a)zy. Thus if x+x = y+y, then (a+a)zx = (a+a)zy. Since

a+a # a and (K\ {al},*) is a group, x = vy.

(3) If a+x # a, then a+x = (a+x)e = ae+xe = de+x = d+x.

Thus a+x = d+x.

Theorem 2 .44 Let K be a semifield of type III and a € K, d € K\ {a}

be such that (K \ {a}l,*) is a group and ax = dx Vx € K. Let D =K \ {a}

and S = {x € D | a+x = a}. Then
(1) S = ® or S is an additive subsemigroup of ID(d).
(2) If'd e S, then § = ID(d).

(3) D\ S = ® or D\' S is an ideal of (D,+).

Proof Let e be the identity of (K\ {al},*)

(1) Suppose that S # ®. Let x € S, then a+x = a. Then d = de
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- ae = (a+x)e = ae+xe = de+X = d+x, so x+d = d. Thus x € ID(d).
Hence S g;ID(d). Let x, y € S, then a+(x+y) = (a+x)+y = a+y = a.

Thus x+y € S. Hence S-is an additive subsemigroup of ID(d).

(2) Assume that d € S. Then a+d = a. Let X € ID(d), then
d+x = d. Then a = a+d = a+(d+x) = (a+d)+x = a+x, so a+x = a. Thus

x € S. Hence ID(d)C; S. From (1), S C;ID(d), so we get that S = ID(d).

(3) Suppose that D\'S # @. Let x € D\ S and y €D. By Theorem
2.41, kK \{a} is a ratio semiring, so (a+x)+y € K\ {a}. since a+(x+y)

= (a+x)+y, a+(x+y) # a. Thus x+y € D\ S. "

Proposition 2.45 Let K be a semifield of type III and a € K, d

d € K\ {a} be such that (K\ {a},*) is a group and ax = dx for all

x € K. If a+x = a for all x # a then |K| = 2.

Proof Suppose that a+x = x for aldsx # a. Let D = K\ {a} and
s={x eD | atx = al. Then s = k\{a}. By Theorem 2.44, SC I,(d).

Thus ID(d) = K\ {al, so d is an additive zero of kK \{a} which is a

|
-—
.

ratio semiring. By Proposition 1.15 and Theorem 135, |K‘\{a}|

Therefore IKl = 28 #

Theorem 2.46 Let K be an infinite semifield of type III. Then K has

no additive zero.

proof Let a € K be such that (K \{a},*) is a group. Suppose that z
is an additive zero of K. By Theorem 2.41, K\ {a} is a ratio semiring.
Thus K\ {a} is an infinite ratio semiring. By Proposition 1.15, z = a.
Then by Proposition 2.45, |K| = 2, a contradiction. Hence K has no

additive zero. #
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Theorem 2.47 Let K be an infinite semifield of type III. Then K has

no additive identity.

Proof Let a €K be such that (K\ {al},*) is a group and d € K\ {a} be
such that ax = dx for all x € K.

Suppose that z is an additive identity of K. By Theorem 2.41,
K\{a} is a ratio semiring. Thus K\ {a} is an infinite ratio semiring.
By Proposition 1.14, z = a. Then a+x = X for all x ¢ K. By Theorem
2.43(3), a+x = a or a+x = d+x for all x # a. Thus x = a+x = d+x for
all x # a, so d is an additive identity of K\ {a} which contradicts

Proposition 1.14. Hence K has no additive identity. #

Proposition 2.48 Let K be a semifield of type III and a € K be such

that (K\{a},*) is a group. Let D = K\ {a}l and s = {x € D |a+x = al.

If y e D\'S then y is not A.C. .

Proof Let e be the identity of (K\ {a},*) and d@ € K\ {a} such that
ax = dx Vx € K. Assume that y € D\ S. By Theorem 2.43(3), a+y = d+y.

Since a # d, y is not A.C..

Corollary 2.4S Let K be an infinite semifield of type III. Then K

contains an element y € K\ {a} such that y is not A.C. .

Proof Let a € K be such that (K‘\{a},') is a group and let D = K \{a},

s=1{xeD a+x = a}l. By Proposition 2.45, we have that D\ S # O®.

Let y € D\ S, then by Proposition 2.48,we get that y is not A.C.,

Proposition 2.50 Let K be a semifield of type III and a € K be such

that (K\{al}l,*) is a group and e the identity of (K \{a},*). Then K
is A.c. iff K = {a,e} with a2= e, a*e = e*a = e, e*e = e and + is

defined by
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Proof  Assume that K is A.C. By Corollary 2.49, |K| = 2. Hence
K = {a,e}. Since K is a semifield of type III, az# a and a*e = e‘*a
# a. Thus a2= e and a*e = e*a = e. By Theorem 2.41, K\ {a} is a ratio
semiring, so e+e = e. By Proposition 2.48, at+e = a. Since K = {a,e},
either at+a = a or a+a = e. If a+a = a, then a+a = a+e but a # e which
is a contradiction. Thus a+a = e. So we obtain K = {a,e} with the
above structure.

Conversely assume that K = {a,e} with the above structure.

Then K is A.C. since a+a # a+e and e+a # e+e.

Theorem 2.51 Let D be a ratio semiring, a a symbol not representing

any element of D, d € D and let S Q;ID(d) have the property that either
S = ® or S is an additive subsemigroup of ID(d) such that D\S is an
ideal of (D,+) if D is infinite. Then we can extend the binary opera-
tions of D to K = D v {a} making K into a semifield of type III such
that

(1) ax = xa = dx for all x € D and a2= d2,

(2) a+x a@foriall 'x £:8:.and

X+a

a+x = x+a = d+x for all x € D\ S,

a.or.i if 1+1
(3) a+a = {-

d+d if 141 #£.1.

1,

Proof Suppose that S = ®. Extend + and * from D to K = D v {a} as

in (1), (2) and (3) above. Then ax = xa = dx for all x € D, a2= d2,



a+x = d+x for all x € D and a+a

a
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g g HE Tel = 1)

{ d+d if 1+1 # 1,

To show K = D v {a} is a semifield, we must show that (a)

x(yz)

(xy)z

for all x, vy, z¢ K,

X, ¥, z € K and (c) (x+y)z = xz+yz for

we will consider the following cases

Case 1 X =

“(xy)z = (aa)a

Case 2. X=
(xy)z = (aa)z

(since 4, z €

Case 3 X =
(xy)z = (ay)a

(since d, vy €

Case 4 y =

(xy)z = (xa)a

AT T

(da)z = (dd)z

D).

z =a, y #4A.

= (dy)a = (dy)d

D).

z =a, X # a.

= a(xa) = a(ax)

for all u, v € K and by case 2)

Case 5 p*

(xy)z = (xy)a

Case 6 X #

(xy)z = (xa)z

Case 7 X =

(xy)z = (ay)z

Case 8 X #

8, Y £ asaZ = A

b
~~
<
ol

]

(xy)d =

a, Yy = ayz £A.a.

(xd)z = x(dz)

a, y#a, z #a.

(dy)z = d(yz)

a, Yy dy Z27¢ &

a(aa) = x(yz) (since uv

d(dz)

d(yd)

(aa)x

x(ya)

x(az)

a(yz)

Then x,

(b) (x+y)+z = x+(y+z) for all

all x, y, z € K. To show (a),

= vu for all u, v e K).

a(dz) = a(az) = x(yz)
a(yd) = a(ya) = x(yz)
x(aa) = x(y2) (since uv = vu

x(vz) 2(gincé x, y,” d.e D)

x(yz) (since x, z, 4 € D).

x(yz) :(since.y,iz; d e D).

y, 2 € D, so (xy)z = x(yz).
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To show (b), we will consider the following cases

Case 1 X =y =2 = a.

(x+y)+z = (a+a)+a = a+(a+a) = x+(y+z) (since u+v = v+u).
Case 2 Xz yo= a2 # as

Subcase 2.1 at+a =-a; .Then' 1+l & 1, so u+u =1 for all u e"K.
Thus (x+y)+z = (a+a)+z = a+z = d+z, x+(y+z) = a+(a+z) = a+(d+z)

d+(d+z) = (d+d)+z = d+z.

Subcase 2.2 at+a = d. Then 1+1 =1, so u+u = u for all

u £ a. Thus (x+y)+z = (a+a)+z = d+z, x+(y+z) = a+(a+z) = a+(d+z)

d+(d+z) = (d+d)+z = d+z.

Subcase 2.3 a+a = d+d.
(x+y)+z = (a+a)+z = (d+d)+z, x+(y+z) = a+(a+z) = a+(d+z) = d+(d+z)

= (d+d)+z (since d, z € D)«

Case 3 X =2z =a, y &2a.
(x+y)+z = (a+z)+a = (d+y)+a = (d+y)+d, x+(y+z) = a+(y+a) = a+(y+d)

= d+(y+d) = (d+y)+d (since d, y € D).

Case 4 y =2 = a8y X Fd.

(x+y)+z = (x+a)+a = a+(x+a)

a+(a+x) = (a+a)+x = x+(a+a) = x+(y+z)

(since u+v = v+u for all u, v € K and by case 2).

Case 5 X #£ a, y#a,; z = a.

(x+y)+z = (x+y)+a = (x+y)+d = x+(y+d)

U}

x+(y+a) = x+(y+z)

(since u+v = v+u for all u, ve K and x, y, d € D).

Case 6 X =8y # ja, 2 ¢oa

(x4y)+z = (a+y)+z = (d+y)+z = d+(y+z)

a+(y+z) = x+(y+2)

(since y, z, d € D).



37

Case 7 Xk @, Y.=na, z.#al
(x+y)+z = (x+a)+z = (x+d)+z = x+(d+z) = x+(a+z) = x+(y+z)

(8ince x, z5 dr e D).

Case 8 x #a, y#a, z#a. Then x, y, z € D, so (x+y)+z = x+(y+z).

To show (c), we will consider the following cases

Subcase 1.1 asa =ra. - Then 1+1.=1, so u+u = wifor allk u'e K.

Thus (x+y)z = (a+a)z = az = az+az = Xz+yz.

Subcase 1.2 a+a = d. Then 141 = 1, so u+u = u for all u # a.

Thus (x+y)z = (a+a)z = dz = dz+dz = az+az = Xz+yz.

d+d.

Subcase 1.3 a+a
If z = a, then (x+y)z = (a+a)a = (d+d)a = (d+d)d = dd + dd = aa+aa

xz+yz (since d € D). If z # a, then (x+y)z = (a+a)z = (d+d) =z

dz+dz = az+az xz+yz (since d, z € D).

Case 2 K =2 =" a, e ay

(x+y)z = (a+y)a = (d+y)a = (d+y)d = dd+yd = aatya = Xz+yz.

(since d, y € D).

Case 3 y =2 =a, x #£ a.

(x+y)z = (x+a)a = (x+d)a = (x+d)d = xd+dd = xa+aa = xz+yz

(since x, d € D).

Case 4 xi=.a, y # a,: 2 # a.

(x+y)z = (a+y)z = (d+y)z = dz+yz = az+yz = xz+yz (since d, y, z € D).
Case 5 X-hoaziyisrasszEia,

(x+y)z (x+a)z = (x+d)z = xz+dz = xz+az = xz+yz (since x, z, d € D).
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case 6 Xx#a,y#a, z=a.

(x+y)z = (x+y)a = (x+y)d = xd+yd = xa+ya = xz+yz (since x, y, d € D).
Case 7 x #a, y#a,z#a., Then x, ¥, z €D, so (x+y)z = xz+yz.
Therefore K is a semifield of type III.

We now assume that S # ® and |D| 1. Then D\ S = ®&. Thus

S =D = {1}. Extend + and * from D to K = D v {a} as in (1), (2) and
(3). Then a+1 = 1+4a = a. Since D = {1} is a ratio semiring, 1+1 = 1.
Thus a+a = a or 1. And by (1), we have that a¢a = 1, a*1. = 1*a = 1°1

= 1 and 1*1 = 1. So we get that K = {a,1} has two structures 3

(1) siha 1 and + | a 1
a 1 1 ;—- a a

1 1 1 1 a 1

(2) c |l a 1 and + | a 1
&l %7 a1 a

1 1 1 a 1

It is easy to show that they are all semifields.
Suppose that S is an additive subsemigroup of ID(d) and D\ S
is an ideal of (D,+). Extend + and * from D to K = D v {a} as in (1),

(2) and (3). Then a+x = x+a = a for all x € S, a+x = x+a = d+x for all

2

a ord if 1+1 =1
x € D\' S, a+a = {

,ax=xa;destanda2=d
d+d if 1+1 £ 1
We must show that K = D v {a} is a semifield. As in the case S = 0,

we can show that (xy)z = x(yz) for all x, y, z € K. So we have to show

that (a) (x+y)+z = x+(y+z) for all x, y, z € K and (b) (x+y)z = XZ+YZ.

To show (a), we will consider the following cases

Case 1 X =y =12 = a.

(x+y)+z = (a+a)+a = a+(a+a) = x+(y+z) (since u+v = v+u for all x € K).
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Case 2 X =y =a, z # a.
Subcase 2.1 a+a =.a. Then 141 = 1, so u+u = u for all u € K.

If z € S, then (x+y)+z = (a+a)+z = a+z = a, x+(y+z) = a+(a+z) = a+a = a.
If z € D\'S*y then d+z. € D\ S. since D S is an ideal of (D,+).
Thus (x+y)+z = (a+a)+z = a+z = d+z and x+(y+z) = a+(a+z) = a+(d+z)

= d+(d+z) = (d+d)+z = d+z.

Subcase 2.2 ata = d. Then 141 = 1, so u+u = u for all u # a.
If z € S, then (x+y)+z = (a+a)+z = d+z = d (since z € S Q;ID(d)),
X+(y+z) = a+(a+z) = a+a = d.
If z € D\'S, then d+z € D\ S since D S is an ideal of (D,+). Thus
(x+y)+z = (a+a)+z = d+z and x+(y+z) = a+(a+z) = a+(d+z) = d+(d+z)

= (d+d)+z = d+z.

Subcase 2.3 ata = d+d.
If z € S, then (x+y)+z = (a+a)+z = (d+d)+z = d+(d+z) = d+d (since 4,
z € Dand z € S g;ID(d)).
If z € D\'S, then d+z € D\ S. Thus (x+y)+z = (a+a)+z = (d+d)+z and

x+(y+z) = a+(a+z) = a+(d+z) = d+(d+z) = (d+d)+z (since d, z € D).

Case 3 X =2 =a, y #a.
Subcase 3.1 y € S.

(x+y)+z = (a+y)+a = a+a and x+(y+z) = a+(y+a) = a+a

Subcase 3.2 y € D\S.
Since D\ S is an ideal of (D,+), d+y € D\ S. Thus (x+y)+z = (a+y)+a
= (d+y)+a = (d+y)+d and x+(y+z) = a+(y+a) = a+(y+d) = d+(y+d) = (d+y)+d

(since d, y € D).

Case 4 Ve Z = @y XE Qs

(x+y)+z = (x+a)+a = a+(x+a) = a+(a+x) = (a+a)+x = x+(a+a) = x+(y+z)
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(by case 2 and the fact that u+v = v+u for all u, v € K).
Case 5 X # Ay # a5z =.a;

Subcase 5.1 X, Y. €5
Since S is an additive subsemigroup of ID(d) y X+y € S. Thus (x+y)+z =

(x+y)+a = a and x+(y+z) = x+(y+a) = x+a = a.

Subcase 5.2 Xxe S, y e D\ S. Then x+y € D\ S. Thus
(x+y)+z = (x+y)+a = (x+y)+d and x+(y+z) = x+(y+a) = x+(y+d) = (x+y)+d

(since x,y,d e D).

Subcase 5.3 x € D\S, y € S. Then x+y € D\S. Thus
(x+y)+z = (X+y)+a = (x+y)+d = x+(y+d) = x+d (since x,y,d € D and

y € S QID(d)). x+(y+z) = x+(y+a) = x+a = x+d.

Subcase 5.4 x,y € D\S. Then x+y € D\S. Thus (x+y)+z =
(x+y)+a = (x+y)+d and x+(y+z) = x+(y+a) = x+(y+d) = (x+y)+d (since

X,¥,d € D).

Case 6 X:=a,'y # a, Z§g a
(x+y)+z = (a+y)+z = z+(a+y) = z+(y+a) = (z+y)+a = a+(z+y) = a+(y+z)

= x+(y+z) (by case 5 and the fact that u+v = v+u for all u, v € K).

a, z £ a.

Case 7 X # ay. ¢

(x+y)+z = (x+a)+z (a+x)+z = a+(x+z) = (x+z)+a = x+(z+a) = x+(a+z)

= x+(y+z) (by case 5, case 6 and the fact that u+v = v+u for all u,

v.€ K.

Case 8 x #a,y#a, z#a. Then x,y,z2 € D, so (x+y)+z = x+(y+z).

To show (b), we will consider the following cases

Case 1 X =y =a, z € K. The proof is similar to case 1 of the case
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Case 2 Xx'=2 =@,y #a.

Subcase 2.1 vy € S. Since. S C;ID(d), d+y = d. Thus

(x+y)z = (a+y)a

aa = dd = (d+y)d = dd+yd = aa+ya = xz+yz (since

a6 D).

Subcase 2.2 y € D\S.

(x+y)z = (a+y)a (d+y)a = (d+y)d = dd+yd = aa+ya = xz+yz (since

a,y € D).

Cage 3. iy . =i2 = one Xt ok
(x+y)z = (x+a)a = (a+x)a = aa+xa = xa+aa = xz+yz (by case 2 and the

commutativity of K).

|
[V}

Case 4 x # a, y. #a, zfF

(x+y)z = (x+y)a (x+y)d xa+ya = xz+yz) (since x,y,d € D).

I
]

xd+yd

Case 5 X #'a,. ¥ = a, z#)9

Subcase 5.1 MweE S, Then X € ID(d), so x+4d = d. Thus
(x+y)z = (x+a)z = az = Az = (x+d)z = xz+dz = xz+az = xz+yz (since

x;d,z:€ D&

Subcase 5.2 ¥ D\ 5.

(x+y)z (x+a)z (x+d)z xz+dz

Xz+az xz+yz (since x,d,z € D).

Case 6 x=a, y # a, z # a.

(x+y)z (a+y)z = (y+a)z = yz+az = az+yz = Xz+yz

(by case 5 and the commutativity of K).
Case 7 x#a,y #a, z#a. Then x,y,z € D, so (x+y)z = xz+yz.
Therefore K is a semifield and clearly it is a type III semifield.

#

Example 2.52 Let Q+ have the usual multiplication. Define + on Q+

by x+y = min {x,y}. Then (9" +,+) is a ratio semiring. Let d e 0" and
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a a symbol not representing any element in Q+. Then I +(d)

0
= {x € Q+| x >d}. Let s = {xc¢ Q+| x > 2d}. Clearly S is an additive

subsemigroup of I +(d) and Q+\S is an ideal of (Q+,+). Then by Theorem
L)

2.51, we can extend the binary operations of Q+ to'K' = Q+U {a} making

K into a semifield of type III by

(1) ax = xa = dx for all x € Q+and a2= d2,

(2) a+x x4+4a = a for all x € S and

+
a+x = x+a = d+x for all x € Q\S,

(3) a+a d+d.
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