CHAPTER 1V

PRIME SEMIFIELDS

Definition 4.1 Let K be a semifield and L € K. Then L is said to be

a subsemifield of K iff L forms a semifield with respect to the same

operations on K.

Theorem 4.2 Let K be a semifield. 1If K is of type I w.r.t.a then
there exists a smallest subsemifield contained in K and it is also a
semifields of type I w.r.t.a. 1If K is of type II w.r.t.a they there
exists a smallest subsemifield contained in K and it is also a semi-
field of type II w.r.t.a. If K is of type III then there exists a
smallest subsemifield contained in K and it is also a semifield of type

IIX.

Proof Let a € K be such that (K\ {a},*) is a group and let e be the

identity of (K\ {a},*). Let L € K be a subsemifield.

First, we shall show that a € L and L is a semifield of the

same type as K w.r.t.a.

Case 1 K is a semifield of type I w.r.t.a.

Then a and e are the only multiplicative idempotents of K. By
Theorem 3.15 and Theorem 3.18, L must be a semifield of type I or II.
Then L contains exactly two multiplicative idempotents. Thus {a,e} C L.
Since a is multiplicative zero of K, we get that a is also multiplica-

tive zero of L. Thus L is a semifield of type I w.r.t.a.
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Case 2 K is a semifield of type II w.r.t.a.

Then a and e are the only multiplicative idempotents of K.
By Theorem 3.14 and Theorem 3.15, L must be a semifield of type I or
II. Then L contains exactly two multiplicative idempotents. Thus
{a,e}C L. Since a is multiplicative identity of K, we get that a
is also multiplicative identity of L. Thus L is a semifield of type

I w.r.t.a:

Case 3 K is a semifield of type III.

Then e is the only multiplicative idempotent of K. By
Theorem 3.18, L must be a semifield of type III. Then L contains
exactly one multiplicative idempotent so e e L. Let b € L be such
that' (L \ {b},«) is a grodp./ /if b #7as then b = be, a contradiction.
Hence b = a. Therefore L is a semifield of type III and a is the

element in L such that (L\ {a},*) is a group.

Let {La} be the set of all subsemifields of K. By the
ael

first part of this proof, we get that a ¢ La and La is a semifield

of the same types as K w.r.t.a. Let M = N La' Cleary M is a
ael

subsemiring of K and a € M. Now M\ {a} = (FW Lu)\\{a} w40 (La\ taly.
ael aeTl

Thus (M\ {a},*) is a group. Hence M is a subsemifield of K. By the
first part of this proof, we get that M is a semifield of the same

type as K w.r.t.a. Clearly M is the smallest subsemifield of K.

So we obtain that M is the smallest subsemifield of K and M is a

semifield of the same type as K w.r.t.a.
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Definition 4.3 Let K be a semifield. Then the prime semifield of K

is the smallest subsemifield of K (Which exists by Theorem 4.2) .

Remark 4.4 Let Q+ with the usual addition and multiplication. Then

(Q+,+, *) is a ratio semiring. Let a be a symbol not representing any
+ + +

element of @ . Extend + and ¢« from @ to Q@ y {a} by a-x = xra = x

Vxe Q+U {fal, a+x = x+a = 1+xVx ¢ Q+ and a+a = 1 +1. Then by

Theorem 2.39 we obtain that Q+u {a} is a semifield of type II.

Theorem 4.5 Let K be a semifield of type II w.r.t. a and K’ the
prime semifield of K. Then K* = {a,1} with a%d a, a*1 = 1ea = 1,

1*1 = 1 and + defined by

(1) b e 1 or (2) + | a 1 or
a | a a a a 1
1 a 1 1 1 3
(3) + | a 1 or (4) + a 1
a 1 a a 1 1
1 a 1 1 1 1
or K’ £ ¢*v {a} as in remark 4.4.

Proof Let 1 be the identity of (K\ {a},*).

By Theorem 2.29, K\ {a} is a ratio semiring. Let D’ be the
smallest ratio subsemiring of K\ {a}. By Proposition 1.18, D” = {1}
with 11 =1 and 141 = 1 or D’ & Q+ with the usual addition and multi-
plication.

Suppose that D’ 2 {1}. Then 1+1 = 1. By Theorem 2.30,
ata = a or at+a = 141 = 1 and a+1 = a or a+1 = 141 = 1. Therefore
we have four cases to consider. They are (1),(2),(3) and (4) above.
It is easy to check that they are all semifields. Thus K’ & (1) or

’

K- #2) orK’ & (3) oK~ & (4).
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If D’ & Q+ with the usual addition and multiplication, then
up to isomorphism we can consider Q+(; K\{a}. Let D = K\ {al and
S'={xe D | a+x = a}, by Theorem 2.31, S C ID(1). Claim that Q+n S

1, a contradic-

= 0. Let xe¢g Q+and X'e S, then x € ID(1). So x+1
tion. So we have the claim. Thus Q+g D\'S, so a+x = 14X YV x € Q+.
By Theorem 2.30 (1) and (2) we obtain that a+a = 1+1. Since

Q+u {al- € &k, ax = x Vxe Q+U {al. By Theorem 2.39, Q+U {a}l is
a semifield. So up to isomorphism, K € Q+U {al. By Theorem 2.29,
K. \ {a} is a ratio semiring. Then K'N {a} is a ratio subsemiring of
K\ {a}. Since Q+ with the usual addition and multiplication is the
smallest ratio subsemiring of K\ {a}, we obtain that ot k'\ {a}.

Thus Q07U {a} C K . Hence K = Q+U {a} as in remark 4.4.

Theorem 4.6 Let K be a semifield of type III and a € K, 4 € K\ {a}
be such that (K\ {a},*) is a group and a-x = 4.-x for all x e K. Let
m, .
A= {z nid ll mi, niez+} and K’ the prime semifield of K. Then A is
i<
is a multiplicatively cancellative semiring and K'; (the quotient

ratio semiring of A) U {a}.

Proof Let e be the identity of (K\ {a}l,*), D = K\ {al ana
S={x D |a+x=a}.

By Theorem 4.2, we have that a,e € K, so d = a*e € K’. Thus
d € K’\ {a}. Since K’\ {a} is a ratio semiring (by Theorem 2.41),
we get that AC K\ {a}. Clearly A is a semiring. Since A C K’\ {a}
which is a group under multiplication so A is M.C. Let B be the
quotient ratio semiring of A. Then we get that BC K’\ {a} (since B
is the smallest ratio semiring containing A).

Let S = BNS. Claim that

(1) S” =0 or S” is an additive subsemigroup of IB(d).
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(2) B\S’=® or B\S  is an ideal of (B,+)
(3) If B\S’ = & then |B| = 1.
To show (1),we assume that S#£d.Let x € S’, then x € B and x € S.
Since S C I,(d) (by Theorem 2.50), x € I,(d). So x+d = d. Thus
X € IB(d). Hence S ' C IB(d). Let x, ye S°. Then x, y € B and x,
y € S. Since B is a ratio semiring and S is an additive subsemigroup

of I.(d) , x+y € B and x+y € S. Thus x+y € S'. So we have (1).

To show (2),we assume that B\S #®.Let x € B\ S’ and y € B. Since
B\s’ =BNns°=Bn(Bns)® =Bn(E°us®) = (BnB®)u(BAS®) = Bns®

= B\ SC D\S,B\S = B\SED\S. So we get that x €& D\ S. Since D\S
is an ideal of (D,+) (by Theorem 2.50), x+y € D\ S. Since x,y €B,
X+y € B. Thus x+y € B\'S and hence x+y € B\ S’(since B\S’'= B\ S).

So we have (2).

To show (3), we assume that BN S'=®. Then B = S’. Since S'C I,(d),
we get that B = IB(d). Then d+x =d Vx € B. Thus d is an
additive zero of B, then by Theorem 1.13 and Proposition 1.15,
|B| = 1. So we have (3)

Since S'C S and B\S'C D\S , atx=a Vxe S’ and
a+x = d+x VxeB\ S’ By Theorem 2.43 , ata = a or a+a = d+d.
Since B U{a}C K, ax = dx Vx € BU {a}. By Theorem 2.51 we obtain
that B U {a} is a semifield of type III. Hence K'C B U {a}l. Since
BC kK'’\{a} , B U{alC K’. Therefore K’ = B U {a} so we have

the Theorem.

From now on we shall compute the prime semifields of semifields

of type III.

Remark 4.7 Let K = {a,1}. Define + and * on K as the following

tables
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(=19 . a 1 and + a 1
a 1 4 a a a
1 1 1 1 a 1
(2) . a 1 and + a 1
a 1 1 a a 1
1 1 1 1 1 1
(3) . a 1 and + | a 1
a 1 1 a 1 a
1 1 4 1 a 1
(4) . a 1 and Sobna 1
a 1 1 a 1 1
|
1 1 1 =l 1

By Theorem 2.51 we get that (1),(2),(3) and (4) are all semi-

fields of type III.

Remark 4.8 Let Q+ have the usual addition and multiplication. Then

(Q+,+,-) is a ratio semiring. Let d e Q+ and a a symbol not represent-

ing any element in Q+. Extend + and ¢ from Q+ to Q+U {a} by ax = xa = dx
+ 2 AR ; +

Vx € @ ,a"= d°, a+x = x+a = d+xV¥x € @ and a+a = d+d. Then by

Theorem 2.51, we obtain that Q+U {a} is a semifield of type III.

Remark 4.9 Let <d> be notation for the set of symbols {d" |n el}.

Define + and * on <& by a™+ a”= @" where k = min {m,n} and am.q"”

m+n

=d . We shall show that (<d>,+,+) is a ratio semiring. Clearly,

(<d>,+,+) is a commutative group. For £,m,n & &

9 ] .
C AR w, FENE O I d2+ (d"+ a@") where k = min {2 ,m,n}

and we get that
(d2+dm) @ = d+ad"= a°™ ywhere k = min {2,m} and

2 2
8 rd s e e T M L & where r = min {£+4n, m+n}.
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Since k = min{%,m}, we get that k+n = min {2+n,m+n}. Thus r = k+n.

tence (& 1aTa® =ateg®i PP,
Therefore (<d>,+,°) is a ratio semiring. Let a be a symbol
not representing any element in <d> and n,e Z+ be fixed. Let

s,= {@"| neZ, n > no}, then <d>\s, = {@"| neZ, n < n,}. Clearly,

I<d>(d) = {dnl n eZ, n. g 1}. It is easy to show that S1 is an

additive subsemigroup of I<d>(d) and <d>\ S1 is an ideal of (<d>,+).
Extend + and * from <d> to K = <d> U {a} as follows ;

(1) ax = xa = dx for all x e <d> and a2= d2,

(2) a+x = x+a a for all x € S, and

1

a+x = X+a = d+x for all x e <d>\ S1 4

(3) a+ta=a or d.
Then by Theorem 2.51, we obtain that <d> U {a}l is a semifield

of type III.

Remark 4.10 Let (<d>,+,¢) be the ratio semiring given in Remark 4.9.
Let a be a symbol not representing any element in <d>. Extend + and

+ from <@> to <d@> U {a} by ax = xa = dx Vx e <d> ,a2= d2, a+x = X+a
= d+x Vx f’:<d> and a+a = a or d. By Theorem 2.51, we obtain that

<d> U {a} is a semifield of type III.

Remark 4.11 Let <d> be notation for the set of symbol {dnln eZ}.
. m n k

Define + and * on <@> by d + d = d  where k = max.{m,n} and

% e a0, Similarly as remark 4.9, we can show that (<d>,+,*) is

a ratio semiring. Let a be a symbol not representing any element in

<d@> and n,€ o n,< 1. Let §,= {a" |n eZ, n< no}, then <c.'i>\s1

= {a" IneZ , n> no}. Clearly,I<d>(d) = {a" ln €2, n ¢ 1}. It is

easy to show that S, is an additive subsemigroup of I<d>(d) and

1
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<a>\ S1 is an ideal of (<d>,+). Extend + and °* from <d> to <d> U {a}
as follows ;

(1) ax = xa = dx for all x ¢ <d> and W dz,

(2) a+x = x+a = a for all x ¢ S1 and

a+x = X+a = d+x for all:x'e <d>\ S1,

(3) ata=a ord.
Then by Theorem 2.51 we obtain that <d> U {a} is a semifield

of type III.

Remark 4.12 Let (<d>,+,¢) be the ratio semiring given in Remark 4.11.
Let a be a symbol not representing any element in <d>. Extend + and

» from <d> to <d> U {a} by ax = xa = dx Vx e <d>, ot d2, a+x =

x+a = d+x Vx € <d> and a+a = a or d. | By Theorem 2.51, we get that

<d@> U {a} is a semifield of typé R

Remark 4.13 Let Q+ have the usual addition and multiplication. Let
+ 5 n +
Q" <d> be notation for the set of symbols {xd |x € @ and n ¢ Z }

Define © and © on Q+- <d> as follows ;

m

xd if-m«< n

m n () P
xd & yd = (x+y)d ifim=n
'ydn if'n - <:m

and xd" @ ya" = (xy)d" " |

Claim that (Q+' <d>,8,0) is a ratio semiring.
Clearly (Q+-<d>, ®) is a commutative group. Let x,y,z e Q+

and 2,m,n €Z . We shall show that

(1) (xa* o ya™) ¢ 28” = 38% & (ya™ @ 2d™) . and
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(2) (xdce ydm) © 2d" = xd ® 23" ® ydm ®zd"
To show (1) , we will consider the following cases
Case 1 Low n.

xd & ya™) ® zd"= (x+y)dze zd"= ((x+y)+z)d2 = (x+(y+z))dg= xdee (y+z)d£
= xdﬂe (ydﬂe zdz) = xdze (yde za™).
Case 2 2=m # n.

Subcase 2.1 m< -n. sThenf <in.

(xate ydm) © zd" (x+y)dle 23" = (x+y)d2.

(xdle (ydme za™) xd£$ ydm = (x+y)d£

Subcase 2.2 m > n. Then £ > n.

2
(x+y)d & zd" = za"

(xd%e ya™) ¢ zg®

n

£
2
xd @ (yd"g za™) xd @ zad" = zd

]

Case 3 £ =n#m,

Subcase 3.1 nC</m. Then ¢ < m.
(xdﬁ@ yd™) @ za" = xdz @ zd" = (x+z)d2
Xd2$ (ya" @ za™) = xdze zda" = (x+z)d2

Subcase 3.2 n>m.: Then ¢ > m.

(xale yd™) @ zd" = ydm & zd"
2

yd

xd"e (ya'e za") = xd%e yd™ = yd

]

Case 4 n=mgs%# p. Then
(xa? @ ya™) @ 28" = (ya" o xd?) ® 23" = ya® @ (xale za®) (by
case 3) = yd™ @ (zd"e xdz) = (ydme zd™) g xat (by case 2)

= xa% ¢ (yd" za").

Case 5 £, m, n are all distinct. Let k = min {2,m,n}, then
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xd ifk=2,

b ik wmid

(xdle ydm) & zd'= deG (yd"e za") = Syd
l n

zd 2Rk

[}
3
.

To show (2) , we will consider the following cases
Case 1 £ =m .
(xd'e@ ydm) © zd"= (x+y)d2@ zd"= ((x+y)z)d2+n= (xz+yz)d£+n
= (xz)d£+n® (yz)d£+n= xdz@ zd"® ydz@ za".
Case 2 R w2
Subcase 2.1 £ < m. Then £+n < m+n

(xdle ydm) © zd"= xdzé) zd" = (xz)d'“'n

xd’e 2a%@ yd®® zd"/ (x2)a' 2@ (y2)@™" = (xz)a’th
Subcase 2.2 £ >m.

(xale ya™) e za"=—(ya"oxati-®za"= ya"o zda"@ xa’® za® (by
Subcase 2.1) = xdle za"® & yd“b zd"

Therefore (Q+- <@>, ® ,© ) is a ratio semiring.

Let noel, ny> 2 and S = {xa"| x € ¢* ana neZ, n> no}.

Then Q+'<d> S1= {xdnlx € Q+ and n €eZ, n < no}. Clearly ,
I (1d) = {xd"] x e 9" and n eZ, n > 2}. It is easy to show that
o¥<a>

S, is an additive subsemigroup of I (1d) and @+<d>\ S. is an ideal
1 pT<a> ;

of (QT<d>, & ). Let a be a symbol not representing any element in
0¥<d@>. Extend + and * from Q-+<d> to Q'-*'<d> U {a} as follows ;

(1) aG z=20a=1d@2z for all z€ Q' +<d> and a®a = 14@1d,

(2) aez=z0a-=a for all z e S, and

a®z-=2z2¢ea

1d @ z for all z € Q+'<d>\AS1,
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(3) apa=14@ 1d.

Then by Theorem 2.51 we obtain that @'<d& U {a} is a semi-

field of type III .

Remark 4.14 Let (Q+~<d>, ® , ® ) be the ratio semiring given in
remark 4.13. Let a be a symbol not representing any element of (Q+°<d> :
Extend @ and © from Q+-<d> to Q+-<d> Uf{al by a® z=2z® a =140 z
for all z € Q+-<d>, a®a=1d01d, a®@z =2z da= 1d @ z for all z ¢
0" e<d> and a @ a = 1d@1d. By Theorem 2.51,we obtain that @'s<d> v {a}

is a semifield of type III.

Remark 4.15 Let Q+ have the usual addition and multiplication. Let
+ . n +
Q@ «<d> be notation for the set of symbols {xd Ix € @ and neZl}.

Define @ and ® on Q+- <d> as follows ;

xd" if m>n
xd"@ ya® = (x+4y)d"  if m=n ,
ydrl if " n>m,

and xdm@ ydrl 2 (xy)dm“:l

Similarly as Remark 4.13, we can show that (QT<d>, e, 0 ) is

a ratio semiring. Let ner, n,< 1 and S1= {xdn|x € Q+and n eZ,n<no}.

0
Then we get that pte<a> S1= {xa® |x € Q+ and neZ, n > no}. Clearly

I +(1c1) = {xdnlx € Q+ and n eZ, o T | O ¢ ¥ easy to show that S1

Q. <d>

is an additive subsemigroup of I +(1d) and QT<d>\ S1 is an ideal of
Q- <a@>

(Qf<d>, ® ). Let a be a symbol not representing any element of Qf<d>.

Extend @ and ® from Q'."<d> to Q'f<d> U {a} as follows ;

(1) a® z z © a 1d ® z for all z ¢ Q+'<d>anda®a=1d@1d,

(2) a@® =z z®a=a for all z€ S. and

1
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ae z z®a=1de z forallzeQ+°<d>\S,

(3) a®a 1d @ 14 .

Then by Theorem 2.51,we obtain that Q+<d> U {a} is a semifield

of type III.

Remark 4.16 Let (Q+<d>, ® , ® ) be the ratio semiring given in
Remark 4.15. Let a be a symbol not representing any element of Q+<d>.
Extend @ and ® from Q+<d> to Q+<d> V{al bya@z=z@a=14@ z

Y ze Q+<d>. a®a=1490©14, a@z=2z62a = 1desz sQ+-<d> and

a®a=14@ 1d. By Theorem 2.51, Q+'<d> v {a} is a semifield of type III.

Remark 4.17 Let <x,y> be notation for the set of symbols {xmynl
m, neZ.}. Define + and * on <x,y> as follows ;
k £ m n
X Y,

Y + X = x*v® where r = max {k,m} and s = min {2 ,n}

K m n k+m £+n
and X yu. X'y = XJf

Claim that (<x,y>, + , * ) is a ratio semiring.

Clearly (<x,y>, * ) is a commutative group. To show the claim

we need only to show that for M., My, Mgy N,y N,y NgE Z

m, n, m, n, m, ng m, n, m, n, my Ny
(1) (x v +x v D)+x"y  =xvy +x7y +x "y"7)
m, n, m, n, m, n, m, n, m,n, . m, N, My N,
and (2) (Xz'y ¥ Xy T) e TY T X Yot XY XYy *ix Yy,

First we shall show (1). Let m,,m,,m,,n,,n, and n3e'2 .

By definition of +, we get that
m, n m. n m. n m, n m, n m n3

1.3 2.2 3 ¥ s 1.1 2 3
(x vy 4+ X'y )+x"y =xy =x'vy +{xy +xTy7)

where r = max.{m1,m2,m3} and g = min.{n1 ,n2,n3} 5

To show (2), let m1,m2,m3,n1,n2 and na e Z. Then

m, N, m, n, myn, s M3 D3 rm,  S+n,
(x 'y +x 7y "»rx Ty =xXy.x 'y =X y
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where r = max {m1,m2} and s = min {n1,n2} and

m_. n m, n m. n m., n m_+M. N +N

1 3473 22 3.3 T30 T3 2583 12 243
X Gy ek Ty ke Ty s R T y + x y
_ +P,4d ™ 18 ke
= xy® where p = max {m1+ mo,m+ m3} and q = min {n1+ ng,n + n3}.
Since r = max {m1 ,m2} ) THm, = max {m + mo,mo+ my } and
since s = min {n1,n2} > s+ng= min {n1+ ny,n,+ ng }. Thus r4m.= p

and S+n;= g, SO we have (2). So we have the claim i.e. (<xX,y>, + ,* )

is a ratio semiring.

m n
Clearly I<x,y§xy) ={xy | mneZ, mg1¢n}. Let mo,noez be such
that m< 1 < n,. Define S, = x"y"| m < m, and n > no}. Then
<x, y>\ s,= "y m > m, or n <'n }. Clearly S, is an additive sub-

semigroup of I (xy). Claim that <x,y>\s1 is an ideal of

<X,y>

(%,y>, + ). Let z € <x,y>\S1 and w € <x,y>. Then z = xmyr1 where

m>m, or n <n, and w = xkyl for some k, £ €7ZL. Consider z+w =

0 0
m n k
Xy + Xy . We get that

xmyn ifk<m and ng £,
md iek <y andd <n
m k 2 % )
ZHW = X Y + X Yy =
k n 5
X'y ifm<k and ng £,
xky'e ifm<k and £ <n

In all cases we see that z+w & <x,y>\S1 . So we have the

claim i.e. <x,y>\ S1 is an ideal of (<x,y>, + ).

Let a be a symbol not representing any element of <x,y> .
Extend + and * from <x,y> to <x,y> U {a} as follows ;

(1) a * w

]
2
[}

= Xy * w for all we <x,y> and aea = Xy *XY ,

(2) a +w

I
=
+
o
I

a for all w ¢ S1 and

a+ w=w 4+ a

Xy + W for all w e <x,y>\S1»
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(3) a+a=aor xy.

Then by Theorem 2.51 we obtain that «,y> U {a} is a semifield

of type III.

Remark 4.18 Let (<x,y>, + , * ) be the ratio semiring given in
Remark 4.17. Let a be a symbol not representing any element of <X,y>.
Extend + and « from <,y> to <x,y> U falbya *w=w sa=xy *w
Ywe X,y>,a*a = Xy*Xy, a+w = w+aVw €<x,y> and a+a = a or xy. Then

by Theorem 2.51 we obtain that <x,y> U {al is a semifield of type III.

Definition 4.19 Let D be a ratio semiring and let 0 be a symbol not

representing any element of D. We have shown in Theorem 3.5 that we
can extend the binary operations of D to D Y {0} making D u {0} into
a 0O-semifield. Let (DU{0})[x] be the set of‘all polynomials coeffi-
cient in D U {0}. Define D[x] = (Du{0})[x]\{0}. Then D[x]is a semi-

ring. If D[X] is M.C. then define D(x) to be the quotient ratio semi-

ring of D[x] .

Remark 4.2V0Let D = {1} be a ratio semiring. Then D is A.C. but we see
that D U {0} the O-semifield of definition 4.19 is not A.C. because

1+1 = 1+0.

The next proposition will show that D ( {0} is also A.C. if

D is A.C. and infinite.

Proposition 4.21 Let D be an infinite ratio semiring and D U {0} the

O-semifield of definition 4.19. Then DV {0} is A.C. iff D is A.C.

Proof Assume that D U {0} is A.C. Let a, b, ¢ € D be such that
a+b = a+c. Since a, b, c € D U {0} and D U {0} is A.cC. , b = c.

Thus D is A.C..
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Conversely assume that D is A.C. Let a,b,ce DU {a} be such
that a+b = a+c. We must show that b = ¢. If a = 0, then b = c.

Suppose that a # 0. Consider b and c.

Case 1 Both of them are 0. Then b = c.

Case 2 Both of them are not 0. Then a,b,c € D are such that a+b =

a+c. Thus b = ¢ since D is A.C. .

Case 3 One is 0 the other is not. We may assume that b = 0 and
c #0. Then a = a+c, so 1 = foa o6a Lot ¥ = a—1c, then 1+x = 1.

By induction,we obtain that 14x’= 1 VYneZ*. LetmyneZ ;m < n.

n=My ™ = 1. SThus %"+ x"= x™ for all m,neZ,

m < n. Then x+x2= x+x3. Since D is A.C. , x2= x3. Hence x

Then X"+ x"= x"(14x

13

So we get that 1+1 = 1. Let z € D\ {1}. 1If 14z = 1, then 1+z = 1+1.

Since D is'A.C. ") z = 1 which is a contradiction. Thus 1+z # 1.
Now 1+z = (1+1)+z = 1+(1+2z). Then 14z = 1+(1+2z), so 1 = 1+(1+z)_1.
Thus 1+(1+z)-1= 1+1. Since D is A.C., (1+Z)_1= 1. Hence 1+z = 1

which is a contradiction. Thus this case cannot occur.

Therefore we get that D U {0} is A.C..

Remark 4.22 Let D = {1} be a ratio semiring. Then clearly D is A.C.
Consider D [x] 3

14x5:9(x) = 1+x+x2 and h(x) = 1+x2. We see that

Let f(x) =

P 253
f(x)g(x) = (14x) (1+x+x") = 14x+x +x~ and
fix)h{x) = (1+x)(1+x2) = 1+x+x2+x3

So we have that f(x)g(x) = f(x)h(x) and g(x) # h(x). Thus
D[x] s not "M.Csi-:.
The next theorem will show that if D is A.C. and D is infinite

then D[x] is M.C. .
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Theorem 4.23 Let D be an infinite ratio semiring. Then D[x] is M.C.

It Do g AL C o

Proof Assume that D[x] is M.C. Let a,b,c € D be such that a+b = a+c.
Let f(x) = 14x, g(x) = a+bx+ax2 and h(x) = a+cx+ax2. Consider f(x)-

g(x) and f(x)«h(x).

f(x)+g(x) (1+x)(a+bx+ax2) a+(a+b)x+(a+b)x2+ ax3

f(x)*h(x) (1+x)(a+cx+ax2) a+(a+c)x+(a+c)x2+ ax3

Since a+b

"

atc , we get that f(x)g(x) = f(x)h(x). Since
D[x] is M.C., we get that g(x) = h(x). Hence b = ¢. Therefore D

is A.C.

Conversely, assume that D is A.C. Let f(x), g(x) and h(x)e

D[x] be such that f(x)g(x) = f£(x)h(x).

k Y 2 :
Suppose that f(x) = Z a.x", glx) = Z b.x> and
: i . i
i=0 i=0
m : k+2
h(x) = Z c.x where a ,b,,c # 0. Then f(x)g(x) = I d:x~ where
; kYN . m ; 1
i=0 i=0
3 k+m i
d.= Za, .b., i=0,1,...,ktd 7and £{x)h(x)’= 'Z f.x where
i i-j 73 ; i
j=0 i=0
i
f.= T a, .c.. Since f(x)g(x) = £(x)h(x) , ~k+4 = k+m and d.= f.
i 40 i-j73 , il

\f i=20,1,...,k+2. Let n be the smallest non negative integer such

that a # 0. Since d = £ , then
n h n

anb0+ an_1b1+...+ aobn = a8 Copt a ,Cit...+ 3pC . Since
T e L 0o > anb0= a cy- Thus b0= -

Now consider dn+1 and fn+1' Since dn+1= fn+1’ we get that

an+1b0+ anb1+ an_1b2+ R aobn+1= a ,+1%"* 3,61t a _41Cot--
R L Since BN B W oo W 0 5 an+1b0+ anb1= a +1%
+ac,. Since b0= S an+1b0 = 8 .1%" By Proposition 4.21
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we have that D U {0} is A.C. Since an+1b0’ ab., a ce D U {0} and

1

) i X = 2 = b
D {o} is a.c ’ anb,' anc1 Hence b1 c1
: ; £ t.that
Consider dn+2 and fn+2' Since dn+2 fn+2’ we ge
an+2b0+ an+1 b1+ anb2 = an+2c0+ am_1 c1+ anc2 ( since a0= a1 e s

S PR 0). Since b0= S and b1= c, o an+2b0+ am_1 b1 =a >%
+2a 1% Since D U {0} is A.C. , : anb2= a c,. Hence b2= c, -
Using the same proof we then get bi= c. for ‘all i. '.Thus

1

g(x) = h(x). Therefore D[x] is M.C..

Remark4.24 Let D = {1} be a ratio semiring. Then clearly D is A.C.
Consider D [x].

Let f(x) = 1+x, g(x) = 1-x-x2 and h(x) = x+x2. We see that

1 +x+x2 and

B gln) = (5N

f(x)+h(x) (1+x)+(x+x2) 1+x+x2

]
]

So we have that f(x)+g(x) = f(x)+h(x) and g(x) # h(x). Thus
D[x] is not A.C.
The next theorem will show that if D is A.C. and D is infinite,

then D[x] is A.C.

Theorem 4.25 Let D be an infinite ratio semiring. Then D[x] is

AC. iff'D is A:C. .

Proof Assume that D[x] is A.C. Let a,b,c € D be such that a+b

a+c. Since a,b,c are all polynomials in D[x] which is A.C., so b

I
0

Thus D8 A.C. s

Conversely, assume that D is A.C. Let f(x), g(x) and h(x) €
n ;
D[x] be such that f(x)+g(x) = f(x)+h(x). Let f(x) = I aixl,
i=0



b.x> and h(x)
i ;
0 j

g(x) =

n
1=

i n : n
e XA Then % (a.+b.)xl=
i : 2 T | :
0 i=0 =

[
n ™Mz

(ai+ci )xl 2
0

Thus a;+ bi= a;+ ¢ YV 1.=0,1,.5,n, By -Propegition 4.21 ‘we have
that D V {0} is A.C. Since ai,bi,cie D U {0} such that a+ bi=
a;+ ¢, for: all-i. = 051 ,5.,0s We.get that bi= ciVi= 0,1,...,n. Thus

g(x) = h(x). Therefore D[x] 18 A¥Cs . "

Remark 4.26 Let Q+ have the usual addition and multiplication.

Then Q+ is a ratio semiring and since Q+ is A.C. Then by Proposition
4.21, we obtain that Q+ [x] issM.C.iJ/So Q+(x) is the quotient ratio
semiring of Q+ (<l - Let a be a symbol not representing any element

of Q+(x). Extend + and * from Q+(x) to Q+(x) U {a} by a*z = z.a =

xz Vze Q+(x) s a2= x2, atz = z+a = x+z V. z € Q+(x) and a+a = X+X.

By Theorem 2.51, ®' (x) v {a} is a semifield of type III.

Definition 4.27 Let D be a ratio semiring and E € D. Then E is

called a C-set iff

12 %, ve2'B -=bxy—1sE

2) xsEandyeD—>§—ty-eE s
1+y

Let D be a ratio semiring and E a C-set in D.. Define a
i : -1 ! g
relation ™~ on D by x v y iff xy € E. Clearly v is reflexive. Let
X, y € D be such that x v y. Then xy-1e E. By condition 1) ,
g 1 ¢ &
(Biie). € (Do) Thus (xy ) € E. Since yx = (xy ) ,
yx_1s E. Thus y v x. Let x, y, z€ D be such that x Vyand yVv =z.

Then xy-1s E and yz_1e E. 8o (xy-1)(yz‘1) € E because (E,*) € (D,*).

Thus xz-1e E. Hence x "V z. So v is an equivalence relation.
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Let D/E be the set of all equivalence classes in D. Let ¢,
B € D/E. Define + and °* on D/E in the following way:

Choose x € a and y € B and let a'B = [xy] and B = [x+y].
To show + and * are well-defined, let X € @ and y € B. Then ¥x'k E
and y'-y_1e E: Since (E,;™) si(D; %), (x’-x_1 )~(y'-y_1) € E. Thus

(x-y )-(x-y)_1 EE, so X-y v xy. Hence [xy] = [X y] . So « is well-

defined. Since x+yl=xx e 2. and >Ex_1€E, so w:eE.
X +y 1+y'x—1 X +y

Thus x' + y v x +y . Similarly we can show that x + Y v x+y. So

X+Yy Vv x+y. Hence [+ y] = [+y], so + is well-defined .

Claim that D/E is a ratio semiring.

[xe1]

= [x] = o> so [1] is the multiplicative identity. Let B = [x—1]

Let a €D/_. Choose x €& & Then a*[1] = [x][1]

Then aBf = [x] [x_1] = [xx_1] = [1] so every element has a multiplica-
tive inverse. Clearly « is commutative and associative. Thus (D/E,')

is a commutative group, and clearly (D/E,+) is a commutative semigroup.

Let a, B, ¥ € D/E' Choose x € a, y € B, z € Y. Then
(a+B) ey = ([x]+[y])[z] = [x+y] [z] = [(x+y)z] = [xz+yz:| = [xz]+[yz]
- [+l = aer 4 8oy

Hence (D/E,+,') is a ratio semiring. So we have the claim.

Remark 4.28 Let 0'(x) be the quotient ratio semiring of Q+[x] given
A : + ) 14x

in remark 4.23. Let L be a C-set in Q@ (x) such that 1+x, o & €
Q+(x)\L and Q+ﬁ L = {1} -and vx 4 L Vye Q+. Then Q+(x)/L is a
ratio semiring. Let W = qg-"(><)/L and w = [x]. Claim that [1],

2 -

w¢ Iw(w). Suppose that [1] € Iw(w). Then [1] 4w = w, so |_1]+[x]

= [x]. Then [14x] = [x], so ]_:(_x € L which is a contradiction. Thus

(1] ¢ I4(W). Similarly we can show that uzé (9
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Choose S1G Iw(w\ such that either (S1= ®) or (S1 is an additive

subsemigroup of Iw(w) and W\S1 is an additive ideal of W)

Let a be a symbol not representing any element of W. Extend

+ and + from W to W U {a} by

(1) aey = yea = wey VysW and a2= w2,
(2) a+ty = y+a = a ‘v’yes1 and

a+y = y+a = wty Vyew\s1)
(3) a+a = wtw -

Then by Theorem 2.51, W U {a} is a semifield of type III.

Hence 0" (x)/. U{a} is a semifield of type III.
L

Theorem 4 .29 Let K be a semifield of type III and a € K, d € K\ {a}

be such that (K\ {a},*) is a group and ax = dx V x € K. Let K’ the
prime semifield of K. Then k= oty {a)} as in Remark 4.8 or K'= {a,1}

as in Remark 4.7 (1) or (2) or (3) or (4) or K & <a>u {a} as in

IR

Remark 4.9 or Remark 4.10 or Remark 4.11 or Remark 4.12 or K'
Q+<d> u{a} as in Remark 4.13 or Remark 4.14 or Remark 4.15 or Remark
4.16 or K = <x><y>U{a} as in Remark 4.17 or Remark 4.18 or X =

Q+(x) U{a} as in Remark 4.26 or K = Q+(x)/LU {a} as in Remark 4.28.

Proof Let D = K\ {a}, s = {x eD | a+x = a} and 1 the identity of

(D;.)‘

Case 1 d = s

By Theorem 2.41, D is a ratio semiring. Let D1 be the
smallest ratio subsemiring of D. By Proposition 1.18, D1'=v {1} with
17727 ; 141 =0 or D1; Q+ with the usual addition and multiplication.

Subcase 1 .1 D1z {1} with1*1 =1 and 1+1 = 1. Thus 1+

= 1. By Theorem 2.43, a+ta = aor a+a =d+d =141 =1 and a+l = 1+a



d+1 = 141 = 1. So we have 4 cases to consider. They are (1),(2),(3)
and (4) as in Remark 4.7. Thus K = {3a,1} as in Remark 4.7 (1) or

(2) ori€3)ier (4).

Subcase 1.2 135Q+ with the usual addition and multiplica-
tion. Then up to isomorphism we can consider Qﬁ;=D. Claim that

s N Q+ =® . Suppose not, then 3 x € Q+ and x ¢ S. By Theorem 2.50,

S C;ID(d) = ID(1). So x € ID(1). Then x+1 = 1,which is a contradic-
tion since x, 1 € Q+. Thus S N Q+= ®. So we have the claim. Thus
Q+’_‘-= D\S, so a+x = d+x = 1+x Vx ¢ Q+ and by Theorem 2.43 (1) and (2),
a+a = d+d = 1+1. Since Q+u{a}cl( , —ax =xa=dx Vxe Q+U {al .

By Theorem 2.51, we obtain that Q+U {a} is a semifield as in Remark
4.8. Thus YU {a} is a subsemifield of X, so K’ C o'y {a}. By
Theorem 2.41, K’\\{a} is a ratio semiring. Thus K’\ {a} is a ratio

subsemiring of K\ {a}, so Q+(_:_ K’ {a}. Thus Q+U {a}C x"'\{a}.

Therefore K’ & Q+U {a} as in Remark 4.8.

Case 2 a #£.1.

Subcase 2.1 dze ID(d) and 1 ¢ ID(d) .

Then d = d+d2= 1*d+d*d = (1+d)d = d+*d = d2. Thus d =1, a
contradiction. Thus this case cannot occur.

Subcase 2.2 - dze ID(d) and 1 € D\ID(d).

Then d = d+d°= 1-d+d+d = (1+d)d. Since 1, d € D = K\ {a}
which is a ratio semiring , 14d # a. Then 1= d-d = ((1+d}d)}d " =
(14d)(@:@™') = (14d)*1 = 14d. Thus 14d = 1. Claim that 14d"= 1
VneZ'. wWe shall prove this by induction. Clearly it is true for
n=1. Assume it is true for n-1.That is 1+d" '= 1. Thus d = d+d".

Then 1 = 1+d = 1+(d+d") = (1+d)+d"= 14d”. Thus 1+d™ = 1. So we

have the claim. Let m, n € Z be such that m < n. Then dm+dn =
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m m

168 AV L (RIS D) w108 d"(since n-m € Z* and by the

I

claim) Thue @ + d = d" for all m, neZ, M L&A et (F¥. - Porm e Z,

0, then d0= 1 € D\ S since
0

m . 0. Claim that dmg B\ S. Ifm

1 eD\I (d) and SC I (). If m< 0, then A g A% &1 &P\ B

since D\ S is an ideal of (D,+).
Thus dme D\ S fop gl M 0. oiimiaw Tt el (2)

Subcase 2.2.1 141 =4 4

Then d"+ da"= @” V¥ n e€Z. So we have that

as a"= @™ for all R R e T T S S (3)

Let <d> = {8"| n eZ}. Clearly (<d>,+) < (K\f{al},*) and by
(3), we can show that <d> is an additive subsemigroup of K\ {a}. Thus
(«d>,+,°*) is a ratio semiring.

Subcase 2.2.1.1 There exists m EZ+ such that dme S s
n
Choose the smallest ner+ such that d4d Ot—: S. Then n0>1 ( since
deD\s VYnm eZ, m €£0). So we get that dkE pP\8 Vk <n
n Man . n
Claim that d € S V¥ n >n0. Letn>n0, thend =d +4d . Now
n0 n0 n n0 n n n
a=a+d =a+ (d +d) = (a+td )+d = a+d . Thus a+d = a. Therefore

0

n

d € S. So we have the claim. Let S1={ a*l n> no} . Then <d>\S1=

{dn| n < no}. Thus S1§ S and <d>\S1C_ D\ S. C(Clearly (S1 +) <
(I<d>(d),+) and <d>\ S, is an ideal of (<d>,+). Since S1C'_-' S and

<d>\S1§D\S, a+x = a \7’xt»:S1 and a+x = d+x \/xe<d>\S1.
By Theorem 2.43, a+a = a or a+a = d+d = d since 141 = 1. Since
<@ U {a} € K, ax = xa = dx V x e <d> U {a}. By Theorem 2.51,
<d@> U {a} is the semifield given in Remark 4.9. Thus K’ C <a>u{a}.
Claim that K’ % <d> U {a}. By Theorem 4.2, a, 1 g K’ and (K’\ {a},*)

is a group. Then d = d+1 = a+1 € K’\ {a}. Thus d ¢ K’~ {a}. Hence

<d> C K’\ {a}. Therefore <d> U {a} C K’. Hence K’ = <d> U {a} as
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in Remark 4.9

Subcase 2.2.1.2 There does not exist an m eZ" such that

d"% s. Thus d'¢e D\'S V ne Z" and from (2) we then get that

dne D\ S VneZ, so a+dn= d+dn VneZ. By Theorem 2.43, a+a = a
or a+a = d+d = d since 1+1 = 1. Since <& U {a} C K, ax = xa = dx

V x € <d@> U {a}. By Theorem 2.51, <d> U {a}l is the semifield given

in Remark 4.10. The same as before,we can show that K’ £ <d> U {a}

as in Remark 4.10

Subcase 2.2.2 14158937

By Proposition 1.18, Q+ with the usual addition and multi-
plication is the smallest ratio subsemiring of k’\{a}. Then up to
isomorphism we can consider Q+g B fal.

Subcase 2.2.2.1 de Q+. Claim that Q+ﬂ S = 03

If x e and x €5, then x € ID(d)(since s C ID(d)). Thus x+d
= d, a contradiction since x, d € Q+. So we have the claim. Thus
Q-'C D\S, so a+x = x+a = d+x YV x e Q+ and ax = xa = dx Vx ¢ Q+U{a}.
By Theorem 2.43 (1) and (2) we get that at+a = d+d. By Theorem 2.51,
we obtain that Q+U {a} is the semifield given in Remark 4.8. Since
o'c k’\ {a} p otu{a}C k’. Since K’ is the smallest subsemi-

~

field of K , K’C @ U {a}. Therefore kK’ = 9"u {a} as in Remark
4.8.

Subcase 2.2.2.2 d # Q+.

Consider Q+-<d> = {xdnl X € Q+, neZ}. Clearly (Q+°<d>,°) is a
subgroup of (K \ {a},*). Claim that @*+<d> is a ratio subsemiring of
K’\ {a}. Since aand 1 € K', d = a*1 ¢ K", Since Q+C K\ {al,
which is a group under multiplication , Q+-<d><; K’\ {a}. To show
the claim, we need only show that Q+'<d> is a subsemigrour qf K"\{a}

Iy +
under addition. Let x,y € " ,m,n € Z . Consider xdm+ydn. Ifm=n
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then xd"+ ydn= xd "+ ydm= (x+y)dm € (Q+'<d>. Now suppose that m # n.

We may assume that m < n.
Case 1 (of .claim) x'=.y. "Then xdm+ ydn = xdm+ xdn = x(dm+ dn) =
xd aphga>i.
Case 2 (of claim) x >y. Then J2 ¢ Q+ such that x = £Z+y. Then
xd"+ yd" = (L4y)d+ ya© = 2d™+ yd™+ yd" = 2d™+ y(@™+ a")
o 1 ydm = (2+y)dm = xd" e Q+'<d> .

Case 3 (of claim) x <y. Let z e Kand n eZ™. Define nz =

then xdm+ ydn.—.

nz = z+z+...+z Since yz[%]x + ¥ where 0 € ¥ <x ,

.-W_—J
n times
xd™+ ([{-an)dn = xd"+ [%] xa"+¥a® = (xa™+va™)+ E{'—] xa"
- R B’(—]xdn (by case 2) = xdm+(>5_<}n+ xdn+...+_§dn)

R

[XJ times
X

x(a"+ @%+ a%+...+ A" A AR Q+-<d> .

Pq times
3¢

So we get that

(x+y)dm TTVM =
xd™+ ya" = xda™ 5 R T G A (4)
ydn if m > n

So we have the claim. Therefore Q+-<d> is a ratio subsemiring of

K\ {a}.

Let x ¢ @'. If xd ¢ S, then xd ¢ I (d) since S © I (d). Thus xd+d
= d, so x+1 =1, a contradiction since x, 1 € Q+. Hence xd € D\ S
YV x e Q+. For neZ;, n <1 we have that xdn= xdn+ xd. Since xd e¢D\S

which is an ideal of (D,+) ; xd”+ xd € D\ S. -
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Thus xd~ € D\s Yxe Q+, ¥Nnel . w1 ad. i (5)

Subcase 2.2.2.2.1 There exists n €Z " such that
n

a%es. Let n, be the smallest positive integer such that d 05 S.

By (5) we get that n0> 2. Let S1= {xa" |x € Q+,n > n, }. Then

Q+-<d>-\s1-_- {xa" |x € Q+, n=< n, 1 claim that s1g S and Q+'<d>\ S1

&D\s.

To show SSC€ S, let x ¢ Q+andneZ+,n>n

1 0*

Case 1 (of claim) ni= no &
n, n, ng,
Subcase 1.1 X =:la=-Theny xd—<=.1ed =4 £¢S..

Subcase 1.2 x < 1. 'Then J 2 ¢ Q+ such that 1 = x+4. Thus

n n n n n n n n

a %= xd 0+ 24 . fThen & =/aid % a+(xd O+ 24 0) = (afxd 0)+ 24 B
%o "o "o
If a+xd = # a, then a+xd = d+xd (by Theorem 2.43). Thus
o "o o
a = (d+xd )+ £4d = = d+2d = = d (since noz 2 and by (4)). Hence a = d,
n n

a contradiction. Thus a+xd g —— e To1si Oe S.

Subcase 1.3 XDy tThen X = [x]+£ where 0 € £ < 1. Then

n n n n n n
0

xd e [x_]d O+ 24 [ r=nfd 0+...+d 0)+ £4 0. By subcase 1.1 and

[x] times

n n
0 0 :
Subcase 1.2, @28 =~ £ 8 .-8ince .(5,¥) & (ID(d),+), we get that

n n n 4 n
(a 0+...+ d 0)+ 24 8 € S. Hence xd 9 &5
[xJ times
%o G | R
Case 2 (of claim) n > n,- Then xd = xd + xd (by (4)). By
n n n n
case 1, xd 9 € S. Then a = a+xd 0: a+(xd 0+ xd") = (a+xd 0)+ xd"

= a+xdn. Thus a+xdn = a. Hence xdn €285,

Therefore we get that S, CS.

+
To show @'*<@>\'S, C D\s, let x e @*, n< g IE WS,
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then by (5) we get that xd" e D\ S. Suppose that 1 < n < n,.

Case 1 (of claim) x = 1. Then xd = 1.4 = AR Since n, is the

A :
smallest positive integer such that d Os 8 5 d e D NS

Case 2 (of claim) x>1. Then 32 ¢ Q+ such that x = 1+£. Then
xdn= (1 -9-!Z)dn = 1-dn+ Zdn = dn+ Edn. By case 1, dne D\ 8% Thus

da"+ 24" € D\'s since D\ S is an ideal of (D,+). Hence xdns D\ S

Case 3 (of claim) x < 1. Then Jk ez+ such that kx > 1. By case 2,

n : n n n n
(kx)de D\S. Since (kx)d = (X+...+x)d = xd +...+xd we get that
S~ — "’ s

k times k times

if xdne S, then (xdn+...+ an) € S. Thus (kx)dne S which.is a
\w
k times

contradiction. Hence xd e DN\ S. So we have the claim i.e. S E S
and Qt <d>\S1(_;D\ S. Thus a+x = x+a = a Vx ¢ S,l and a+x = x+a =
d+x VYV x e 0F <d>\S1 . By Theorem 2.43 (1) and (2), we get that

4 + +
at+a = d+d. Since 0:<d> U {a} € K , ax = xa = dx Y x¢ 0 «d>v{al.

Clearly (S1 +) € (I +(d) ,» +) and QT <d>\ S1 is an ideal of (C[z-r <d>,+) .
Q- <d>

By Theorem 2.51, @F <d>U{a} is the semifield given in Remark 4.13.
Thus K° C ¢t<d> U {a}. Since a, 1 € K, we get that d = a*1€K’. Since
Q+(; K'\ {a}, 0e<a> © k\ {a} because (K \ {a},*) is a group.
Hence 0% <d> U {a} © K/ Thus K’ & 0% <d> U {a} as in Remark 4.13

Subcase 2.2.2.2.2 There does not exist an ne 27

such that d"¢ S. Then d"e D\'s Vn eZ'. By (2),we have that
d"e D\'s VmeZ, m < 0. Hence d"e D\S ¥ n eZ. Claim that

QT <d> D\ S. Leter+ and n gE.
Case 1 (of claim) n 1. Then by (5), xd"e D\ s.

Case 2 (of claim) n > 1.
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Subcase 2.1 (of claim) x = 1. Then xd = 1d%= ae p\ S.

Subcase 2.2 (of‘cYaim):: x> 1. Then 3 L. Q+ such that

x.= 1+ 2. Thus xd = d+ 2d". Since @ D\ S which is an ideal of

(D,+) , a"+ 2d"€ D\ S. Hence xd"e D\s.

Subcase 2.3 (of claim) x < 1. Then 3 k €eZ™ such that

kx > 1. By Subcase 2.2, (kx)d D\'S. Since (kx)d" = (x+...+x)d" =

k times

wd Wil xdn, we get that if xd" e s, then (kx)d" e S (since (S,+) <
—_—

k times
(ID(d),+) ). Hence (kx)dnt-: S, a contradiction. Thus xd"e D\ s.

So we have the claim, i.e. Q+<d>(; D\ S. Thus a+x = x+a =
d+x Vx e @t <d> and,by Theorem 2.43 (1) and (2),we get that a+a =
d+d. Since Qt <d> C K, axX & xa =dx Vx e Qt <@> U {a}. By Theorem
245717, Q't <d@> U {a} is the semifield given in Remark 4.14. Using the
same proof as before, we obtain that K X Q+- <d> v {a}.

Subcase 2.3 dzt-: D\ID(d) and 1 € ID(d). Then 1+d = d. By

induction,we can show that 1+dk= dk VY k €Z+. Let m, n e Z be such

m

that m < n. Then dm+ a= 1'dm+ dn—m. d = (1+dn—m

m_ .n-m m n

da=4d siigu=ad .

Thus

M - wnt o e N S| (6)

&+ a«ad
-+ : m . 2
For m €Z , m > 2, claim that 4 € D\ S. Since d ¢ ID(d) and

S & ID(d) 3 dze DN\ S. Assume that m > 2, then ar d2+ dm. Thus

2

al o A dT) = e e A e (B e B Bl o i e

d2t—: D\S and by (6). Hence a+d™ = d". Thus a+d" # a. Therefore

dme D\ S. So we have the claim,

de p\s Vm €Z+, m; 22, S s B OSSR
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Subcase 2.3.1 141 =21,

Thus "+ @°= @ Vn €Z. So we have tha

a®y-a% @@ ¥%m, nel , mg n

Let <3@> = {dm In eZ}l. Clearly (<d>,°*) < (k\{a},*)
and by (8);we can easily show that <d> is an additive subsemigroup
of K\ {a}. Hence <@> is a ratio subsemiring of K \Hal}:

Subcase 2.3.1.1 There exists n € Z such that

a’s 8. By (7),we get that n £ 1. Let n, be the largest integer such

n £ .
that 4 3 E: Sy Thus n0< 1. Let 5= {a" |n < no}. Then <d>\ S, =
{a" |n > ng}. Claim that 5,C S and <d>\§,CD\S. To show 5,C S,
n n n

let neZ, n \<'n0.By (8), we get that d & d 0+ a". Thus a = a+d W

% Bo dp n %o n
a+(d 4+4d") = (a+d )+d = a+d (since d € S). Thus a+d = a. Hence

d" S. To show <@>\S,CD\S , letn€Z, n>n;. If n > 2, then by

(7), e DB I n0< n < 2, then by the choice of n, we get that
d"e D\'S. So we have the claim. Clearly (S1 y+) < (I<d>(d),+) and
<a>\ S1 is an ideal of (<d>,+). By the claim,we get that a+x = x+a

=a Vxes a+x = x+a = d+x V x € <d>\ S1 and by Theorem 2.43,

1°
ata = a or ata = d+4d = d (since 141 = 1). Since <d> U{a}l € K, ax = xa
= dx Vx e <d>ufa}l. By Theorem 2.51, <d>U{a} is the semifield

given in Remark 4.11. Using the same proof as before, we obtain that

K’V <d> v {a}.

Subcase 2.3.1.2 There does not exist an ne Z

such that @”¢ S. Thus d"e¢ D\S Vn eZ, so a+d”= a+a" Vn eZ . By
Theorem 2.43, a+a = a or a+a = d+d = d(since 1+1 = 1) . Since
<a>vu{al C K, ax = dx V¥ x e <d>vufa}l. By Theorem 2.51 , <a>v{al

is the semifield given in Remark 4.12 and using the same proof as

before, we obtain that K" X<d> v {a}.
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Subcase 2.3.2 141 £ 1.

By Theorem 2.41, k‘\{a} is a ratio semiring. Since 1+1 # 1, we

get that @ with the usual + and * is the smallest ratio subsemi-

ring of k’\ {a} (Proposition 1.18). Then, up to isomorphism,we can
; + /

consider @ C K '\ {a}:

Subcase 2.3.2.1 d e Q+.

Claim that Q+ﬂ S =®. Suppose that 3 x ¢ Q+ and x € S. Since

sC ID(d), X € ID(d). Thus x+d = d which is a contradiction since
Xy@d E Q+. So we have the claim. Thus Q+C D\S. Hence a+x = d+x
Vxe Q+. By Theorem 2.43 (1) and (2),we get that a+a = d+d. Since
otu {al C K, ax = dx Vx ¢ oty {al}. By Theorem 2.51, @tu{a} is the
semifield given in Remark 4.8 and using the same proof as before we
can show that K’ Q+U {a}.

Subcase 2.3.2.2 d ¢ Q.

Consider Q"r <d> = {xdnl X € Q+, n el). Clearly (QT <@>,«)<(K\ {a},e.)
Claim that QT <d> is a ratio subsemiring of K’ \ {a}. Since a,1 ¢ K;

d = a*l € K. So d eK’\ {a}. Since Q+CK’\{a} which is a group under mul-
tiplication, 0Y<d> Ck’\ {a}. To show the claim we need only

show that QT <d> is an additive subsemigroup of Kl\ {a).” Let X,y € Q+
y € Q+, m, n eZ . Consider xdm+ ydn. If m = n, then xdm+ ydn =

m
xd" "+ ydm = (x+y)d € Q-"- <d>. Suppose that m # n. We may assume that m < n -

Case 1 (of claim) x = y. Then xd '+ ydrl = xd"+ xad" (@ d™) =

xd” e @t <a> by (6).

Case 2 (of claim) x < y. Then 32 € Q+ such that y = x+£. Then

xdM+ ya"= xd"+(x+£)d@"= xd™+ xd"+ 28"= x(d"+ a™)+ £d"= xd"+ 2a"” =

(x+2)d"= ydn 5
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Casge 3 (of «claim) 'x > y. -Letiz . esK and n eZ*. Define nz = ZF oo

..+z (n times). Since x = [—3] y+Y where 0 K Yy <y , xd"+ ydn

(Ei-]y+1)dm+ ydn = Ef—]y ars 1dm+ ydn = Bi]y a"+ (va"+ ydn)

= [%]y a"+ ydr1 (by case 2) = (y+y+...+y)dm+ ydn - ydm+ydm+...+ydm
;W_—J
[5] times E—:] times
Y
n m m .n n
+yd =y(@+...+4d +38) = yd (by (6)).

[ﬂ times

So we get that

(x+y)d" if m=n,
xd"+ ydn= xd" TRME> N 7 s o Soe aias e D)
ya" if n>m.

7/
Thus Q% <d> is an additive subsemigroup of K Nifad.
+ : : 2R AU
Therefore Q* <d> is a ratio subsemiring of K \ {al.
Claim that xd"eD\S Vx e0', VmeZ", m >2. Let

x e, meZ", m>2.

Case 1 (of claim) x = 1. Then xd" =1+4" = d"e D\S (by (7)).

Case 2 (of Claim) x >1. Then 32 ¢ Q+ such that x = 1+£. Then
xd'= d"+ ad".
m

Since d"e D\ S which is an ideal of (D,+) |, dm+ 2% E DN-S.

Thus xdrn e D\ S.

Case 3 (of claim) x < 1. Let x€Z' besuch that nx > 1. By case 2,

(nx)d™ e D\'S. Since (nx)@" = (xX4X+...+x)d" = x§m+ 0 xdm,
S
n times n times

we get that if xd" € S, then (nx.)dms S because (S,+) < (ID(d),+) y @
contradiction. Thus xd" & D\ S. So we have the claim,i.e.,

xd" €D\ S VY x E:Q+\7'm eZ+,m>2.... ......... (10)
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Subcase 2.3.2.2.1 There exists n EZ such

that d"¢ s. By (7)nisgi. 2o Eet n, be the largest integer such that
%o n + +
d "e S. Let S,= i | x'e9,n &, n<n0}. Then @* <d>\'S =

{xdnl X € Q+, naed. s N> no}. Claim that S1§ S and Q't <d>\S1g_D\S.
ot
Toshows1_C_:_S, let x € Q andneZ,n{no.

Case 1 (of claim) n = ng -

Subcase 1.1 X'=.1.  Then xdn= 1-d 3o [ S

Subcase 1.2 x<1. Then J2 e Q+ such that 1 = x+4{. Then
n n n n n n n
a =1 d = (x+0)d 0= xd 0+ L4 0. Thus d 0= xd 0+ 24 0. Since d Os S,

n n n n n n n

a = a+d 0= a+(xd O+,Qd 0) = (a+xd 0)+ 24 0. If a+xd e # a, then a+xd X

o %0 S g
= d+xd . Thus a = (d+xd )+ £4 , which is a contradiction because
n, n
K\ {a} is a ratio semiring. Hence a+xd = a, so xd € S.

Subcase 1.3 x >1. Then x = [X]+2 where 0 ¢ £2-< 1. If

n n n
£ = 0, then x = [x]. xd"= [x]a = . By Subcase 1.1,

[x] times
o o é
d ¢ 8 Thus [X]d € S since (S5,+) < (ID(d),+). Hence xd % S.

n

n n
If 0 < £.<"1, then x =" [X}+4&. ~Thus xd"= xd g

i [xJa o By

n n
Subcase 1.2, 44 Oe S. It 2= 0, then by Subcase 1.3, [x]d Ot—: S
n n

Hence [x]d O+ 243 Oe S since (S,+) < (ID(d),+). Therefore xd e S.

n n

Case 2 (of claim) n < ng - By (9), xd o= xd O+ xd". By case 1,

9 %o o i) n n
xd € S. Then a = a+xd = a+(xd +xd ') = (a+xd )+xd = a+xd . Thus

a+xd = a. Hence xd'& S. Therefore s1g S

IE n. 52

h +
To show QF <d>\S1g P\Bs ket x €0 ynelfs B> ng-

then by (10), xd" D\ s. Suppose that n0< n < 2. We want to show
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that xd'e D\ S

Case 1  (of.claim) x =71. Then % e 108 = AT, By the choice of n,

we get that dne D\ S. Thus xdne D\.S.
Case 2 (of claim) x >1. Then 32 ¢ Q+ such that x = 1+£. Then
xd'= (1+g)d" = 1 a% pd"= d™+ 2d". By case 1, d" D\ 's. Since D\ s

is an ideal of (D,+) , a"+ 2a" € D\'s. Thus xd"e D\ s.

Case 3 (of claim) x < 1. Then 3 m eZ+ such that mx > 1. By

case 2, (mx)d"e D\'S. Since (mx)d™=  (x4x+...+x)d = xd +...+xd > we get

m times m times

that if xd e S, then (mx)d" e S because (S,+) € (ID<d>,+), a contradic-
tion. Thus xdne D\S. So we have the claim, i.e. S1(; S and QT <d>\S1
C D\S. Thus a+x = a Y x € S1 and a+x = d+x Vx € QT <d>\S1. By
Theorem 2.43 (1) and (2) we get that a+a = d+d. Since Q-r <a> U {algk,

+ - d
ax = dx Vxe @ <d u {a}l. By Theorem 2.51, @¢ <d>u{a} is the
semifield given in Remark 4.15. Using the same proof as before we can show

that K’ = ¢¥ <d> U {a}.

Subcase 2.3.2.2.2 There does not exist an neZ such

that d"e S. Thus d"e D\S V n eZ. Claim that Q% <d>C D\'S. Let

xe @ and neZ.
Case 1 (of claim) n » 2. Then by (10), xd"e D\ S.

Case 2 (of Claim) n < 2.

Subcase 2.1 x =1, Then xd" = 1.d"= a"¢ D\ s.

Subcase 2.2 x > 1. Then 32 € @' such that x = 1+£. Then
n n n . n . : .
xd = d + 2d e D\S since d € D\ S which is an ideal of (D,+). Thus
xd"e D\ S.

Subcase 2.3 x < 1. Then I meZ” such that mx > 1. By
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subcase 2.2, (mx)dne D\ S. Since (mx)dn= (x+...+x)dn = xdn+...+ xdn,
m times m times
A n .
we get that if xd €S then (mx)d e S , which is a contradiction.
Hence xdne D\ S. So we have the claim, i.e. Q+<d> C D\S. Thus a+x

= d+x Vx € Qt <d>. By Theorem 2.43 (1) and (2), a+a = d+d. Since

of <c> U {a} €K, ax = dx Vx ¢ ot <a> U {a}. By Theorem 2.51,

ot <a> U {a} is the semifield given in Remark 4.16. Using the same

proof as before, we obtain that K’z Q+.<d> U-dal.

Subcase 2.4 dze D\ ID(d) and=t=e=D \ ID(d).

Subcase 2.4.1 V41 =713

Consider 14+d. Since 1 € D\ID(d) 3 14d # 4 . Since

dze D\ID(d) 5 1+4d #1. Now 1+4d = (1+1)+d = 1+(1+4d). Let x = 144,

: . 1o O ¢ +
then 14x = x. By induction we can show that 1+x = x Nned i iFPor

| e A= m n-m
mneZ ,m<n we get that x + x = x (1+x ) X X =xn,Thus

for m, n e, Ne—= Rl v IDAS = e il swme 11)

Next consider 144« Binge 1ad = (141 )+d'-1 =1+(1 o Y
- -1 -1

(AR e Lok ¥ » (F4A-T),. ; then y W A1380 ] S (8 WD)

1

=d(1+d)" dx"'. Thus y = dx~' and 14y = 1. By induction,we can

show that 14y"=1 VYneZ*. Form, neZ, m <n, Yay® = YAy ™

= ym 1 = ym. Thus

form, neZ, ym+ yrl = y¥ where r = min {m,n}......... €12)
Claim that 14+xy° = x° for all r, s R R P (13)

We shall prove this by induction on s. Let r €Z+. First,

we shall show that (13) holds for s = 1.

1+xy = 1+d

If r =1, then 1+xry x = %X since d = xXy.

If r > 1 then 1+xry 1+xr(dx-1) 1+c’ixr_‘l = 1+d(1+d)r_1 =



1+d(1+d+...+dr—1) - 1 4AA% 18T - 1120)E e W sines (144)D

1+d+d2+...+drl for all neZ" (because z+z = z VY ze D). Hence
1+xry = x*. So (13) holds for s = 1.
: N r .
Now assume (13) is true for s = n. Thus 1+Xy = X . Since

14y = 1 1+xryn+1 = (1+y)+ xryn+1 = 1+(Y+Xryn+1) = 104y Ty

1+xry = xr( since (13) holds for s = 1 and s = n). Hence 1+xryn+1

xr. So we have the claim.

Let <x,y> = {xmyn | m,n €Z}. Claim that <x,y> is a ratio
semiring containing d. Since Xy =x(dx-1)= d:; d € <x,y>. Clearly
(<x,y>,*) is a commutative group. To show the claim we need only

show that <x,y> is closed under addition.

L
Let m,n,k,2 €¢Z . Consider x'y + xky 3

x"y" if ngt ,

2

Case 1 (of claim) m = k. Then xmyn+ xky - xm(yn+y£ )=

xmy2 p s gl o 1 S

Case 2 (of claim) m < k&

Subcase (2.1) n > £. Then i X"+ xk and yn+ y'e = y'e(by

(11) and (12)). So xmyn+ xkyz = xmyn+ (xm+xk)y'0' = xmyn+ xmy2+ xky‘e s

m, n £ k £ m £ k 2 M e 8 k £ m n k 2
X (Y4y )+ Xy =Xy +xy=(x+x)y =xy . Thusxy+xYy
k £
Xy .

Subcase (2.2) n < £. Then xmyn+ xkyz = xmyn(1+xk-my2_n)

k n

xmynxk'-m = xkyn( by (13)). Thus X"y + xkyz =xy .

Case 3 (of claim) m > k.,

Subcase (3.1) n. & £:" “Then yn= yn+ yﬂ and x"= X"+ xk.

m n k £ m:k.n k £ m n K. 7o
Now X y + Xy =(X4X )y + Xy =Xy +Xy +XYVY
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= xmyn+ xk(yn+y£) & xmyn+ xkyn 2 (xm+xk)yn= xmyn. Thus xmyn+ x}<y"Z

m n
=XYyY .
L - -2
Subcase (3.2) n > £. Then xmyn+ xkyz = xky (14x" kyr1 )
2 2 2
= xkyzxrn e xmy'e( by (13) ). Thus xmyn+ xky = xmy :
m n k £ IS
We see that X'y + xy = xy where r = max {m,k} anda
s = min {n,2}. . seeseciecieiicicccieiiicean. (14)

Therefore <x,y> is a ratio semiring. So we have the claim.

m n
By (14),we get that I__ y>(d) ={xy |mneZ,mg1 <nl.

)

Then <x,y>\I__ y>(d) = {x"y"| mn €Z, m >1 or n < 1}. Claim that
)

<x,y>\I<x y>(d) C D\ AL7/{ il N - U R P % (15)
Let z € <x,y>\I<x’y>(d). If z € S, then z ¢ ID(d) since S C ID(d).

Thus z+d = d, so z € I<X y>(d),which is a contradiction. Thus zeD\S.

3

So we have (15).

Now consider I<x,y>(d) ns.,

Subcase 2.4.1.1 I (d)N's =9%. Then
X,V

Lottt Ankickorn Unn DY QIT Y s o s woees (16)

By (15) and (16), <x,y> € D\S. Thus a+z = d+z Vz e <xX,y>
and by Theorem 2.43,a+a = a or a-fa = a+d = d.Since <x,y> U {a} g,
a*z = dz for allz ¢ <x,y> U {a}. By Theorem 2.51, we obtain that
<x,y> U {a} is the semifield of type III given in Remark 4.18. Let

m.
A = {'Z nid ll ni’miez+}’ by Theorem 4.6, BU{a} £ K’ where B is
i<e

the quotient ratio semiring of A. Since d g <x,y> , A G <x,y>

Thus B C <x,y>. And since x = 1+d, y = dx~! so X,y € B. Hence

<x,y> € B. Therefore <x,y>= B. So we get that K" & <x,y> U {a} as

in Remark 4.18.
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n .
Subcase 2.4.1.2 I<x,y>(d) S #£0

Let xmyne 5 y>(d) N s, then x'y"e S where mi<»1 and B 17
)
m
1. n
Choose m, to be the largest integer such that x y e S for some n > 1
m, n
and choose n,to be the smallest integer such that x 'y € S. Then

m l’l1 Mz -0

1
1=‘orm<m1 andn>n1,x1y =x1y

+ x"y? (by (14)). Then

m, n m, n m, n
m n 1224 m n m n
a=a+x vy =a+(x y Xy )r=(atx y )+ xy =a+xy .

Thus {x"y" | mg m SRR T C Suipei i aii g (17)

By the choice of m,,we get that

{menl m1<mg1 and‘lsn}g DINDS &im s e, | e (18)
; m "

Choose n2 to be the smallest integer such that x y ¢ S for

m, n

some m £ 1 and choose m, to be the largest integer such that x “y ‘¢ S.

Claim that m, = = i
aim at m, m, and n,= n,. By the choice of m, ,n,,n,,m

7
m, N m, n, m, n12
that m2< m1< 1 and 1 nzg n,. Theh—R—YHe/X Y + X'y

we obtain

m, n, m n m, n,
Since (S,+) (ID(d),+) ) X Yo+t X Yy €& Ss Hence'x "y "¢ S. By

the choice of n,, we get that n1< n Thus n,= n,. And by the choice

ar 1 2

of m,,we get that m, g m, . Thus my=m,. So we have the claim. Thus
n

we get that n, is the smallest integer such that x"'x 15 S for some

mg 1. So we get that

(9" | mg T andsil aidong FODNE . o oiison b s (19)
From (17), (18) and (19), we get that

I (d)ns:{xmynlmgm

<x,y> and n.< n},

1

Let S, = I<x,y>(d) A s. Claim that <x,y>N.S = s Let M =

"
$X,y>. ‘Since M = (M\I_(d)) U Iy(@ ,<x,y>N s =MNs =



93

((M\IM(d))UIM(d)) ns ((M\IM(d)) N s)U(IM(d)ns) =

® =S . S i
0 (IM(d)ﬂ S) =tby (15)) I(x,y>(d) N s 1 o we have the claim

iie. <x el Sz {xmyn| m g m, and n1< nl = s Then <x,y>\ S1

1°

{x™y"|m > m

10 1 < n, }. We have already shown in Remark 4.17 that

<x,y>\ S1 is an ideal of (<x,y>,+). Since <x,y>\s1= <X,y Sf
c C. . & c
= <X,y> 0 (KX,y> N S) 7 = <x,y> N (Kx,y> US ) = (x,y> N <x,y> ) U

(<x,y>N ) = <>\ S E D\ 55 X,y>\'S, & D\S. So we have

1
that

S,&8 and <x,y> X s, & D\s.

Then a+z =a VYV z & S1 and a+z = d+z Vz € <x,y>\S1 and
by Theorem 2.43, a+a = a or a+a = d+4d = d. Since <x,y> U {a} C K,
aez = dez Zz. E5sy> U {a}. Then by Theorem 2.51. we obtain that
<x,y> U {a} is the semifield given in Remark 4.17 and using the same
proof as before, we can show that K /__;_ <x,y>U {a} 3

Subcase 2.4.2 141 £ 1 .

By Theorem 2.44, K’\ {a} is a ratio semiring. Since 1+1 # 1,
by Proposition 1.18, we get that - Q+ with the usual addition and
multiplication is the smallest ratio subsemiring of K’\ {a}. Then,
up to isomorphism,we can consider Q+g K'\{a}.

Subcase 2.4.2.1 d e Q+.

Claim that " C D\'S. Suppose that J x e‘Q+ and x € S. Then
X € ID(d)(since S C ID(d)),so x+d = d which is a contradiction since
X, 4 € Q+. So we have the claim. Then a+x = d+x Vx £ Q+ and by
Theorem 2.43 (1) and (2), a+a = d+d. Since 97y {a} © K, so ax = dx
Vxe Q+U {a}. By Theorem 2.51,we obtain that Q+U {a} is the semi-

field given in Remark 4.8, Thus @' U {a} is a subsemifield of K, so

K'C 0"V {a}. since 0*C k™\ fa} , ©'U{a} CK’. Thus
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’

K £ ¢V {a} as in Remark 4.8.

Subcase 2.4.2.2 4 4 Q+.

Define ¢ : ot (x) - k\{a} as follows :

F(x)
G(x)

€ Q+(x), define ¢ (F(X)) < )

bat cx) - c@-

We must

show that ¢ is well-defined. Suppose that F'(x) = F(x). We’

Yy ¢ (x) @G(x)
must show that g,ég; = gtg; . Then F’(x) G(x) = G'(x) F(x), so
F’(d) G(d) = 6"(d) F(d) and hence g"%g% = g%%; . So ¢ is well-defined.

Now we shall show that ¢ is a homomorphism.

F(x) F’(x) F(x) Fi(x)

+
Let R R T ] e 0 (x). Then ¢ (G(X) . Gw(x)) =
¢(F(x)F'(x)) & F(d)F’(d) Z F(4) > F’(d) N ¢(F(x)) ; ¢(F’(x))
G(x)G 7 (x) G(d)Gc (d) G(d) G (d) G(x) G’ (x)
Fx) F’(x) F(x)G'kx)+G(x)F'(x) _ F(d)G’(d)+G(d)F (d)
and ¢EEY * TG - ¥ G (xX) ke S(@e (@)
F(A)G'(d) . G(A)F'(d) F() . EF(d) F(x) F’(x)

= e (@ * e Eps e F By - ey t e

Thus

¢ is a homomorphism.

‘Subcase 2.4.2.2.1 ¢is 1-1.

Then ¢ is 1-1 homomorphism, Thus 0 (x) € im ¢. Soim¢ is a
ratio semiring. Claim that I, ¢(d) = ®. To prove this, suppose not.
im

Then 3y € imy such that ye I, ¢(d). So y+d = d. Since y £ im ¢,
im

F(x) + : F(x)
4 T3] e.Q (x) such that y = ¢(ET§T) and d = ¢(x). Thus

¢(g%§%) + ¢(x) = ¢(x) and ¢(g%§% + x) = ¢(x). Since ¢ is 1-1,
F(x) i : g
o) FoeX =X Thus F(x) + xG(x) = xG(x) which is a contradic-

tion since Q+[XJ is A.C. (Proposition 4.25). So we have the claim

i.e. (d) = ¢. Letye imp. If ye S, thenye ID(d). Thus

g

y+td = d, so y € Iim¢(d) which is a contradiction. Hence im¢ C D\ S.
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Then a+y = d+y Vy e im ¢ and by Theorem 2.43 (1) and (2), a+a = d+4d.
Since im ¢U{a} € K , ay =dy Vye im¢ u{a}. By Theorem 2.50; we
obtain that im ¢ Y{a} is a semifield. Hence K'C im ¢ U{a}. Since
Q+; K’\ {a} and d ¢ K’\ {a} X im¢ € K\ {a}. Thus imy y {a}c k7.
Therefore K~ & im¢ V {a}. Since imy & Q (%) .-, im¢ y {a} & Q+(x)u{a}
where Q+(x) U {a} is the semifield given Remark 4.7 Hence

K’ ’.—‘=’Q (x) U {a} as in Remark 4.26.

Subcase 2.4.2.2.2 ¢ dgtnot 1=1-,

F(x) F EUix) F(d) F’(d)
Then 3 S’ &0 € Q (x) ()such that @ - & - So
F(d) c“(d) F(x) G"(x)

= 1. Thus ¢ U=1.

G(d) F’(d) GExX )V P /x)

F(x)

Define ker ¢ = {G(x) 0" (x) | (l;(F(X)

Glx ) = 1}. Claim that

ker¢y is a C-set. Lety, z € ker¢ . Then $(y)= ¢(z)= 1. Now

¢(y=z_1) = ¢y ¢(z—1) = 1-(¢(z))_1 QT e A1 = 1. Thus yz_1e

+ 42 ¢(y)+¢(z) 1+ (2)
ker¢ . Let y € ker¢ , z € Q@ (x). Since ¢(¥+z) et e e ()
= 1, we get that -?:—: € ker ¢. Hence ker¢ is a C-set. So we have

the claim. Thus Q+(x)/ is a ratio semiring and we obtain that

kerd¢
+ 2 4 2 2 .
0) (X)/kerq, = im¢ . Since d°, 1 e D\ I, - e B 1m¢\Iim¢(d)
# ~
because Iimq;(d) o ID(d). Let W = Q (X)/kercp and W = [x_], so W imd.

Thus wzand [1] € W\Iw(w).

Let D1= im¢ and S, =

1 D1 N S. Claim that

1 D

1
(2) D1\ S_1 is an ideal of (D1 s 4

To show (1), we assume that S1;é 9. Let x, vy € 51_ Then x, y € D and
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X, ¥y €S. Thus x+y € D, and x+y € S because S is an additive sub-

1

semigroup of ID(d). Hence x+y € S So we have (1). Now we shall

1

show (2). Since 1 € D\ID(d) and S C ID(d), we get that 1 € D1\ S
c c c c c c

1 = = = (B { = 1

Since D1\ s1 D1n s1 D1ﬂ (D1ﬂ S) D1 (D1us ) (D1ﬂ D1)U(D1ﬂ S )

=y (DN 5" Y D,N s%s D,\ S, we get that D.\ S.= D\ S. Thus

i

1 € D1\ s1, s0 D1\ S1;£ ®. Let x € D1\S1 and y € D Thus x € D1\ S35

1°
so X € D\S. By Theorem 2.50, we have that D\S is an ideal of (D,+),

so x+y € D\ S. Since x, y € D1, X+y € D Thus x+y € D1\ S, so

1°

X+y € D1\ S So we have (2).

1"

Since S, = D1ﬂs and D1\ S1= D1\ S, we get that S, € S and

1 1

D1\ S1§_1D\S. Then a+x = a for all x € S1 and a+x = d+x for all
> i > D1\ S1. By Theorem 2.43 (1) and (2), a+a = d+d. Then by Theorem
2.51, we obtain that D,U {a}l is a semifield. Thus im ¢ U{a} is a semi-
field. Using the same proof as in Subcase 2.4.2.2.1, we get that

v = i + by ‘nt +
K2 im ¢ v{a}l. sSince @ (x)/ker gome im ¢, we get that K'Z @ (X)/kercpu {a}.

Claim that 1+x, 1—:§ € Q+(x)\ker ¢.

Suppose that 1+x € ker ¢. Then ¢(1+x) = 1. Thus 1+d = 1, so

d+d2= d. Hence dzs ID(d), a contradiction. Thus 1+4+x € Q+(x) ker ¢.
Now suppose that % € ker ¢. Then (Ir“%)— =" 1. “ Thus % = 7, s

1+d = d. Hence 1 € ID(d). a contradiction. Thus 1—:? € Q+(x)\ker ¢.

Therefore we get that Q+(X)/ker U {a} is the semifield given

¢

. PR
in Remark 4.28 and K = @ (x)/ker ¢U{a}.
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