CHAPTER IV

PRIME SEMIFIELDS

Definition 4.1 Let K be a semifield and $L \subseteq K$. Then L is said to be a <u>subsemifield</u> of K iff L forms a semifield with respect to the same operations on K.

Theorem 4.2 Let K be a semifield. If K is of type I w.r.t.a then there exists a smallest subsemifield contained in K and it is also a semifields of type I w.r.t.a. If K is of type II w.r.t.a they there exists a smallest subsemifield contained in K and it is also a semifield of type II w.r.t.a. If K is of type III then there exists a smallest subsemifield contained in K and it is also a semifield of type III.

<u>Proof</u> Let a ε K be such that $(K \setminus \{a\}, \bullet)$ is a group and let e be the identity of $(K \setminus \{a\}, \bullet)$. Let $L \subseteq K$ be a subsemifield.

First, we shall show that a ϵ L and L is a semifield of the same type as K w.r.t.a.

Case 1 K is a semifield of type I w.r.t.a.

Then a and e are the only multiplicative idempotents of K. By Theorem 3.15 and Theorem 3.18, L must be a semifield of type I or II. Then L contains exactly two multiplicative idempotents. Thus $\{a,e\} \subseteq L$. Since a is multiplicative zero of K, we get that a is also multiplicative zero of L. Thus L is a semifield of type I w.r.t.a.

Case 2 K is a semifield of type II w.r.t.a.

Then a and e are the only multiplicative idempotents of K. By Theorem 3.14 and Theorem 3.15, L must be a semifield of type I or II. Then L contains exactly two multiplicative idempotents. Thus $\{a,e\}\subseteq L$. Since a is multiplicative identity of K, we get that a is also multiplicative identity of L. Thus L is a semifield of type II w.r.t.a.

Case 3 K is a semifield of type III.

Then e is the only multiplicative idempotent of K. By Theorem 3.18, L must be a semifield of type III. Then L contains exactly one multiplicative idempotent so e ε L. Let b ε L be such that (L\{b},•) is a group. If b \neq a, then b = be, a contradiction. Hence b = a. Therefore L is a semifield of type III and a is the element in L such that (L\{a},•) is a group.

Let $\{L_{\alpha}\}$ be the set of all subsemifields of K. By the $\alpha \in I$ first part of this proof, we get that a ϵL_{α} and L_{α} is a semifield of the same types as K w.r.t.a. Let $M = \bigcap_{\alpha \in I} L_{\alpha}$. Cleary M is a subsemiring of K and a ϵ M. Now M\{a} = $(\bigcap_{\alpha \in I} L_{\alpha}) \setminus \{a\} = \bigcap_{\alpha \in I} (L_{\alpha} \setminus \{a\})$. Thus $(M \setminus \{a\}, \cdot)$ is a group. Hence M is a subsemifield of K. By the first part of this proof, we get that M is a semifield of the same type as K w.r.t.a. Clearly M is the smallest subsemifield of K. So we obtain that M is the smallest subsemifield of K and M is a semifield of the same type as K w.r.t.a. #

<u>Definition 4.3</u> Let K be a semifield. Then the <u>prime semifield</u> of K is the smallest subsemifield of K (Which exists by Theorem 4.2).

Remark 4.4 Let \mathbb{Q}^+ with the usual addition and multiplication. Then $(\mathbb{Q}^+,+,\bullet)$ is a ratio semiring. Let a be a symbol not representing any element of \mathbb{Q}^+ . Extend + and \bullet from \mathbb{Q}^+ to \mathbb{Q}^+ \mathbb{Q}^+ \mathbb{Q}^+ and \mathbb{Q}^+ by \mathbb{Q}^+ and \mathbb{Q}^+ and \mathbb{Q}^+ . Theorem 2.39 we obtain that \mathbb{Q}^+ \mathbb{Q}^+ as semifield of type II.

Theorem 4.5 Let K be a semifield of type II w.r.t. a and K' the prime semifield of K. Then $K' \cong \{a,1\}$ with $a^2 = a$, $a \cdot 1 = 1 \cdot a = 1$, $1 \cdot 1 = 1$ and + defined by

(1)
$$\frac{+}{a}$$
 $\frac{1}{a}$ or $\frac{+}{a}$ $\frac{1}{a}$ or $\frac{+}{a}$ $\frac{1}{a}$ $\frac{1}$

or $K' \cong Q^{+} \upsilon \{a\}$ as in remark 4.4.

Proof Let 1 be the identity of $(K \setminus \{a\}, \cdot)$.

By Theorem 2.29, K\{a} is a ratio semiring. Let D' be the smallest ratio subsemiring of K\{a}. By Proposition 1.18, D' \cong {1} with 1.1 = 1 and 1+1 = 1 or D' \cong \mathbb{Q}^+ with the usual addition and multiplication.

Suppose that $D' \cong \{1\}$. Then 1+1=1. By Theorem 2.30, a+a=a or a+a=1+1=1 and a+1=a or a+1=1+1=1. Therefore we have four cases to consider. They are (1),(2),(3) and (4) above. It is easy to check that they are all semifields. Thus $K' \cong (1)$ or $K' \cong (2)$ or $K' \cong (3)$ or $K' \cong (4)$.

If $D'\cong \mathbb{Q}^+$ with the usual addition and multiplication, then up to isomorphism we can consider $\mathbb{Q}^+ \subseteq K \setminus \{a\}$. Let $D = K \setminus \{a\}$ and $S = \{x \in D \mid a+x = a\}$, by Theorem 2.31, $S \subseteq I_D(1)$. Claim that $\mathbb{Q}^+ \cap S = \emptyset$. Let $x \in \mathbb{Q}^+$ and $x \in S$, then $x \in I_D(1)$. So x+1 = 1, a contradiction. So we have the claim. Thus $\mathbb{Q}^+ \subseteq D \setminus S$, so $a+x = 1+x \quad \forall x \in \mathbb{Q}^+$. By Theorem 2.30 (1) and (2) we obtain that a+a = 1+1. Since $\mathbb{Q}^+ \cup \{a\} \subseteq K$, $ax = x \quad \forall x \in \mathbb{Q}^+ \cup \{a\}$. By Theorem 2.39, $\mathbb{Q}^+ \cup \{a\}$ is a semifield. So up to isomorphism, $K \subseteq \mathbb{Q}^+ \cup \{a\}$. By Theorem 2.29, $K \setminus \{a\}$ is a ratio semiring. Then $K \setminus \{a\}$ is a ratio subsemiring of $K \setminus \{a\}$. Since \mathbb{Q}^+ with the usual addition and multiplication is the smallest ratio subsemiring of $K \setminus \{a\}$, we obtain that $\mathbb{Q}^+ \in K \setminus \{a\}$. Thus $\mathbb{Q}^+ \cup \{a\} \subseteq K \setminus \{a\}$. Hence $K \subseteq \mathbb{Q}^+ \cup \{a\}$ as in remark 4.4.

Theorem 4.6 Let K be a semifield of type III and a ϵ K, d ϵ K\{a} be such that (K\{a}, •) is a group and a·x = d·x for all x ϵ K. Let $A = \{\sum_{i < \infty} n_i d^{i} \mid m_i, n_i \epsilon \mathbb{Z}^+\} \text{ and } K' \text{ the prime semifield of } K. \text{ Then } A \text{ is a multiplicatively cancellative semiring and } K' \cong \text{ (the quotient ratio semiring of } A) U \{a\}.$

<u>Proof</u> Let e be the identity of $(K \setminus \{a\}, \cdot)$, $D = K \setminus \{a\}$ and $S = \{x \in D \mid a+x = a\}$.

By Theorem 4.2, we have that a,e ϵ K, so $d = a \cdot e \epsilon$ K'. Thus $d \epsilon$ K'\{a}. Since K'\{a} is a ratio semiring (by Theorem 2.41), we get that $A \subseteq K' \setminus \{a\}$. Clearly A is a semiring. Since $A \subseteq K' \setminus \{a\}$ which is a group under multiplication so A is M.C. Let B be the quotient ratio semiring of A. Then we get that $B \subseteq K' \setminus \{a\}$ (since B is the smallest ratio semiring containing A).

Let $S' = B \cap S$. Claim that

(1) $S' = \Phi$ or S' is an additive subsemigroup of $I_{R}(d)$.

- (2) $B \setminus S' = \Phi$ or $B \setminus S'$ is an ideal of (B,+)
- (3) If $B \setminus S' = \Phi$ then |B| = 1.

To show (1), we assume that $S \neq \emptyset$. Let $x \in S'$, then $x \in B$ and $x \in S$. Since $S \subseteq I_D(d)$ (by Theorem 2.50), $x \in I_D(d)$. So x+d=d. Thus $x \in I_B(d)$. Hence $S' \subseteq I_B(d)$. Let $x, y \in S'$. Then $x, y \in B$ and $x, y \in S$. Since B is a ratio semiring and S is an additive subsemigroup of $I_D(d)$, $x+y \in B$ and $x+y \in S$. Thus $x+y \in S'$. So we have (1). To show (2), we assume that $B \setminus S' \neq \emptyset$. Let $x \in B \setminus S'$ and $y \in B$. Since $B \setminus S' = B \cap S'^C = B \cap (B \cap S)^C = B \cap (B^C \cup S^C) = (B \cap B^C) \cup (B \cap S^C) = B \cap S^C = B \setminus S \subseteq D \setminus S$. So we get that $x \in D \setminus S$. Since $x \in B \setminus S'$ is an ideal of $x \in B \setminus S'$ and hence $x \in B \setminus S'$ since $x \in B \setminus S'$. So we have (2).

To show (3), we assume that $B \setminus S' = \Phi$. Then B = S'. Since $S' \subseteq I_B(d)$, we get that $B = I_B(d)$. Then $d+x = d \ \forall \ x \in B$. Thus d is an additive zero of B, then by Theorem 1.13 and Proposition 1.15, |B| = 1. So we have (3)

Since $S' \subseteq S$ and $B \setminus S' \subseteq D \setminus S$, $a+x=a \quad \forall x \in S'$ and $a+x=d+x \quad \forall x \in B \setminus S'$. By Theorem 2.43, a+a=a or a+a=d+d. Since $B \cup \{a\} \subseteq K$, $ax=dx \quad \forall x \in B \cup \{a\}$. By Theorem 2.51 we obtain that $B \cup \{a\}$ is a semifield of type III. Hence $K' \subseteq B \cup \{a\}$. Since $B \subseteq K' \setminus \{a\}$, $B \cup \{a\} \subseteq K'$. Therefore $K' \cong B \cup \{a\}$ so we have the Theorem.

From now on we shall compute the prime semifields of semifields of type III.

Remark 4.7 Let $K = \{a,1\}$. Define + and • on K as the following tables :

By Theorem 2.51 we get that (1),(2),(3) and (4) are all semifields of type III.

Remark 4.8 Let \mathbb{Q}^+ have the usual addition and multiplication. Then $(\mathbb{Q}^+,+,\bullet)$ is a ratio semiring. Let $d \in \mathbb{Q}^+$ and a a symbol not representing any element in \mathbb{Q}^+ . Extend + and • from \mathbb{Q}^+ to \mathbb{Q}^+ U {a} by ax = xa = dx $\forall x \in \mathbb{Q}^+$, $a^2 = d^2$, $a + x = x + a = d + x \forall x \in \mathbb{Q}^+$ and a + a = d + d. Then by Theorem 2.51, we obtain that \mathbb{Q}^+ U {a} is a semifield of type III.

Remark 4.9 Let <d> be notation for the set of symbols $\{d^n \mid n \in \mathbb{Z}\}$.

Define + and • on <d> by $d^m + d^n = d^n$ where $k = \min \{m,n\}$ and $d^m \cdot d^n = d^{m+n}$. We shall show that $(<d>,+, \cdot)$ is a ratio semiring. Clearly, $(<d>,+, \cdot)$ is a commutative group. For $\ell,m,n \in \mathbb{Z}$.

 $(\textbf{d}^{\ell}+\textbf{d}^m)+\textbf{d}^n=\textbf{d}^k=\textbf{d}^{\ell}+(\textbf{d}^m+\textbf{d}^n)\quad \text{where } k=\min{\{\ell,m,n\}}$ and we get that

 $(d^{\ell} + d^m) \cdot d^n = d^k \cdot d^n = d^{k+n} \quad \text{where } k = \min \{\ell, m\} \quad \text{and}$ $d^{\ell} \cdot d^n + d^m d^n = d^{\ell+n} + d^{m+n} = d^r \quad \text{where } r = \min \{\ell + n, m + n\} \, .$

Since $k = \min\{l,m\}$, we get that $k+n = \min\{l+n,m+n\}$. Thus r = k+n. Hence $(d^l+d)^m \cdot d^n = d^l \cdot d^n + d^m \cdot d^n$.

Therefore (<d>,+,•) is a ratio semiring. Let a be a symbol not representing any element in <d> and $n_0 \in \mathbb{Z}^+$ be fixed. Let $s_1 = \{d^n \mid n \in \mathbb{Z}, n > n_0\}$, then <d>\<\s_1 = $\{d^n \mid n \in \mathbb{Z}, n < n_0\}$. Clearly, $I_{<$ d>\}(d) = $\{d^n \mid n \in \mathbb{Z}, n > 1\}$. It is easy to show that s_1 is an additive subsemigroup of $I_{<$ d>\}(d) and <d>\\$\sigma_1\$ is an ideal of (<d>\,+). Extend + and • from <d>\tag{d} to K = <d>\U\{a\} as follows;

- (1) ax = xa = dx for all $x \in \langle d \rangle$ and $a^2 = d^2$,
- (2) a+x = x+a = a for all $x \in S_1$ and a+x = x+a = d+x for all $x \in <d> \setminus S_1$,
- (3) a+a = a or d.

Then by Theorem 2.51, we obtain that $<d> \cup \{a\}$ is a semifield of type III.

Remark 4.10 Let $(\langle d \rangle, +, \bullet)$ be the ratio semiring given in Remark 4.9. Let a be a symbol not representing any element in $\langle d \rangle$. Extend + and \bullet from $\langle d \rangle$ to $\langle d \rangle$ U {a} by ax = xa = dx \forall x ϵ $\langle d \rangle$, $a^2 = d^2$, $a + x = x + a = d + x \forall$ x ϵ $\langle d \rangle$ and a + a = a or d. By Theorem 2.51, we obtain that $\langle d \rangle$ U {a} is a semifield of type III.

Remark 4.11 Let <d> be notation for the set of symbol $\{d^n \mid n \in \mathbb{Z}\}$. Define + and • on <d> by $d^m + d^n = d^k$ where $k = \max.\{m,n\}$ and $d^m \cdot d^n = d^{m+n}$. Similarly as remark 4.9, we can show that $(<d>,+,\cdot)$ is a ratio semiring. Let a be a symbol not representing any element in <d> and $n_0 \in \mathbb{Z}$, $n_0 \in 1$. Let $S_1 = \{a^n \mid n \in \mathbb{Z}, n \in n_0\}$, then $<d> \setminus S_1 = \{d^n \mid n \in \mathbb{Z}, n > n_0\}$. Clearly, $I_{<d>}(d) = \{d^n \mid n \in \mathbb{Z}, n \in 1\}$. It is easy to show that S_1 is an additive subsemigroup of $I_{<d>}(d)$ and

 $<d> \ S_1$ is an ideal of (<d>,+). Extend + and • from $<d> to <math><d> U \{a\}$ as follows;

- (1) ax = xa = dx for all $x \in \langle d \rangle$ and $a^2 = d^2$,
- (2) a+x = x+a = a for all $x \in S_1$ and a+x = x+a = d+x for all $x \in d> S_1$,
- (3) a+a = a or d.

Then by Theorem 2.51 we obtain that <d>U {a} is a semifield of type III.

Remark 4.12 Let $(\langle d \rangle, +, \bullet)$ be the ratio semiring given in Remark 4.11. Let a be a symbol not representing any element in $\langle d \rangle$. Extend + and \bullet from $\langle d \rangle$ to $\langle d \rangle$ U {a} by ax = xa = dx \forall x ϵ $\langle d \rangle$, $a^2 = d^2$, $a + x = x + a = d + x \forall$ x ϵ $\langle d \rangle$ and a + a = a or d. By Theorem 2.51, we get that $\langle d \rangle$ U {a} is a semifield of type III.

Remark 4.13 Let \mathbb{Q}^+ have the usual addition and multiplication. Let \mathbb{Q}^+ <d> be notation for the set of symbols $\{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z} \}$ Define \oplus and \odot on \mathbb{Q}^+ <d> as follows ;

$$xd^{m} \oplus yd^{n} = \begin{cases} xd^{m} & \text{if } m < n \\ (x+y)d^{m} & \text{if } m = n \end{cases}$$

$$yd^{n} & \text{if } n < m \end{cases}$$

and $xd^m \odot yd^n = (xy)d^{m+n}$.

Claim that $(Q^{+} < d > , \oplus, \odot)$ is a ratio semiring.

Clearly $(q^+ \cdot < d>, \Theta)$ is a commutative group. Let $x,y,z \in Q^+$ and $\ell,m,n \in \mathbb{Z}$. We shall show that

(1) $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = xd^{\ell} \oplus (yd^{m} \oplus zd^{n})$ and

(2) $(xd \oplus yd^m) \odot zd^n = xd^l \odot zd^n \oplus yd^m \odot zd^n$

To show (1), we will consider the following cases:

Case 1 $\ell = m = n$.

 $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = (x+y)d^{\ell} \oplus zd^{n} = ((x+y)+z)d^{\ell} = (x+(y+z))d^{\ell} = xd^{\ell} \oplus (y+z)d^{\ell}$ $= xd^{\ell} \oplus (yd^{\ell} \oplus zd^{\ell}) = xd^{\ell} \oplus (yd^{m} \oplus zd^{n}).$

Case 2 $\ell = m \neq n$.

Subcase 2.1 m < n. Then $\ell < n$.

 $(xd^{\ell}\oplus yd^{m})\oplus zd^{n}=(x+y)d^{\ell}\oplus zd^{n}=(x+y)d^{\ell}.$

 $(xd^{\ell} \in (yd^{m} \in zd^{n}) = xd^{\ell} \in yd^{m} = (x+y)d^{\ell}$

Subcase 2.2 m > n. Then $\ell > n$.

 $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = (x+y)d^{\ell} \oplus zd^{n} = zd^{n}$

 $xd^{x} \oplus (yd^{m} \oplus zd^{n}) = xd^{n} \oplus zd^{n} = zd^{n}$

Case 3 $l = n \neq m$.

Subcase 3.1 n < m. Then $\ell < m$.

 $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = xd^{\ell} \oplus zd^{n} = (x+z)d^{\ell}$

 $xd^{\ell} \oplus (yd^{m} \oplus zd^{n}) = xd^{\ell} \oplus zd^{n} = (x+z)d^{\ell}$

Subcase 3.2 n > m. Then $\ell > m$.

 $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = yd^{m} \oplus zd^{n} = yd^{m}$

 $xd^{\ell} \in (yd^{m} \in zd^{n}) = xd^{\ell} \oplus yd^{m} = yd^{m}$

Case 4 $n = m \neq \ell$. Then

 $(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = (yd^{m} \oplus xd^{\ell}) \oplus zd^{n} = yd^{m} \oplus (xd^{\ell} \oplus zd^{n})$ (by

case 3) = $yd^m \oplus (zd^n \oplus xd^\ell) = (yd^m \oplus zd^n) \oplus xd^\ell$ (by case 2)

= $xd^{\ell} \oplus (yd^{m} \oplus zd^{n})$.

Case 5 ℓ , m, n are all distinct. Let $k = \min \{\ell, m, n\}$, then

$$(xd^{\ell} \oplus yd^{m}) \oplus zd^{n} = xd^{\ell} \oplus (yd^{m} \oplus zd^{n}) = \begin{cases} xd^{\ell} & \text{if } k = \ell \end{cases},$$

$$zd^{m} & \text{if } k = m \end{cases},$$

To show (2), we will consider the following cases:

Case 1 $\ell = m$.

Case 2 $l \neq m$.

Subcase 2.1 ℓ < m. Then ℓ +n < m+n .

 $(xd^{\ell} \oplus yd^{m}) \otimes zd^{n} = xd^{\ell} \otimes zd^{n} = (xz)d^{\ell+n}$ $xd^{\ell} \otimes zd^{n} \oplus yd^{m} \otimes zd^{n} = (xz)d^{\ell+n} \oplus (yz)d^{m+n} = (xz)d^{\ell+n}$

Subcase 2.2 $\ell > m$.

 $(xd^{\ell} \oplus yd^{m}) \otimes zd^{n} = (yd^{m} \oplus xd^{\ell}) \otimes zd^{n} = yd^{m} \oplus zd^{n} \oplus xd^{\ell} \oplus zd^{n}$ (by Subcase 2.1) = $xd^{\ell} \oplus zd^{n} \oplus yd^{m} \oplus zd^{n}$

Therefore $(Q^{+}, <d>, \oplus, \Theta)$ is a ratio semiring.

Let $n_0 \in \mathbb{Z}$, $n_0 \ge 2$ and $S_1 = \{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n \ge n_0\}$. Then $\mathbb{Q}^+ < d \ge S_1 = \{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n < n_0\}$. Clearly,

I (1d) = $\{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n \ge 2\}$. It is easy to show that $\mathbb{Q}^+ < d >$ Solution S₁ is an additive subsemigroup of I (1d) and $\mathbb{Q}^+ < d > \setminus S_1$ is an ideal $\mathbb{Q}^+ < d > \setminus S_1$ of $\mathbb{Q}^+ < d > \setminus S_1$. Let a be a symbol not representing any element in

of $(Q^{+} < d >, \oplus)$. Let a be a symbol not representing any element in $Q^{+} < d >$. Extend + and • from $Q^{+} < d >$ to $Q^{+} < d >$ U {a} as follows;

- (1) a G $z = z \cdot 0 = 1d \cdot 0 z$ for all $z \in \mathbb{Q}^+ \cdot < d > and a \cdot 0 = 1d \cdot 0 \cdot 1d$,
- (2) $a \oplus z = z \oplus a = a$ for all $z \in S_1$ and $a \oplus z = z \oplus a = 1d \oplus z$ for all $z \in Q^{+} \cdot \langle d \rangle \setminus S_1$,

(3) $a \oplus a = 1d \oplus 1d$.

Then by Theorem 2.51 we obtain that $\mathbb{Q}^{+}\cdot<\varpi>U$ {a} is a semifield of type III .

Remark 4.14 Let $(Q^{+} \cdot < d >, \oplus , \odot)$ be the ratio semiring given in remark 4.13. Let a be a symbol not representing any element of $Q^{+} \cdot < d >$. Extend \oplus and \odot from $Q^{+} \cdot < d >$ to $Q^{+} \cdot < d >$ U {a} by a \odot z = z \odot a = 1d \odot z for all z \in $Q^{+} \cdot < d >$, a \odot a = 1d \odot 1d, a \oplus z = z \oplus a = 1d \oplus z for all z \in $Q^{+} \cdot < d >$ and a \oplus a = 1d \odot 1d. By Theorem 2.51, we obtain that $Q^{+} \cdot < d >$ U {a} is a semifield of type III.

Remark 4.15 Let \mathbb{Q}^+ have the usual addition and multiplication. Let \mathbb{Q}^+ <d>be notation for the set of symbols $\{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}\}$. Define \oplus and \odot on \mathbb{Q}^+ <d>as follows;

$$xd^{m} \oplus yd^{n} = \begin{cases} xd^{m} & \text{if } m > n ,\\ (x+y)d^{m} & \text{if } m = n ,\\ yd^{n} & \text{if } n > m , \end{cases}$$

and
$$xd^m \odot yd^n = (xy)d^{m+n}$$
.

Similarly as Remark 4.13, we can show that $(\mathbb{Q}^{\stackrel{1}{\bullet}} < d >, \bigoplus, \bigodot)$ is a ratio semiring. Let $n_0 \in \mathbb{Z}$, $n_0 < 1$ and $S_1 = \{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n \leqslant n_0\}$. Then we get that $\mathbb{Q}^{+\bullet} < d > S_1 = \{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n \geqslant n_0\}$. Clearly I (1d) = $\{xd^n \mid x \in \mathbb{Q}^+ \text{ and } n \in \mathbb{Z}, n < 1\}$. It is easy to show that $S_1 \in \mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0$ is an additive subsemigroup of I (1d) and $\mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0 > 0$ is an ideal of $\mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0$. Let a be a symbol not representing any element of $\mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0$. Extend \mathbb{Q} and \mathbb{Q} from $\mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0$ to $\mathbb{Q}^{\stackrel{1}{\bullet}} < d > 0$ (2a) as follows;

- (1) a Θ z = z Θ a = 1d Θ z for all z ε $\mathbb{Q}^+ \cdot < d >$ and a Θ a = 1d Θ 1d,
- (2) $a \oplus z = z \oplus a = a$ for all $z \in S_1$ and

 $a \oplus z = z \oplus a = 1d \oplus z$ for all $z \in \mathbb{Q}^+ \cdot \langle d \rangle \setminus S$, (3) $a \oplus a = 1d \oplus 1d$.

Then by Theorem 2.51,we obtain that $\boldsymbol{Q}^+{<}d{>}\ \boldsymbol{U}$ {a} is a semifield of type III.

Remark 4.16 Let $(\mathbb{Q}^+ < d >, \oplus , \bullet)$ be the ratio semiring given in Remark 4.15. Let a be a symbol not representing any element of $\mathbb{Q}^+ < d >$. Extend \oplus and \bullet from $\mathbb{Q}^+ < d >$ to $\mathbb{Q}^+ < d >$ U {a} by a \bullet z = z \bullet a = 1d \bullet z \forall z \in $\mathbb{Q}^+ < d >$ a \bullet a = 1d \bullet 1d, a \bullet z = z \bullet a = 1d \bullet z \forall z \in $\mathbb{Q}^+ < d >$ and a \bullet a = 1d \bullet 1d. By Theorem 2.51, $\mathbb{Q}^+ \cdot < d >$ \cup {a} is a semifield of type III.

Remark 4.17 Let $\langle x,y \rangle$ be notation for the set of symbols $\{x^my^n | m, n \in \mathbb{Z}.\}$. Define + and \cdot on $\langle x,y \rangle$ as follows;

 $x^k y^l + x^m y^n = x^r y^s$ where $r = \max\{k,m\}$ and $s = \min\{l,n\}$ and $x^k y^l \cdot x^m y^n = x^{k+m} y^{l+n}$.

Claim that $(\langle x,y \rangle, +, \cdot)$ is a ratio semiring.

Clearly ($\langle x,y \rangle$, •) is a commutative group. To show the claim we need only to show that for m_1 , m_2 , m_3 , n_1 , n_2 , $n_3 \epsilon$ $\mathbb Z$

$$(1) (x^{m_1}y^{n_1} + x^{m_2}y^{n_2}) + x^{m_3}y^{n_3} = x^{m_1}y^{n_1} + (x^{m_2}y^{n_2} + x^{m_3}y^{n_3})$$

and (2)
$$(x^{m}1^{n}1 + x^{m}2^{n}2) \cdot x^{m}3^{n}3 = x^{m}1^{n}1 \cdot x^{m}3^{n}3 + x^{m}2^{n}2 \cdot x^{m}3^{n}3$$

First we shall show (1). Let m_1, m_2, m_3, n_1, n_2 and $n_3 \in \mathbb{Z}$. By definition of +, we get that

$$(x^{m}1y^{n}1 + x^{m}2y^{n}2) + x^{m}3y^{n}3 = x^{r}y^{s} = x^{m}1y^{n}1 + (x^{m}2y^{n}2 + x^{m}3y^{n}3)$$

where $r = \max.\{m_1, m_2, m_3\}$ and $s = \min.\{n_1, n_2, n_3\}$.

To show (2), let m_1, m_2, m_3, n_1, n_2 and $n_3 \in \mathbb{Z}$. Then

$$(x \ y \ + x \ 2y \ 2) \cdot x \ y \ = x \ y \cdot x \ y \ 3 = x \ y \ x \ y \ = x \ y$$

where $r = \max \{m_1, m_2\}$ and $s = \min \{n_1, n_2\}$ and

$$x^{m}1_{y}^{n}1 \cdot x^{m}3_{y}^{n}3 + x^{m}2_{y}^{n}2 \cdot x^{m}3_{y}^{n}3 = x^{m}1^{+m}3_{y}^{n}1^{+n}3 + x^{m}2^{+m}3_{y}^{n}2^{+n}3$$

= $x^p y^q$ where $p = \max \{m_1 + m_3, m_2 + m_3\}$ and $q = \min \{n_1 + n_3, n_2 + n_3\}$.

Since $r = \max \{m_1, m_2\}$, $r+m_3 = \max \{m_1 + m_3, m_2 + m_3\}$ and since $s = \min \{n_1, n_2\}$, $s+n_3 = \min \{n_1 + n_3, n_2 + n_3\}$. Thus $r+m_3 = p$ and $s+n_3 = q$, so we have (2). So we have the claim i.e. $(\langle x, y \rangle, + \rangle, \cdot)$ is a ratio semiring.

Clearly $I_{\langle x,y\rangle}(xy)=\{x^my^n\mid m,n\ \epsilon\mathbb{Z},\ m\leqslant 1\leqslant n\}$. Let $m_0,n_0\epsilon\mathbb{Z}$ be such that $m_0\leqslant 1\leqslant n_0$. Define $S_1=\{x^my^n\mid m\leqslant m_0\ \text{and}\ n\geqslant n_0\}$. Then $\langle x,y\rangle\backslash S_1=\{x^my^n\mid m\geqslant m_0\ \text{or}\ n\leqslant n_0\}$. Clearly S_1 is an additive subsemigroup of $I_{\langle x,y\rangle}(xy)$. Claim that $\langle x,y\rangle\backslash S_1$ is an ideal of $(\langle x,y\rangle,+)$. Let $z\in\langle x,y\rangle\backslash S_1$ and $w\in\langle x,y\rangle$. Then $z=x^my^n$ where $m\geqslant m_0$ or $n\leqslant n_0$ and $w=x^ky^\ell$ for some k, $\ell\in\mathbb{Z}$. Consider $z+w=x^my^n+x^ky$. We get that

$$z+w = x^{m}y^{n} + x^{k}y^{\ell} = \begin{cases} x^{m}y^{n} & \text{if } k \leqslant m \text{ and } n \leqslant \ell \end{cases},$$

$$x^{m}y^{\ell} & \text{if } k \leqslant m \text{ and } \ell \leqslant n \end{cases},$$

$$x^{k}y^{n} & \text{if } m \leqslant k \text{ and } n \leqslant \ell \end{cases},$$

$$x^{k}y^{\ell} & \text{if } m \leqslant k \text{ and } \ell \leqslant n \end{cases}.$$

In all cases we see that $z+w \in \langle x,y \rangle \setminus S_1$. So we have the claim i.e. $\langle x,y \rangle \setminus S_1$ is an ideal of $(\langle x,y \rangle, +)$.

Let a be a symbol not representing any element of $\langle x,y \rangle$. Extend + and • from $\langle x,y \rangle$ to $\langle x,y \rangle$ U {a} as follows;

(1)
$$a \cdot w = w \cdot a = xy \cdot w$$
 for all $w \in \langle x, y \rangle$ and $a \cdot a = xy \cdot xy$,

(2)
$$a + w = w + a = a$$
 for all $w \in S_1$ and $a + w = w + a = xy + w$ for all $w \in \langle x, y \rangle \setminus S_1$,

(3) a + a = a or xy.

Then by Theorem 2.51 we obtain that \ll ,y>U {a} is a semifield of type III.

Remark 4.18 Let $(\propto,y>, +, \cdot)$ be the ratio semiring given in Remark 4.17. Let a be a symbol not representing any element of (x,y>). Extend + and \cdot from (x,y>) to (x,y>) U (a) by a \cdot w = w \cdot a = xy \cdot w \forall w \in (x,y>) and a+a = a or xy. Then by Theorem 2.51 we obtain that (x,y>) U (a) is a semifield of type III.

Definition 4.19 Let D be a ratio semiring and let 0 be a symbol not representing any element of D. We have shown in Theorem 3.5 that we can extend the binary operations of D to D U $\{0\}$ making D U $\{0\}$ into a 0-semifield. Let $(DU\{0\})[x]$ be the set of all polynomials coefficient in D U $\{0\}$. Define $D[x] = (DU\{0\})[x] \setminus \{0\}$. Then D[x] is a semiring. If D[x] is M.C. then define D(x) to be the quotient ratio semiring of D[x].

Remark 4.20 Let D = $\{1\}$ be a ratio semiring. Then D is A.C. but we see that D U $\{0\}$ the 0-semifield of definition 4.19 is not A.C. because 1+1=1+0.

The next proposition will show that D U $\{0\}$ is also A.C. if D is A.C. and infinite.

Proposition 4.21 Let D be an infinite ratio semiring and D U {0} the 0-semifield of definition 4.19. Then D U {0} is A.C. iff D is A.C.

Proof Assume that D U $\{0\}$ is A.C. Let a, b, c ϵ D be such that a+b=a+c. Since a, b, c ϵ D U $\{0\}$ and D U $\{0\}$ is A.C. , b=c. Thus D is A.C..

Conversely assume that D is A.C. Let a,b,c ϵ D U {a} be such that a+b = a+c. We must show that b = c. If a = 0, then b = c. Suppose that a \neq 0. Consider b and c.

Case 1 Both of them are 0. Then b = c.

Case 2 Both of them are not 0. Then a,b,c \in D are such that a+b = a+c. Thus b = c since D is A.C.

Case 3 One is 0 the other is not. We may assume that b = 0 and $c \neq 0$. Then a = a+c, so $1 = 1+a^{-1}c$. Let $x = a^{-1}c$, then 1+x = 1. By induction, we obtain that $1+x^n = 1$ $\forall n \in \mathbb{Z}^+$. Let $m, n \in \mathbb{Z}, m < n$. Then $x^m + x^n = x^m (1+x^{n-m}) = x^m 1 = x^m$. Thus $x^m + x^n = x^m$ for all $m, n \in \mathbb{Z}$, m < n. Then $x+x^2 = x+x^3$. Since D is A.C., $x^2 = x^3$. Hence x = 1. So we get that 1+1 = 1. Let $z \in D \setminus \{1\}$. If 1+z = 1, then 1+z = 1+1. Since D is A.C., z = 1 which is a contradiction. Thus $1+z \neq 1$. Now 1+z = (1+1)+z = 1+(1+z). Then 1+z = 1+(1+z), so $1 = 1+(1+z)^{-1}$. Thus $1+(1+z)^{-1} = 1+1$. Since D is A.C., $(1+z)^{-1} = 1$. Hence 1+z = 1 which is a contradiction. Thus this case cannot occur.

Therefore we get that D U $\{0\}$ is A.C.,

Remark 4.22 Let D = $\{1\}$ be a ratio semiring. Then clearly D is A.C. Consider D[x].

Let f(x) = 1+x, $g(x) = 1+x+x^2$ and $h(x) = 1+x^2$. We see that $f(x)g(x) = (1+x)(1+x+x^2) = 1+x+x^2+x^3$ and $f(x)h(x) = (1+x)(1+x^2) = 1+x+x^2+x^3$

So we have that f(x)g(x) = f(x)h(x) and $g(x) \neq h(x)$. Thus D[x] is not M.C..

The next theorem will show that if D is A.C. and D is infinite then D[x] is M.C.

Theorem 4.23 Let D be an infinite ratio semiring. Then D[x] is M.C. iff D is A.C..

Proof Assume that D[x] is M.C. Let a,b,c ϵ D be such that a+b = a+c. Let f(x) = 1+x, $g(x) = a+bx+ax^2$ and $h(x) = a+cx+ax^2$. Consider $f(x) \cdot g(x)$ and $f(x) \cdot h(x)$.

$$f(x) \cdot g(x) = (1+x)(a+bx+ax^2) = a+(a+b)x+(a+b)x^2 + ax^3$$

 $f(x) \cdot h(x) = (1+x)(a+cx+ax^2) = a+(a+c)x+(a+c)x^2 + ax^3$

Since a+b=a+c , we get that f(x)g(x)=f(x)h(x). Since D[x] is M.C., we get that g(x)=h(x). Hence b=c. Therefore D is A.C.

Conversely, assume that D is A.C. Let f(x), g(x) and $h(x) \in D[x]$ be such that f(x)g(x) = f(x)h(x).

Suppose that $f(x) = \sum_{i=0}^{k} a_i x^i$, $g(x) = \sum_{i=0}^{\ell} b_i x^i$ and $h(x) = \sum_{i=0}^{m} c_i x^i \text{ where } a_k, b_\ell, c_m \neq 0. \text{ Then } f(x)g(x) = \sum_{i=0}^{k+\ell} d_i x^i \text{ where } a_i = \sum_{j=0}^{k+m} a_j a_{i-j} b_j, i = 0,1,\ldots,k+\ell \text{ and } f(x)h(x) = \sum_{j=0}^{k+m} f_j x^j \text{ where } a_i = \sum_{j=0}^{k+\ell} a_{i-j} c_j.$ Since f(x)g(x) = f(x)h(x), $k+\ell = k+m$ and $d_i = f_i$. $\forall i = 0,1,\ldots,k+\ell$. Let n be the smallest non negative integer such that $a_n \neq 0$. Since $d_n = f_n$, then

 $a_{n}b_{0} + a_{n-1}b_{1} + \dots + a_{0}b_{n} = a_{n}c_{0} + a_{n-1}c_{1} + \dots + a_{0}c_{n}$. Since $a_{0} = a_{1} = \dots = a_{n-1} = 0 \rightarrow a_{n}b_{0} = a_{n}c_{0}$. Thus $b_{0} = c_{0}$.

Now consider d_{n+1} and f_{n+1} . Since $d_{n+1} = f_{n+1}$, we get that $a_{n+1}b_0 + a_nb_1 + a_{n-1}b_2 + \cdots + a_0b_{n+1} = a_{n+1}c_0 + a_nc_1 + a_{n-1}c_2 + \cdots$ $\cdots + a_0c_{n+1}.$ Since $a_0 = a_1 = \cdots = a_{n-1} = 0$, $a_{n+1}b_0 + a_nb_1 = a_{n+1}c_0$ $+ a_nc_1.$ Since $b_0 = c_0$, $a_{n+1}b_0 = a_{n+1}c_0$. By Proposition 4.21

we have that D U $\{0\}$ is A.C. Since $a_{n+1}b_0$, a_nb_1 , $a_nc_1\varepsilon$ D U $\{0\}$ and D U $\{0\}$ is A.C., $a_nb_1=a_nc_1$. Hence $b_1=c_1$.

Consider d_{n+2} and f_{n+2} . Since $d_{n+2} = f_{n+2}$, we get that

 $a_{n+2}b_0 + a_{n+1}b_1 + a_nb_2 = a_{n+2}c_0 + a_{n+1}c_1 + a_nc_2$ (since $a_0 = a_1 = ...$ $a_{n+2}b_0 + a_{n+1}b_1 + a_nb_2 = a_{n+2}c_0 + a_{n+1}c_1 + a_nc_2$ (since $a_0 = a_1 = ...$ $a_{n+2}b_0 + a_{n+1}b_1 = a_{n+2}c_0$

+ $a_{n+1}c_1$. Since D U {0} is A.C., $a_nb_2 = a_nc_2$. Hence $b_2 = c_2$. Using the same proof we then get $b_i = c_i$ for all i. Thus g(x) = h(x). Therefore D[x] is M.C.. #

Remark 4.24 Let D = $\{1\}$ be a ratio semiring. Then clearly D is A.C. Consider D [x].

Let f(x) = 1+x, $g(x) = 1+x^2$ and $h(x) = x+x^2$. We see that $f(x)+g(x) = (1+x)+(1+x^2) = 1+x+x^2 \quad \text{and}$ $f(x)+h(x) = (1+x)+(x+x^2) = 1+x+x^2$

So we have that f(x)+g(x)=f(x)+h(x) and $g(x)\neq h(x)$. Thus D[x] is not A.C.

The next theorem will show that if D is A.C. and D is infinite, then D[x] is A.C.

Theorem 4.25 Let D be an infinite ratio semiring. Then D[x] is A.C. iff D is A.C.

Proof Assume that D[x] is A.C. Let a,b,c ϵ D be such that a+b = a+c. Since a,b,c are all polynomials in D[x] which is A.C., so b = c. Thus D is A.C..

Conversely, assume that D is A.C. Let f(x), g(x) and h(x) \in D[x] be such that f(x)+g(x)=f(x)+h(x). Let $f(x)=\sum\limits_{i=0}^{n}a_{i}x^{i}$,

 $g(x) = \sum_{i=0}^{n} b_i x^i$ and $h(x) = \sum_{i=0}^{n} c_i x^i$. Then $\sum_{i=0}^{n} (a_i + b_i) x^i = \sum_{i=0}^{n} (a_i + c_i) x^i$.

Thus $a_i + b_i = a_i + c_i$ \forall i = 0,1,...,n. By Proposition 4.21 we have that D U {0} is A.C. Since $a_i,b_i,c_i \in$ D U {0} such that $a_i + b_i = a_i + c_i$ for all i = 0,1,...,n, we get that $b_i = c_i$ \forall i = 0,1,...,n. Thus g(x) = h(x). Therefore D[x] is A.C..

Remark 4.26 Let \mathbb{Q}^+ have the usual addition and multiplication. Then \mathbb{Q}^+ is a ratio semiring and since \mathbb{Q}^+ is A.C. Then by Proposition 4.21, we obtain that $\mathbb{Q}^+[x]$ is M.C. So $\mathbb{Q}^+(x)$ is the quotient ratio semiring of $\mathbb{Q}^+[x]$. Let a be a symbol not representing any element of $\mathbb{Q}^+(x)$. Extend + and • from $\mathbb{Q}^+(x)$ to $\mathbb{Q}^+(x)$ U {a} by a•z = z•a = x•z $\forall z \in \mathbb{Q}^+(x)$, $a^2 = x^2$, a+z = z+a = x+z $\forall z \in \mathbb{Q}^+(x)$ and a+a = x+x. By Theorem 2.51, $\mathbb{Q}^+(x)$ U {a} is a semifield of type III.

Definition 4.27 Let D be a ratio semiring and E \subseteq D. Then E is called a C-set iff

- 1) $x, y \in E \implies xy^{-1} \in E$
- 2) $x \in E$ and $y \in D \implies \frac{x+y}{1+y} \in E$.

Let D be a ratio semiring and E a C-set in D.. Define a relation $^{\wedge}$ on D by $x ^{\wedge} y$ iff $xy^{-1} \epsilon$ E. Clearly $^{\wedge}$ is reflexive. Let x, $y \epsilon$ D be such that $x ^{\wedge} y$. Then $xy^{-1} \epsilon$ E. By condition 1), $(E, \cdot) \leqslant (D, \cdot). \qquad \text{Thus } (xy^{-1}) \stackrel{-1}{\epsilon} E. \text{ Since } yx^{-1} = (xy^{-1}) \stackrel{-1}{\epsilon},$ $yx^{-1} \epsilon E. \text{ Thus } y ^{\wedge} x. \text{ Let } x, y, z \epsilon D \text{ be such that } x ^{\wedge} y \text{ and } y ^{\wedge} z.$ Then $xy^{-1} \epsilon E$ and $yz^{-1} \epsilon E$. So $(xy^{-1})(yz^{-1}) \epsilon E$ because $(E, \cdot) \leqslant (D, \cdot).$ Thus $xz^{-1} \epsilon E$. Hence $x ^{\wedge} z$. So $^{\wedge}$ is an equivalence relation.

Let D/E be the set of all equivalence classes in D. Let α , $\beta \in D/_E$. Define + and • on D/E in the following way:

Choose $x \in \alpha$ and $y \in \beta$ and let $\alpha \cdot \beta = [xy]$ and $\alpha + \beta = [x+y]$. To show + and \cdot are well-defined, let $x' \in \alpha$ and $y' \in \beta$. Then $x' \cdot x^{-1} \in E$ and $y' \cdot y^{-1} \in E$. Since $(E, \cdot) \in (D, \cdot)$, $(x' \cdot x^{-1}) \cdot (y' \cdot y^{-1}) \in E$. Thus $(x' \cdot y') \cdot (xy)^{-1} \in E$, so $x' \cdot y' \sim xy$. Hence $[xy] = [x' \cdot y']$. So \cdot is well-defined. Since $\frac{x' + y'}{x + y'} = \frac{x' \cdot x^{-1} + y' \cdot x^{-1}}{1 + y' \cdot x^{-1}}$ and $x' \cdot x^{-1} \in E$, so $\frac{x' + y'}{x + y'} \in E$.

Thus $x' + y' \wedge x + y'$. Similarly we can show that $x + y' \wedge x + y$. So $x' + y' \wedge x + y$. Hence [x' + y'] = [x+y], so + is well-defined.

Claim that $\mathrm{D/}_{\mathrm{E}}$ is a ratio semiring.

Let $\alpha \in D/_E$. Choose $x \in \alpha$. Then $\alpha \cdot [1] = [x][1] = [x \cdot 1]$ $= [x] = \alpha, \text{ so } [1] \text{ is the multiplicative identity. Let } \beta = [x^{-1}]$ Then $\alpha\beta = [x][x^{-1}] = [xx^{-1}] = [1]$ so every element has a multiplicative inverse. Clearly \cdot is commutative and associative. Thus $(D/_E, \cdot)$ is a commutative group, and clearly $(D/_E, +)$ is a commutative semigroup.

Let α , β , γ ϵ D/ $_E$. Choose x ϵ α , y ϵ β , z ϵ γ . Then $(\alpha+\beta) \cdot \gamma = ([x]+[y])[z] = [x+y][z] = [(x+y)z] = [xz+yz] = [xz]+[yz]$ $= [x][z]+[y][z] = \alpha \cdot \gamma + \beta \cdot \gamma .$

Hence (D/E,+,*) is a ratio semiring. So we have the claim.

Remark 4.28 Let $\mathbb{Q}^+(\mathbf{x})$ be the quotient ratio semiring of $\mathbb{Q}^+[\mathbf{x}]$ given in remark 4.23. Let L be a C-set in $\mathbb{Q}^+(\mathbf{x})$ such that $1+\mathbf{x}$, $\frac{1+\mathbf{x}}{\mathbf{x}}$ \in $\mathbb{Q}^+(\mathbf{x}) \setminus L$ and $\mathbb{Q}^+ \cap L = \{1\}$ and $\mathbf{y} \times \not\in L \ \forall \mathbf{y} \in \mathbb{Q}^+$. Then $\mathbb{Q}^+(\mathbf{x})/_L$ is a ratio semiring. Let $\mathbb{W} = \mathbb{Q}^+(\mathbf{x})/_L$ and $\mathbb{W} = [\mathbf{x}]$. Claim that [1], $\mathbb{W}^2 \not\in \mathbb{I}_{\mathbb{W}}(\mathbb{W})$. Suppose that $[1] \in \mathbb{I}_{\mathbb{W}}(\mathbb{W})$. Then $[1] + \mathbb{W} = \mathbb{W}$, so $[1] + [\mathbb{X}] = [\mathbb{X}]$. Then $[1+\mathbf{x}] = [\mathbb{X}]$, so $\frac{1+\mathbf{x}}{\mathbf{x}} \in L$ which is a contradiction. Thus $[1] \not\in \mathbb{I}_{\mathbb{W}}(\mathbb{W})$. Similarly we can show that $\mathbb{W}^2 \not\in \mathbb{I}_{\mathbb{W}}(\mathbb{W})$.

Choose $S_1 \subseteq I_W(w)$ such that either $(S_1 = \Phi)$ or $(S_1$ is an additive subsemigroup of $I_W(w)$ and $W \setminus S_1$ is an additive ideal of W)

Let a be a symbol not representing any element of W. Extend + and \cdot from W to W U $\{a\}$ by

- (1) $a \cdot y = y \cdot a = w \cdot y \quad \forall y \in W \text{ and } a^2 = w^2$,
- (2) $a+y = y+a = a \quad \forall y \in S_1 \text{ and}$ $a+y = y+a = w+y \quad \forall y \in W \setminus S_1$,
- (3) a+a = w+w.

Then by Theorem 2.51, W U {a} is a semifield of type III. Hence $\mathbb{Q}^+(x)/_L$ U {a} is a semifield of type III.

Theorem 4.29 Let K be a semifield of type III and a ϵ K, d ϵ K\{a} be such that (K\{a}, •) is a group and ax = dx \forall x ϵ K. Let K' the prime semifield of K. Then K'\(\vec{\alpha}\)\ \\ \phi^+\)\ (a) as in Remark 4.8 or K'\(\vec{\alpha}\)\ (a,1) as in Remark 4.7 (1) or (2) or (3) or (4) or K'\(\vec{\alpha}\)\ <d>\alpha\)\ (a) as in Remark 4.9 or Remark 4.10 or Remark 4.11 or Remark 4.12 or K'\(\vec{\alpha}\)\ \\ \phi^+\)\ (d> U\{a} as in Remark 4.13 or Remark 4.14 or Remark 4.15 or Remark 4.16 or K'\(\vec{\alpha}\)\ <a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\><a>\alpha\

<u>Proof</u> Let $D = K \setminus \{a\}$, $S = \{x \in D \mid a+x = a\}$ and 1 the identity of (D, \bullet) .

Case 1 d = 1.

By Theorem 2.41, D is a ratio semiring. Let D_1 be the smallest ratio subsemiring of D. By Proposition 1.18, $D_1\cong\{1\}$ with $1\cdot 1=1$, 1+1=1 or $D_1\cong\mathbb{Q}^+$ with the usual addition and multiplication.

Subcase 1.1 $D_1 \cong \{1\}$ with $1 \cdot 1 = 1$ and 1+1 = 1. Thus 1+1 = 1. By Theorem 2.43, a+a = a or a+a = d+d = 1+1 = 1 and a+1 = 1+a

d+1 = 1+1 = 1. So we have 4 cases to consider. They are (1),(2),(3) and (4) as in Remark 4.7. Thus $K \cong \{a,1\}$ as in Remark 4.7 (1) or (2) or (3) or (4).

Subcase 1.2 $D_1\cong \mathbb{Q}^+$ with the usual addition and multiplication. Then up to isomorphism we can consider $\mathbb{Q}^+\subseteq D$. Claim that $S\cap \mathbb{Q}^+=\Phi$. Suppose not, then $\exists \ x \ \in \mathbb{Q}^+$ and $x \in S$. By Theorem 2.50, $S\subseteq I_D(d)=I_D(1)$. So $x \in I_D(1)$. Then x+1=1, which is a contradiction since x, $1 \in \mathbb{Q}^+$. Thus $S\cap \mathbb{Q}^+=\Phi$. So we have the claim. Thus $\mathbb{Q}^+\subseteq D\setminus S$, so $a+x=d+x=1+x \ \forall x \in \mathbb{Q}^+$ and by Theorem 2.43 (1) and (2), a+a=d+d=1+1. Since $\mathbb{Q}^+\cup \{a\}\subseteq K$, $ax=xa=dx \ \forall x \in \mathbb{Q}^+\cup \{a\}$. By Theorem 2.51, we obtain that $\mathbb{Q}^+\cup \{a\}$ is a semifield as in Remark 4.8. Thus $\mathbb{Q}^+\cup \{a\}$ is a subsemifield of K, so $K'\subseteq \mathbb{Q}^+\cup \{a\}$. By Theorem 2.41, $K'\setminus \{a\}$ is a ratio semiring. Thus $K'\setminus \{a\}$ is a ratio subsemiring of $K\setminus \{a\}$, so $\mathbb{Q}^+\subseteq K'\setminus \{a\}$. Thus $\mathbb{Q}^+\cup \{a\}\subseteq K'\setminus \{a\}$.

Case 2 $d \neq 1$.

Subcase 2.1 $d^2 \epsilon I_D(d)$ and 1 $\epsilon I_D(d)$.

Then $d = d+d^2 = 1 \cdot d+d \cdot d = (1+d)d = d \cdot d = d^2$. Thus d = 1, a contradiction. Thus this case cannot occur.

Subcase 2.2 $d^2 \epsilon I_D(d)$ and 1 $\epsilon D \setminus I_D(d)$.

Then $d = d+d^2 = 1 \cdot d+d \cdot d = (1+d) \cdot d$. Since 1, $d \in D = K \setminus \{a\}$ which is a ratio semiring , $1+d \neq a$. Then $1 = d \cdot d^{-1} = ((1+d) \cdot d) \cdot d^{-1} = (1+d) \cdot (d \cdot d^{-1}) = (1+d) \cdot 1 = 1+d$. Thus 1+d = 1. Claim that $1+d^n = 1$ $\forall n \in \mathbb{Z}^+$. We shall prove this by induction. Clearly it is true for n = 1. Assume it is true for n-1. That is $1+d^{n-1} = 1$. Thus $d = d+d^n$. Then $1 = 1+d = 1+(d+d^n) = (1+d)+d^n = 1+d^n$. Thus $1+d^n = 1$. So we have the claim. Let m, $n \in \mathbb{Z}$ be such that m < n. Then $d^m + d^n = 1$.

 $\begin{array}{l} 1 \cdot d^{m} + \ d^{n-m} \cdot d^{m} = \ (1 + d^{n-m}) \cdot d^{m} = \ 1 \cdot d^{m} = \ d^{m} (\text{since } n - m \in \mathbb{Z}^{+} \text{ and by the} \\ \\ \text{claim}) \quad \text{Thus } d^{m} + \ d^{n} = \ d^{m} \text{ for all } m, \ n \in \mathbb{Z}, \ m < n \dots \dots (1). \quad \text{For } m \in \mathbb{Z}, \\ \\ m \leqslant 0. \quad \text{Claim that } d^{m} \in \mathbb{D} \setminus \mathbb{S}. \quad \text{If } m = 0, \text{ then } d^{0} = 1 \in \mathbb{D} \setminus \mathbb{S} \text{ since} \\ \\ 1 \in \mathbb{D} \setminus \mathbb{I}_{\mathbb{D}}(d) \text{ and } \mathbb{S} \subseteq \mathbb{I}_{\mathbb{D}}(d). \quad \text{If } m < 0, \text{ then } d^{m} = d^{m} + \ d^{0} = d^{m} + 1 \in \mathbb{D} \setminus \mathbb{S} \\ \\ \text{since } \mathbb{D} \setminus \mathbb{S} \text{ is an ideal of } (\mathbb{D}, +). \end{array}$

Thus $d^m \in D \setminus S$ for all $m \in 0$(2)

Subcase 2.2.1 1+1 = 1.

Then $d^n + d^n = d^n \quad \forall \ n \in \mathbb{Z}$. So we have that

 $d^{m} + d^{n} = d^{m}$ for all m, $n \in \mathbb{Z}$, $m \leqslant n$(3)

Let $\langle d \rangle = \{d^n \mid n \in \mathbb{Z}\}$. Clearly $(\langle d \rangle, \bullet) \leqslant (K \setminus \{a\}, \bullet)$ and by (3), we can show that $\langle d \rangle$ is an additive subsemigroup of $K \setminus \{a\}$. Thus $(\langle d \rangle, +, \bullet)$ is a ratio semiring.

Subcase 2.2.1.1 There exists $m \in \mathbb{Z}^+$ such that $d^m \in S$. Choose the smallest $n_0 \in \mathbb{Z}^+$ such that $d^0 \in S$. Then $n_0 > 1$ (since $d^m \in D \setminus S \quad \forall m \in \mathbb{Z}, m \le 0$). So we get that $d^k \in D \setminus S \quad \forall k \le n_0$.

Claim that $d^n \in S \quad \forall n \ge n_0$. Let $n > n_0$, then $d^0 = d^0 + d^n$. Now $a = a + d^0 = a + (d^0 + d^n) = (a + d^0) + d^n = a + d^n$. Thus $a + d^n = a$. Therefore $d^n \in S$. So we have the claim. Let $S_1 = \{d^n \mid n > n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Thus $A \setminus S_1 \subseteq S$ and $A \setminus S_1 \subseteq D \setminus S$. Clearly $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n > n_0\}$. Then $A \setminus S_1 = \{d^n \mid n < n_0\}$. Then $A \setminus S_1 = \{d^n \mid n > n_0\}$. Then $A \setminus A \in A$ is the $A \setminus A \in A$ and $A \cap A \in A$ is

in Remark 4.9

Subcase 2.2.1.2 There does not exist an m $\epsilon \mathbb{Z}^+$ such that $d^m \epsilon S$. Thus $d^n \epsilon D \setminus S \quad \forall \ n \ \epsilon \mathbb{Z}^+$ and from (2) we then get that $d^n \epsilon D \setminus S \quad \forall \ n \ \epsilon \mathbb{Z}$, so $a+d^n = d+d^n \quad \forall \ n \ \epsilon \mathbb{Z}$. By Theorem 2.43, a+a = a or a+a = d+d = d since 1+1 = 1. Since $d \in \mathbb{Z}$ is the semifield given in Remark 4.10. The same as before, we can show that $K' \cong d \in \mathbb{Z}$ as in Remark 4.10

Subcase 2.2.2 $1+1 \neq 1$.

By Proposition 1.18, \mathbb{Q}^+ with the usual addition and multiplication is the smallest ratio subsemiring of $K' \setminus \{a\}$. Then up to isomorphism we can consider $\mathbb{Q}^+ \subseteq K' \setminus \{a\}$.

Subcase 2.2.2.1 $d \in \mathbb{Q}^+$. Claim that $\mathbb{Q}^+ \cap S = \Phi$. If $x \in \mathbb{Q}^+$ and $x \in S$, then $x \in I_D(d)$ (since $S \subseteq I_D(d)$). Thus x+d = d, a contradiction since x, $d \in \mathbb{Q}^+$. So we have the claim. Thus $\mathbb{Q}^+ \subseteq D \setminus S$, so $a+x = x+a = d+x \quad \forall x \in \mathbb{Q}^+$ and $ax = xa = dx \quad \forall x \in \mathbb{Q}^+ \cup \{a\}$. By Theorem 2.43 (1) and (2) we get that a+a = d+d. By Theorem 2.51, we obtain that $\mathbb{Q}^+ \cup \{a\}$ is the semifield given in Remark 4.8. Since $\mathbb{Q}^+ \subseteq K' \setminus \{a\}$, $\mathbb{Q}^+ \cup \{a\} \subseteq K'$. Since K' is the smallest subsemifield of K, $K' \subseteq \mathbb{Q}^+ \cup \{a\}$. Therefore $K' \cong \mathbb{Q}^+ \cup \{a\}$ as in Remark 4.8.

Subcase 2.2.2.2 $d \notin Q^{\dagger}$.

Consider $\mathbb{Q}^+ \cdot <\! d > = \{xd^n \mid x \in \mathbb{Q}^+, n \in \mathbb{Z}\}$. Clearly $(\mathbb{Q}^+ \cdot <\! d >, \cdot)$ is a subgroup of $(K \setminus \{a\}, \cdot)$. Claim that $\mathbb{Q}^+ \cdot <\! d >$ is a ratio subsemiring of $K' \setminus \{a\}$. Since a and $1 \in K'$, $d = a \cdot 1 \in K'$. Since $\mathbb{Q}^+ \subset K' \setminus \{a\}$, which is a group under multiplication , $\mathbb{Q}^+ \cdot <\! d > \subseteq K' \setminus \{a\}$. To show the claim, we need only show that $\mathbb{Q}^+ \cdot <\! d >$ is a subsemigroup of $K' \setminus \{a\}$ under addition. Let $x, y \in \mathbb{Q}^+, m, n \in \mathbb{Z}$. Consider $xd^m + yd^n$. If m = n

then $xd^m + yd^n = xd^m + yd^m = (x+y)d^m \in \mathbb{Q}^+ \cdot < d>$. Now suppose that $m \neq n$. We may assume that m < n.

 $\frac{\text{Case 1}}{\text{m}} \quad \text{(of claim)} \quad \text{x = y.} \quad \text{Then } \text{xd}^m + \text{yd}^n = \text{xd}^m + \text{xd}^n = \text{x(d}^m + \text{d}^n) = \text{xd}^m + \text{xd}^n = \text{xd}^m + \text{xd}^m + \text{xd}^n = \text{xd}^m + \text{xd}^m + \text{xd}^m = \text{xd}^m + \text{xd}^m$

Case 2 (of claim) x > y. Then $\exists \ell \in \mathbb{Q}^+$ such that $x = \ell + y$. Then $xd^m + yd^n = (\ell + y)d^m + yd^n = \ell d^m + yd^m + yd^n = \ell d^m + y(d^m + d^n)$ $= \ell d^m + yd^m = (\ell + y)d^m = xd^m \in \mathbb{Q}^+ \cdot < d > \cdot$

Case 3 (of claim) x < y. Let $z \in K$ and $n \in \mathbb{Z}^+$. Define $nz = nz = \underbrace{z+z+\ldots+z}$ Since $y = \left[\frac{y}{x}\right]x + x$ where $0 \le x < x$, then $xd^m + yd^m = n$ times

$$xd^{m} + (\left[\frac{y}{x}\right]x + y)d^{n} = xd^{m} + \left[\frac{y}{x}\right]xd^{n} + yd^{n} = (xd^{m} + yd^{n}) + \left[\frac{y}{x}\right]xd^{n}$$

$$= xd^{m} + \left[\frac{y}{x}\right]xd^{n} \quad (by \ case \ 2) = xd^{m} + (xd^{n} + xd^{n} + \dots + xd^{n})$$

$$= x(d^{m} + d^{n} + d^{n} + \dots + d^{n}) = xd^{m} \in \Phi^{+} < d >$$

$$= x(d^{m} + d^{n} + d^{n} + \dots + d^{n}) = xd^{m} \in \Phi^{+} < d >$$

So we get that

$$xd^{m} + yd^{n} = \begin{cases} (x+y)d^{m} & \text{if } m = n, \\ xd^{m} & \text{if } m < n, \dots (4) \\ yd^{n} & \text{if } m > n. \end{cases}$$

So we have the claim. Therefore $\Phi^+ \cdot <\! d\! >$ is a ratio subsemiring of $K \ \{a\}$.

Let $x \in \mathbb{Q}^+$. If $xd \in S$, then $xd \in I_D(d)$ since $S \subseteq I_D(d)$. Thus xd+d = d, so x+1 = 1, a contradiction since x, $1 \in \mathbb{Q}^+$. Hence $xd \in D \setminus S$ $\forall x \in \mathbb{Q}^+$. For $n \in \mathbb{Z}$, n < 1 we have that $xd^n = xd^n + xd$. Since $xd \in D \setminus S$ which is an ideal of (D,+), $xd^n + xd \in D \setminus S$.

Thus $xd^n \in D \setminus S \quad \forall x \in \mathbb{Q}^+, \forall n \in \mathbb{Z}, n \leq 1, \dots$ (5)

Subcase 2.2.2.2.1 There exists $n \in \mathbb{Z}^+$ such that $d^n \in S$. Let n_0 be the smallest positive integer such that $d^n \in S$. By (5) we get that $n_0 \ge 2$. Let $S_1 = \{xd^n \mid x \in \mathbb{Q}^+, n \ge n_0\}$. Then $\mathbb{Q}^+ \cdot < d > \setminus S_1 = \{xd^n \mid x \in \mathbb{Q}^+, n < n_0\}$. Claim that $S_1 \subseteq S$ and $\mathbb{Q}^+ \cdot < d > \setminus S_1 \subseteq S$.

To show $S_1 \subseteq S$, let $x \in Q^+$ and $n \in \mathbb{Z}^+$, $n > n_0$.

Case 1 (of claim) $n = n_0$

Subcase 1.1 x = 1. Then $xd^{n_0} = 1 \cdot d^{n_0} = d^{n_0} \in S$.

 $\underbrace{\text{Subcase 1.3}}_{\text{xd}} \quad \text{x > 1. Then } \text{x = [x]+l} \quad \text{where 0 \leqslant l < 1. Then}$ $\underbrace{\text{xd}^{n_0}}_{\text{xd}} = \underbrace{[x]}_{\text{d}^{n_0} + \text{ld}^{n_0}}_{\text{d}^{n_0} + \text{ld}^{n_0}} = \underbrace{(\underbrace{\text{d}^{n_0}_{+ \ldots + \text{d}^{n_0}}}_{\text{times}}) + \text{ld}^{n_0}}_{\text{d}^{n_0}}. \quad \text{By subcase 1.1 and}$

Subcase 1.2, d^{n_0} , $\ell d^{n_0} \in S$. Since $(S,+) \leqslant (I_D(d),+)$, we get that $(d^{n_0} + \ldots + d^{n_0}) + \ell d^{n_0} \in S$. Hence $xd^{n_0} \in S$.

Case 2 (of claim) $n > n_0$. Then $xd^{n_0} = xd^{n_0} + xd^{n_0}$ (by (4)). By case 1, $xd^{n_0} \in S$. Then $a = a + xd^{n_0} = a + (xd^{n_0} + xd^{n_0}) = (a + xd^{n_0}) + xd^{n_0}$ = $a + xd^{n_0}$. Thus $a + xd^{n_0} = a$. Hence $xd^{n_0} \in S$.

Therefore we get that $S_1 \subseteq S$. To show $Q^+ \cdot d > S_1 \subseteq D \setminus S$, let $x \in Q^+$, $n < n_0$. If $n \le 1$, then by (5) we get that $xd^n \in D \setminus S$. Suppose that $1 < n < n_0$.

Case 1 (of claim) x = 1. Then $xd^n = 1 \cdot d^n = d^n$. Since n_0 is the smallest positive integer such that $d^n \in S$, $d^n \in D \setminus S$.

Case 2 (of claim) x > 1. Then $\exists \ell \in \mathbb{Q}^+$ such that $x = 1 + \ell$. Then $xd^n = (1+\ell)d^n = 1 \cdot d^n + \ell d^n = d^n + \ell d^n$. By case 1, $d^n \in \mathbb{D} \setminus S$. Thus $d^n + \ell d^n \in \mathbb{D} \setminus S$ since $\mathbb{D} \setminus S$ is an ideal of $(\mathbb{D}, +)$. Hence $xd^n \in \mathbb{D} \setminus S$

Case 3 (of claim) x < 1. Then $\exists k \in \mathbb{Z}^+$ such that kx > 1. By case 2, $(kx)d^n \in D \setminus S$. Since $(kx)d^n = (x+\ldots+x)d^n = xd^n+\ldots+xd^n$, we get that k times

if $xd^n \in S$, then $(\underbrace{xd^n + \ldots + xd^n}) \in S$. Thus $(kx)d^n \in S$, which is a

contradiction. Hence $xd^n \in D \setminus S$. So we have the claim i.e. $S_1 \subseteq S$ and $\mathbb{Q}^{\frac{1}{4}} < d > \setminus S_1 \subseteq D \setminus S$. Thus $a+x = x+a = a \quad \forall x \in S_1 \text{ and } a+x = x+a = a$ d+x $\forall x \in \mathbb{Q}^{\frac{1}{4}} < d > \setminus S_1$. By Theorem 2.43 (1) and (2), we get that a+a = d+d. Since $\mathbb{Q}^{\frac{1}{4}} < d > \cup \{a\} \subseteq K$, $ax = xa = dx \quad \forall x \in \mathbb{Q}^{\frac{1}{4}} < d > \cup \{a\}$. Clearly $(S_1,+) \leqslant (I_1,d)$, + and $\mathbb{Q}^{\frac{1}{4}} < d > \setminus S_1$ is an ideal of $(\mathbb{Q}^{\frac{1}{4}} < d > +)$. $\mathbb{Q}^{\frac{1}{4}} < d > \cup \{a\}$ is the semifield given in Remark 4.13.

Thus $K' \subseteq \mathbb{Q}^{\dagger} < d > U \{a\}$. Since a, $1 \in K'$, we get that $d = a \cdot 1 \in K'$. Since $\mathbb{Q}^{\dagger} \subseteq K' \setminus \{a\}$, $\mathbb{Q}^{\dagger} \cdot < d > \mathbb{Q} \subseteq K \setminus \{a\}$ because $(K' \setminus \{a\}, \cdot)$ is a group. Hence $\mathbb{Q}^{\dagger} \cdot < d > U \{a\} \subseteq K'$. Thus $K' \cong \mathbb{Q}^{\dagger} \cdot < d > U \{a\}$ as in Remark 4.13

 $\underline{\text{Subcase 2.2.2.2.2}} \quad \text{There does not exist an ne \mathbb{Z}^+}$ such that $d^n \in S$. Then $d^n \in D \setminus S \quad \forall \ n \in \mathbb{Z}^+$. By (2), we have that $d^m \in D \setminus S \quad \forall \ m \in \mathbb{Z}$, $m \leqslant 0$. Hence $d^n \in D \setminus S \quad \forall \ n \in \mathbb{Z}$. Claim that $\mathbb{Q}^+ \in \mathbb{Z} = \mathbb{Z} = \mathbb{Z}$. Let $x \in \mathbb{Q}^+$ and $n \in \mathbb{Z}$.

Case 1 (of claim) $n \le 1$. Then by (5), $xd^n \in D \setminus S$.

Case 2 (of claim) n > 1.

Subcase 2.1 (of claim) x = 1. Then $xd^n = 1d^n = d^n \in D \setminus S$.

Subcase 2.2 (of claim) x > 1. Then $\exists \ell \in Q^+$ such that $x = 1 + \ell$. Thus $xd^n = d^n + \ell d^n$. Since $d^n \in D \setminus S$ which is an ideal of (D,+), $d^n + \ell d^n \in D \setminus S$. Hence $xd^n \in D \setminus S$.

Subcase 2.3 (of claim) x < 1. Then $\exists k \in \mathbb{Z}^+$ such that kx > 1. By Subcase 2.2, $(kx)d^n \in D \setminus S$. Since $(kx)d^n = \underbrace{(x+\ldots+x)d^n}_{k \text{ times}}$

 $xd^n+...+xd^n$, we get that if $xd^n \in S$, then $(kx)d^n \in S$ (since $(S,+) \leq k$ times

 $(I_D(d),+)$). Hence $(kx)d^n \epsilon$ S, a contradiction. Thus $xd^n \epsilon$ D\S.

So we have the claim, i.e. $\mathbb{Q}^+ < d > \subseteq D \setminus S$. Thus a+x = x+a = d+x $\forall x \in \mathbb{Q}^{\frac{1}{4}} < d >$ and, by Theorem 2.43 (1) and (2), we get that a+a = d+d. Since $\mathbb{Q}^{\frac{1}{4}} < d > \subseteq K$, ax = xa = dx $\forall x \in \mathbb{Q}^{\frac{1}{4}} < d > U$ {a}. By Theorem 2.51, $\mathbb{Q}^{\frac{1}{4}} < d > U$ {a} is the semifield given in Remark 4.14. Using the same proof as before, we obtain that $K' \supseteq \mathbb{Q}^{\frac{1}{4}} < d > U$ {a}.

Subcase 2.3 $d^2 \epsilon D \setminus I_D(d)$ and $1 \epsilon I_D(d)$. Then 1+d=d. By induction, we can show that $1+d^k=d^k \ \forall \ k \ \epsilon \mathbb{Z}^+$. Let m, $n \epsilon \mathbb{Z}$ be such that m < n. Then $d^m+d^n=1 \cdot d^m+d^{n-m}$ $d^m=(1+d^{n-m})d^m=d^{n-m}$ $d^m=d^n$. Thus

$$a^m + a^n = a^n \quad \forall m, n \in \mathbb{Z}, m < n.$$
 (6)

For $m \in \mathbb{Z}^+$, $m \ge 2$, claim that $d^m \in D \setminus S$. Since $d^2 \notin I_D(d)$ and $S \subseteq I_D(d)$, $d^2 \in D \setminus S$. Assume that $m \ge 2$, then $d^m = d^2 + d^m$. Thus $a+d^m = a+(d^2+d^m) = (a+d^2)+d^m = (d+d^2)+d^m = d^2+d^m = d^m$ since $d^2 \in D \setminus S$ and by (6). Hence $a+d^m = d^m$. Thus $a+d^m \ne a$. Therefore $d^m \in D \setminus S$. So we have the claim,

Subcase 2.3.1 1+1=1. Thus $d^n + d^n = d^n \ \forall \ n \in \mathbb{Z}$. So we have that

 $d^{m} + d^{n} = d^{n} \forall m, n \in \mathbb{Z}, m \leqslant n.$

Let $\langle d \rangle = \{d^m \mid n \in \mathbb{Z}\}$. Clearly $(\langle d \rangle, \bullet) \leqslant (K \setminus \{a\}, \bullet)$ and by (8), we can easily show that $\langle d \rangle$ is an additive subsemigroup of $K \setminus \{a\}$. Hence $\langle d \rangle$ is a ratio subsemiring of $K \setminus \{a\}$.

Subcase 2.3.1.1 There exists $n \in \mathbb{Z}$ such that $d^n \in S$. By (7), we get that $n \in 1$. Let n_0 be the largest integer such that $d^n \in S$. Thus $n_0 \in 1$. Let $S_1 = \{d^n \mid n \in n_0\}$. Then $d^n \in S_1 = \{d^n \mid n > n_0\}$. Claim that $S_1 \subseteq S$ and $d^n \in S_1 \subseteq S_1 = \{d^n \mid n > n_0\}$. Claim that $S_1 \subseteq S$ and $d^n \in S_1 \subseteq S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 \subseteq S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. Thus $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. If $d^n \in S_1 = \{d^n \mid n > n_0\}$. By the chair, we get that $d^n \in S_1 = \{d^n \mid n > n_0\}$. By the claim, we get that $d^n \in S_1 = \{d^n \mid n > n_0\}$. By the claim, we get that $d^n \in S_1 = \{d^n \mid n > n_0\}$. By Theorem 2.51, $d^n \in S_1 = \{d^n \mid n > n_0\}$. By Theorem 2.51, $d^n \in S_1 = \{d^n \mid n > n_0\}$. By Theorem 2.51, $d^n \in S_1 = \{d^n \mid n > n_0\}$.

Subcase 2.3.1.2 There does not exist an n $\in \mathbb{Z}$ such that $d^n \in S$. Thus $d^n \in D \setminus S \quad \forall n \in \mathbb{Z}$, so $a+d^n = d+d^n \quad \forall n \in \mathbb{Z}$. By Theorem 2.43, a+a = a or a+a = d+d = d (since 1+1 = 1). Since $\langle d \rangle \cup \{a\} \subseteq K$, $ax = dx \quad \forall x \in \langle d \rangle \cup \{a\}$. By Theorem 2.51, $\langle d \rangle \cup \{a\}$ is the semifield given in Remark 4.12 and using the same proof as before, we obtain that $K' \cong \langle d \rangle \cup \{a\}$.

Subcase 2.3.2 $1+1 \neq 1$.

By Theorem 2.41, $K'\setminus\{a\}$ is a ratio semiring. Since $1+1\neq 1$, we get that \mathbb{Q}^+ with the usual + and \cdot is the smallest ratio subsemiring of $K'\setminus\{a\}$ (Proposition 1.18). Then, up to isomorphism, we can consider $\mathbb{Q}^+\subseteq K'\setminus\{a\}$.

Subcase 2.3.2.1 d ϵQ^{+} .

Claim that $Q^{\dagger} \cap S = \Phi$. Suppose that $\exists x \in Q^{\dagger}$ and $x \in S$. Since $S \subseteq I_D(d)$, $x \in I_D(d)$. Thus x+d=d which is a contradiction since x, $d \in Q^{\dagger}$. So we have the claim. Thus $Q^{\dagger} \subseteq D \setminus S$. Hence a+x=d+x $\forall x \in Q^{\dagger}$. By Theorem 2.43 (1) and (2), we get that a+a=d+d. Since $Q^{\dagger} \cup \{a\} \subseteq K$, $ax=dx \ \forall x \in Q^{\dagger} \cup \{a\}$. By Theorem 2.51, $Q^{\dagger} \cup \{a\}$ is the semifield given in Remark 4.8 and using the same proof as before we can show that $K' \supseteq Q^{\dagger} \cup \{a\}$.

Subcase 2.3.2.2 $d \notin \Phi^+$.

Consider Q^{\ddagger} <d> $> = \{xd^n | x \in Q^+, n \in \mathbb{Z}\}$. Clearly $(Q^{\ddagger}, \cdot) < (K \setminus \{a\}, \cdot)$ Claim that Q^{\ddagger} <d>> is a ratio subsemiring of $K \setminus \{a\}$. Since $a, 1 \in K$, $d = a \cdot 1 \in K'$. So $d \in K' \setminus \{a\}$. Since $Q^{\ddagger} \subseteq K' \setminus \{a\}$ which is a group under multiplication, $Q^{\ddagger} < d > \subseteq K' \setminus \{a\}$. To show the claim we need only show that $Q^{\ddagger} < d > \subseteq K' \setminus \{a\}$. To show the claim we need only $q \in Q^{\ddagger}$, $q \in Q$

Case 2 (of claim) x < y. Then $\exists l \in Q^+$ such that y = x+l. Then $xd^m + yd^n = xd^m + (x+l)d^n = xd^m + xd^n + ld^n = x(d^m + d^n) + ld^n = xd^n + ld^n = (x+l)d^n = yd^n$.

Case 3 (of claim)
$$x > y$$
. Let $z \in K$ and $n \in \mathbb{Z}^+$. Define $nz = z + \dots$
 $\dots + z$ (n times). Since $x = \left[\frac{x}{y}\right] y + \gamma$ where $0 \leqslant \gamma < y$, $xd^m + yd^n$

$$= \left(\left[\frac{x}{y}\right] y + \gamma\right) d^m + yd^n = \left[\frac{x}{y}\right] y \ d^m + \gamma d^m + yd^n = \left[\frac{x}{y}\right] y \ d^m + (\gamma d^m + yd^n)$$

$$= \left[\frac{x}{y}\right] y \ d^m + yd^n \quad \text{(by case 2)} = (y + y + \dots + y)d^m + yd^n = yd^m + yd^m + \dots + yd^m$$

$$= \left[\frac{x}{y}\right] \text{ times}$$

$$+ yd^n = y(d^m + \dots + d^m + d^n) = yd^n \quad \text{(by (6))}$$
So we get that

So we get that

$$xd^{m} + yd^{n} = \begin{cases} (x+y)d^{m} & \text{if } m = n, \\ xd^{m} & \text{if } m > n, \\ yd^{n} & \text{if } n > m. \end{cases}$$
 (9)

Thus Q^{\dagger} <d> is an additive subsemigroup of K \ {a}. Therefore Q^{\dagger} <d> is a ratio subsemiring of K \ {a}.

Claim that $xd^m \in D \setminus S \quad \forall x \in \mathbb{Q}^+, \ \forall m \in \mathbb{Z}^+, \ m \ge 2$. Let $x \in \mathbb{Q}^+$, $m \in \mathbb{Z}^+$, $m \ge 2$.

Case 1 (of claim) x = 1. Then $xd^m = 1 \cdot d^m = d^m \in D \setminus S$ (by (7)). Case 2 (of Claim) x > 1. Then $\exists \ell \in \mathbb{Q}^+$ such that $x = 1 + \ell$. Then $xd^{m} = d^{m} + \ell d^{m}$.

Since $d^m \in D \setminus S$ which is an ideal of (D,+), $d^m + \ell d^m \in D \setminus S$. Thus xd ED\S.

Case 3 (of claim) x < 1. Let $x \in \mathbb{Z}^+$ be such that nx > 1. By case 2, $(nx)d^m \in D \setminus S$. Since $(nx)d^m = (\underbrace{x+x+...+x})d^m = \underbrace{xd^m + xd^m + ...+ x}_n d^m$,

we get that if $xd^m \in S$, then $(nx)d^m \in S$ because $(S,+) \leqslant (I_D(d),+)$, a contradiction. Thus xd EDNS. So we have the claim, i.e.,

$$xd^{m} \in D \setminus S \quad \forall x \in Q^{+} \forall m \in \mathbb{Z}^{+}, m \geqslant 2.$$
 (10)

Case 1 (of claim) $n = n_0$.

Subcase 1.1 x = 1. Then $xd^n = 1 \cdot d^n = d^n_0 \in S$.

Subcase 1.2 x < 1. Then $\exists \ell \in \mathbb{Q}^+$ such that $1 = x + \ell$. Then $d^{n_0} = 1$ $d^{n_0} = (x + \ell)d^{n_0} = xd^{n_0} + \ell d^{n_0}$. Thus $d^{n_0} = xd^{n_0} + \ell d^{n_0}$. Since $d^{n_0} \in S$, $d^{n_0} = a + (xd^{n_0} + \ell d^{n_0}) = (a + xd^{n_0}) + \ell d^{n_0}$. If $a + xd^{n_0} \neq a$, then $a + xd^{n_0} = a + xd^{n_0}$. Thus $a = (d + xd^{n_0}) + \ell d^{n_0}$, which is a contradiction because $d^{n_0} = a$, so $d^{n_0} \in S$.

Subcase 1.3 x > 1. Then x = [x]+l where $0 \le l < 1$. If l = 0, then x = [x]. $xd^n = [x]d^{n_0} = d^{n_0} + \dots + d^{n_0}$. By Subcase 1.1, $xd^n \in S$. Thus $xd^n \in S$ since $xd^n \in S$. Thus $xd^n \in S$ since $xd^n \in S$. If 0 < l < 1, then x = [x]+l. Thus $xd^n = xd^n = [x]d^{n_0} + ld^{n_0}$. By Subcase 1.2, $ld^n \in S$. If l = 0, then by Subcase 1.3, $ld^n \in S$. Hence $ld^n \in S$ since $ld^n \in S$ since $ld^n \in S$ since $ld^n \in S$. Therefore $ld^n \in S$. Case 2 (of claim) $ld^n \in S$ since $ld^n \in S$ since $ld^n \in S$. Then $ld^n \in S$ since $ld^n \in S$ since

then by (10), $xd^{n}\epsilon$ D\S. Suppose that $n_{0} < n < 2$. We want to show

that xdn E D \ S

Case 1 (of claim) x = 1. Then $xd^n = 1 \cdot d^n = d^n$. By the choice of n_0 we get that $d^n \in D \setminus S$. Thus $xd^n \in D \setminus S$.

Case 2 (of claim) x > 1. Then $\exists \ell \in \mathbb{Q}^+$ such that $x = 1+\ell$. Then $xd^n = (1+\ell)d^n = 1$ $d^n + \ell d^n = d^n + \ell d^n$. By case 1, $d^n \in D \setminus S$. Since $D \setminus S$ is an ideal of (D,+), $d^n + \ell d^n \in D \setminus S$. Thus $xd^n \in D \setminus S$.

Case 3 (of claim) x < 1. Then $\exists m \in \mathbb{Z}^+$ such that mx > 1. By case 2, $(mx)d^n \in D \setminus S$. Since $(mx)d^n = (\underbrace{x+x+\ldots+x}_{m \text{ times}})d^n = \underbrace{xd^n+\ldots+xd^n}_{m \text{ times}}$, we get

that if $xd^n \in S$, then $(mx)d^n \in S$ because $(S,+) \in (I_D < d>,+)$, a contradiction. Thus $xd^n \in D \setminus S$. So we have the claim, i.e. $S_1 \subseteq S$ and $Q^{\frac{1}{2}} < d > \setminus S_1$ $\subseteq D \setminus S$. Thus $a+x = a \quad \forall x \in S_1$ and $a+x = d+x \quad \forall x \in Q^{\frac{1}{2}} < d > \setminus S_1$. By Theorem 2.43 (1) and (2) we get that a+a = d+d. Since $Q^{\frac{1}{2}} < d > \cup \{a\} \subseteq K$, $ax = dx \quad \forall x \in Q^{\frac{1}{2}} < d > \cup \{a\}$. By Theorem 2.51, $Q^{\frac{1}{2}} < d > \cup \{a\}$ is the semifield given in Remark 4.15. Using the same proof as before we can show that $K' \cong Q^{\frac{1}{2}} < d > \cup \{a\}$.

Case 1 (of claim) $n \ge 2$. Then by (10), $xd^n \in D \setminus S$.

Case 2 (of Claim) n < 2.

Subcase 2.1 x = 1. Then $xd^n = 1 \cdot d^n = d^n \in D \setminus S$.

Subcase 2.2 x > 1. Then $\exists \ell \in \mathbb{Q}^+$ such that $x = 1 + \ell$. Then $xd^n = d^n + \ell d^n \in \mathbb{D} \setminus S$ since $d^n \in \mathbb{D} \setminus S$ which is an ideal of (\mathbb{D}_{+}) . Thus $xd^n \in \mathbb{D} \setminus S$.

Subcase 2.3 x < 1. Then $\exists m \in \mathbb{Z}^+$ such that mx > 1. By

subcase 2.2, $(mx)d^n \in D \setminus S$. Since $(mx)d^n = (x+\ldots+x)d^n = xd^n+\ldots+xd^n$, m times we get that if $xd^n \in S$ then $(mx)d^n \in S$, which is a contradiction. Hence $xd^n \in D \setminus S$. So we have the claim, i.e. $\mathbb{Q}^+ < d > \subseteq D \setminus S$. Thus $a+x = d+x \quad \forall x \in \mathbb{Q}^+ < d >$. By Theorem 2.43 (1) and (2), a+a = d+d. Since $\mathbb{Q}^+ < c > U \setminus \{a\} \subseteq K$, $ax = dx \quad \forall x \in \mathbb{Q}^+ < d > U \setminus \{a\}$. By Theorem 2.51, $\mathbb{Q}^+ < d > U \setminus \{a\}$ is the semifield given in Remark 4.16. Using the same proof as before, we obtain that $K \cong \mathbb{Q}^+ < d > U \setminus \{a\}$.

Subcase 2.4 $d^2 \in D \setminus I_D(d)$ and 1 $\in D \setminus I_D(d)$. Subcase 2.4.1 1+1 = 1.

Next consider $1+d^{-1}$. Since $1+d^{-1}=(1+1)+d^{-1}=1+(1+d^{-1})$, $1+(1+d^{-1})=1$. Let $y=(1+d^{-1})$, then $y=(1+d^{-1})=(d^{-1}(1+d))^{-1}=d(1+d)^{-1}=dx^{-1}$. Thus $y=dx^{-1}$ and 1+y=1. By induction, we can show that $1+y^n=1$ $\forall n \in \mathbb{Z}^+$. For m, $n \in \mathbb{Z}$, m < n, $y^m+y^n=y^m(1+y^{n-m})=y^m=y^m$. Thus

for m, n $\in \mathbb{Z}$, $y^m + y^n = y^r$ where $r = \min \{m,n\}$(12)

Claim that $1 + x^r y^s = x^r$ for all r, $s \in \mathbb{Z}^+$(13)

We shall prove this by induction on s. Let $r \in \mathbb{Z}^+$. First,

we shall show that (13) holds for s = 1.

If r = 1, then $1+x^ry = 1+xy = 1+d = x = x^r$ since d = xy. If r > 1, then $1+x^ry = 1+x^r(dx^{-1}) = 1+dx^{r-1} = 1+d(1+d)^{r-1} = 1+d(1+d)^{r-1}$ $1+d(1+d+\ldots+d^{r-1}) = 1+d+d^2+\ldots+d^r = (1+d)^r = x^r \text{ since } (1+d)^n = 1+d+d^2+\ldots+d^n \text{ for all } n \in \mathbb{Z}^+ \text{ (because } z+z=z \quad \forall \ z \in D). \text{ Hence } 1+x^ry=x^r. \text{ So } (13) \text{ holds for } s=1.$

Now assume (13) is true for s = n. Thus $1+x^ry^n = x^r$. Since 1+y=1, $1+x^ry^{n+1}=(1+y)+x^ry^{n+1}=1+(y+x^ry^{n+1})=1+(1+x^ry^n)y$ = $1+x^ry=x^r$ (since (13) holds for s=1 and s=n). Hence $1+x^ry^{n+1}=x^r$. So we have the claim.

Let $\langle x,y \rangle = \{x^m y^n \mid m,n \in \mathbb{Z}\}$. Claim that $\langle x,y \rangle$ is a ratio semiring containing d. Since $xy = x(dx^{-1}) = d$, $d \in \langle x,y \rangle$. Clearly $(\langle x,y \rangle, \cdot)$ is a commutative group. To show the claim we need only show that $\langle x,y \rangle$ is closed under addition.

Let $m,n,k,l \in \mathbb{Z}$. Consider $x^m y^n + x^k y^l$.

$$\underline{\text{Case 1}} \quad (\text{of claim}) \quad \text{m = k. Then } x^m y^n + x^k y^l = x^m (y^n + y^l) = \begin{cases} x^m y^n \text{ if } n \leqslant l \text{,} \\ \\ x^m y^l \text{ if } n > l \end{cases}$$

Case 2 (of claim) m < k.

Subcase (2.1) $n \ge \ell$. Then $x^k = x^m + x^k$ and $y^n + y^\ell = y^\ell$ (by (11) and (12)). So $x^m y^n + x^k y^\ell = x^m y^n + (x^m + x^k) y^\ell = x^m y^n + x^m y^\ell + x^k y^\ell$. $= x^m (y^n + y^\ell) + x^k y^\ell = x^m y^\ell + x^k y^\ell = (x^m + x^k) y^\ell = x^k y^\ell$. Thus $x^m y^n + x^k y^\ell = x^k y^\ell$.

Subcase (2.2) $n < \ell$. Then $x^m y^n + x^k y^\ell = x^m y^n (1 + x^{k-m} y^{\ell-n})$ = $x^m y^n x^{k-m} = x^k y^n (by (13))$. Thus $x^m y^n + x^k y^\ell = x^k y^n$.

Case 3 (of claim) m > k.

Subcase (3.1)
$$n \le \ell$$
. Then $y^n = y^n + y^\ell$ and $x^m = x^m + x^k$.
Now $x^m y^n + x^k y^\ell = (x^m + x^k) y^n + x^k y^\ell = x^m y^n + x^k y^n + x^k y^\ell$

 $= x^{m}y^{n} + x^{k}(y^{n} + y^{\ell}) = x^{m}y^{n} + x^{k}y^{n} = (x^{m} + x^{k})y^{n} = x^{m}y^{n}. \text{ Thus } x^{m}y^{n} + x^{k}y^{\ell} = x^{m}y^{n}.$

 $\frac{\text{Subcase (3.2)}}{\text{subcase (3.2)}} \quad n > \ell. \quad \text{Then } x^m y^n + x^k y^\ell = x^k y^\ell \; (1 + x^{m-k} y^{n-\ell})$ $= x^k y^\ell x^{m-k} = x^m y^\ell \; (\text{by (13)}). \; \text{Thus } x^m y^n + x^k y^\ell = x^m y^\ell \; .$

Now consider $I_{\langle x,y \rangle}(d) \cap S$.

Subcase 2.4.1.1 $I_{\langle x,y\rangle}(d) \cap S = \overline{\Phi}$. Then $I_{\langle x,y\rangle}(d) \subseteq D \setminus S$. (16)

By (15) and (16), $\langle x,y \rangle \subseteq D \setminus S$. Thus $a+z=d+z \ \forall z \in \langle x,y \rangle$ and by Theorem 2.43,a+a=a or a+a=a+d=d. Since $\langle x,y \rangle \cup \{a\} \subseteq K$, $a \cdot z=dz$ for all $z \in \langle x,y \rangle \cup \{a\}$. By Theorem 2.51, we obtain that $\langle x,y \rangle \cup \{a\}$ is the semifield of type III given in Remark 4.18. Let $A=\{\sum_{i<\infty} n_i d^{-i} \mid n_i, m_i \in \mathbb{Z}^+\}$, by Theorem 4.6, $B \cup \{a\} \cong K'$ where B is the quotient ratio semiring of A. Since $d \in \langle x,y \rangle$, $A \subseteq \langle x,y \rangle$. Thus $B \subseteq \langle x,y \rangle$. And since x=1+d, $y=dx^{-1}$ so $x,y \in B$. Hence $\langle x,y \rangle \subseteq B$. Therefore $\langle x,y \rangle \cong B$. So we get that $K' \cong \langle x,y \rangle \cup \{a\}$ as in Remark 4.18.

Subcase 2.4.1.2 $I_{\langle x,y\rangle}(d) \cap S \neq \Phi$.

Let $x^my^n \in I_{\langle x,y \rangle}(d) \cap S$, then $x^my^n \in S$ where $m \leqslant 1$ and $n \geqslant 1$. Choose m_1 to be the largest integer such that $x^my^n \in S$ for some $n \geqslant 1$ and choose n_1 to be the smallest integer such that $x^my^n \in S$. Then $m_1 \leqslant 1 \leqslant n_1$.

For $m \le m_1$ and $n \ge n_1$, $x^m y^n = x^m y^n + x^m y^n$ (by (14)). Then $a = a + x^m y^n = a + (x^m y^n + x^m y^n) = (a + x^m y^n) + x^m y^n = a + x^m y^n.$

Thus $\{x^m y^n \mid m \leqslant m_1 \text{ and } n_1 \leqslant n\} \subseteq S$. (17)

By the choice of m_1 , we get that

 $\{x^m y^n \mid m_1 < m \leqslant 1 \text{ and } 1 \leqslant n\} \subseteq D \setminus S.$ (18)

Choose n_2 to be the smallest integer such that $x^m y^{n_2} \in S$ for some $m \leqslant 1$ and choose m_2 to be the largest integer such that $x^m y^{n_2} \in S$. Claim that $m_1 = m_2$ and $n_1 = n_2$. By the choice of m_1, n_1, n_2, m_2, m_2 , we obtain that $m_2 \leqslant m_1 \leqslant 1$ and $1 \leqslant n_2 \leqslant n_1$. Then $x^m y^{n_2} = x^m y^{n_2} + x^m y^{n_1}$. Since $(S,+) \leqslant (I_D(d),+)$, $x^m y^{n_2} + x^m y^{n_1} = S$. Hence $x^m y^{n_2} \in S$. By the choice of n_1 , we get that $n_1 \leqslant n_2$. Thus $n_1 = n_2$. And by the choice of m_2 , we get that $m_1 \leqslant m_2$. Thus $m_1 = m_2$. So we have the claim. Thus we get that n_1 is the smallest integer such that $x^m x^{n_1} \in S$ for some $m \leqslant 1$. So we get that

 $\{x^m y^n \mid m \leqslant 1 \text{ and } 1 \leqslant n < n_1\} \subseteq D \setminus S.$ (19)

From (17), (18) and (19), we get that

 $I_{\langle x,y\rangle}(d) \cap S = \{x^m y^n \mid m \leqslant m_1 \text{ and } n_1 \leqslant n\},$

Let $S_1 = I_{\langle x,y \rangle}(d) \cap S$. Claim that $\langle x,y \rangle \cap S = S_1$. Let $M = \langle x,y \rangle$. Since $M = (M \setminus I_M(d)) \cup I_M(d)$, $\langle x,y \rangle \cap S = M \cap S =$

 $= ((M \setminus I_{M}(d)) \cup I_{M}(d)) \cap S = ((M \setminus I_{M}(d)) \cap S) \cup (I_{M}(d) \cap S) = 0$ $\Phi \cup (I_{M}(d) \cap S) \quad (by (15)) = I_{\langle x,y \rangle}(d) \cap S = S_{1}. \quad So \text{ we have the claim i.e. } \langle x,y \rangle \cap S = \{x^{m}y^{n} | m \leqslant m_{1} \text{ and } n_{1} \leqslant n\} = S_{1}. \quad Then \langle x,y \rangle \setminus S_{1} = \{x^{m}y^{n} | m \rangle m_{1} \text{ or } n < n_{1}\}. \quad We have already shown in Remark 4.17 that <math display="block">\langle x,y \rangle \setminus S_{1} \text{ is an ideal of } (\langle x,y \rangle,+). \quad Since \langle x,y \rangle \setminus S_{1} = \langle x,y \rangle \cap S_{1}^{C} = \langle x,y \rangle \cap (\langle x,y \rangle^{C} \cup S^{C}) = (\langle x,y \rangle \cap \langle x,y \rangle^{C}) \cup (\langle x,y \rangle \cap S^{C}) = \langle x,y \rangle \setminus S \subseteq D \setminus S, \quad \langle x,y \rangle \setminus S_{1} \subseteq D \setminus S. \quad So \text{ we have that}$

$S_1 \subseteq S$ and $\langle x, y \rangle \setminus S_1 \subseteq D \setminus S$.

Then a+z=a \forall $z \in S_1$ and a+z=d+z \forall $z \in \langle x,y \rangle \backslash S_1$ and by Theorem 2.43, a+a=a or a+a=d+d=d. Since $\langle x,y \rangle \cup \{a\} \subseteq K$, $a \cdot z=d \cdot z$ $z \in \langle x,y \rangle \cup \{a\}$. Then by Theorem 2.51 we obtain that $\langle x,y \rangle \cup \{a\}$ is the semifield given in Remark 4.17 and using the same proof as before, we can show that $K \cong \langle x,y \rangle \cup \{a\}$.

Subcase 2.4.2 $1+1 \neq 1$.

By Theorem 2.41, K'\{a} is a ratio semiring. Since 1+1 \neq 1, by Proposition 1.18, we get that \mathbb{Q}^+ with the usual addition and multiplication is the smallest ratio subsemiring of K'\{a}. Then, up to isomorphism, we can consider \mathbb{Q}^+ \subset K'\{a}.

Subcase 2.4.2.1 $d \in \mathbb{Q}^+$.

Claim that $\mathbb{Q}^+ \subseteq \mathbb{D} \setminus S$. Suppose that $\exists x \in \mathbb{Q}^+$ and $x \in S$. Then $x \in I_D(d)$ (since $S \subseteq I_D(d)$), so x+d=d which is a contradiction since x, $d \in \mathbb{Q}^+$. So we have the claim. Then a+x=d+x $\forall x \in \mathbb{Q}^+$ and by Theorem 2.43 (1) and (2), a+a=d+d. Since $\mathbb{Q}^+ \cup \{a\} \subseteq K$, so ax=dx $\forall x \in \mathbb{Q}^+ \cup \{a\}$. By Theorem 2.51, we obtain that $\mathbb{Q}^+ \cup \{a\}$ is the semifield given in Remark 4.8. Thus $\mathbb{Q}^+ \cup \{a\}$ is a subsemifield of K, so $K' \subseteq \mathbb{Q}^+ \cup \{a\}$. Since $\mathbb{Q}^+ \subseteq K' \setminus \{a\}$, $\mathbb{Q}^+ \cup \{a\} \subseteq K'$. Thus

 $K' \cong \mathbb{Q}^+ \cup \{a\}$ as in Remark 4.8.

Subcase 2.4.2.2 $d \notin Q^+$.

Define $\psi : Q^+(x) \to K \setminus \{a\}$ as follows :

Let
$$\frac{F(x)}{G(x)} \in Q^+(x)$$
, define $\psi(\frac{F(x)}{G(x)}) = \frac{F(d)}{G(d)}$. We must

show that ψ is well-defined. Suppose that $\frac{F'(x)}{G'(x)} = \frac{F(x)}{G(x)}$. We must show that $\frac{F'(d)}{G'(d)} = \frac{F(d)}{G(d)}$. Then F'(x) G(x) = G'(x) F(x), so $F'(d) \ G(d) = G'(d) \ F(d) \ \text{and hence} \ \frac{F'(d)}{G'(d)} = \frac{F(d)}{G(d)} \ . \ \text{So } \psi \text{ is well-defined.}$ Now we shall show that ψ is a homomorphism.

$$\text{Let } \frac{F(x)}{G(x)} \text{ , } \frac{F'(x)}{G'(x)} \text{ } \epsilon \text{ } \varrho^+(x) \text{ . Then } \phi \text{ } (\frac{F(x)}{G(x)} \cdot \frac{F'(x)}{G'(x)}) \text{ } =$$

$$\phi \text{ } (\frac{F(x)F'(x)}{G(x)G'(x)}) = \frac{F(d)F'(d)}{G(d)G'(d)} = \frac{F(d)}{G(d)} \cdot \frac{F'(d)}{G'(d)} = \phi \text{ } (\frac{F(x)}{G(x)}) \text{ . } \phi \text{ } (\frac{F'(x)}{G'(x)})$$
 and
$$\phi \text{ } (\frac{F(x)}{G(x)} + \frac{F'(x)}{G'(x)}) = \phi \text{ } (\frac{F(x)G'(x) + G(x)F'(x)}{G(x)G'(x)}) = \frac{F(d)G'(d) + G(d)F'(d)}{G(d)G'(d)}$$

$$= \frac{F(d)G'(d)}{G(d)G'(d)} + \frac{G(d)F'(d)}{G(d)G'(d)} = \frac{F(d)}{G(d)} + \frac{F'(d)}{G'(d)} = \phi \text{ } (\frac{F(x)}{G(x)}) + \phi \text{ } (\frac{F'(x)}{G'(x)}) \text{ . Thus }$$

$$\phi \text{ is a homomorphism.}$$

Then ϕ is 1-1 homomorphism. Thus $\mathbb{Q}^+(x)\cong \text{im } \phi$. So $\text{im } \phi$ is a ratio semiring. Claim that I $_{\text{im} \phi}(d)=\Phi$. To prove this, suppose not. Then $\exists \ y \in \text{im} \phi$ such that $y \in I_{\text{im} \phi}(d)$. So y+d=d. Since $y \in \text{im } \phi$, $\exists \ \frac{F(x)}{G(x)} \in \mathbb{Q}^+(x) \quad \text{such that} \quad y = \phi(\frac{F(x)}{G(x)}) \text{ and } d = \phi(x). \quad \text{Thus}$ $\phi(\frac{F(x)}{G(x)}) + \phi(x) = \phi(x) \text{ and} \qquad \phi(\frac{F(x)}{G(x)} + x) = \phi(x). \quad \text{Since } \phi \text{ is } 1-1,$ $\frac{F(x)}{G(x)} + x = x. \quad \text{Thus } F(x) + x G(x) = x G(x) \quad \text{which is a contradiction since } \Phi^+[x] \text{ is A.C. (Proposition 4.25). So we have the claim i.e. } I_{\text{Im} \phi}(d) = \Phi. \quad \text{Let } y \in \text{im} \phi. \quad \text{If } y \in S, \text{ then } y \in I_D(d). \quad \text{Thus}$ $y+d=d, \text{ so } y \in I_{\text{im} \phi}(d) \quad \text{which is a contradiction. Hence } \text{im} \phi \subseteq D \setminus S.$

Then a+y=d+y \forall $y \in \text{im } \psi$ and by Theorem 2.43 (1) and (2), a+a=d+d. Since $\text{im } \psi \cup \{a\} \subseteq K$, ay=dy \forall $y \in \text{im } \psi \cup \{a\}$. By Theorem 2.51, we obtain that $\text{im } \psi \cup \{a\}$ is a semifield. Hence $K' \subseteq \text{im } \psi \cup \{a\}$. Since $\Phi' \subseteq K' \setminus \{a\}$ and $\Phi' \subseteq K' \setminus \{a\}$, $\text{im } \psi \subseteq K' \setminus \{a\}$. Thus $\text{im } \psi \cup \{a\} \subseteq K'$. Therefore $\Phi' \subseteq \text{Im } \psi \cup \{a\}$. Since $\text{Im } \psi \supseteq \Phi'(x) \cup \{a\} \cong \Phi'(x) \cup \{a\}$ where $\Phi' \subseteq \Phi'(x) \cup \{a\}$ is the semifield given Remark 4.26. Hence $\Phi' \subseteq \Phi'(x) \cup \{a\}$ as in Remark 4.26.

Subcase 2.4.2.2.2 ϕ is not 1-1.

Then $\exists \frac{F(x)}{G(x)}, \frac{F'(x)}{G'(x)} \in \mathbb{Q}^+(x)$ such that $\frac{F(d)}{G(d)} = \frac{F'(d)}{G'(d)}$. So $\frac{F(d) \ G'(d)}{G(d) \ F'(d)} = 1. \quad \text{Thus} \quad \psi(\frac{F(x) \ G'(x)}{G(x) \ F'(x)}) = 1.$

Define $\ker \, \psi = \left\{ \frac{F(x)}{G(x)} \in \, \mathbb{Q}^+(x) \, \, \big| \, \, \psi(\frac{F(x)}{G(x)}) \, = \, 1 \right\}$. Claim that $\ker \, \psi$ is a C-set. Let y, z $\in \ker \, \psi$. Then $\psi(y) = \psi(z) = 1$. Now $\psi(y,z^{-1}) = \psi(y), \, \psi(z^{-1}) = 1 \cdot (\psi(z))^{-1} = 1 \cdot 1^{-1} = 1 \cdot 1 = 1$. Thus $yz^{-1} \in \ker \, \psi$. Let $y \in \ker \, \psi$, $z \in \, \mathbb{Q}^+(x)$. Since $\psi(\frac{y+z}{1+z}) = \frac{\psi(y) + \psi(z)}{\psi(1) + \psi(z)} = \frac{1 + \psi(z)}{1 + \psi(z)} = 1$, we get that $\frac{y+z}{1+z} \in \ker \, \psi$. Hence $\ker \, \psi$ is a C-set. So we have the claim. Thus $\mathbb{Q}^+(x)/_{\ker \, \psi}$ is a ratio semiring and we obtain that $\mathbb{Q}^+(x)/_{\ker \, \psi} \cong \operatorname{im} \, \psi$. Since d^2 , $1 \in \mathbb{D} \setminus \mathbb{I}_{\mathbb{D}}(d)$, d^2 , $1 \in \operatorname{im} \, \psi \setminus \mathbb{I}_{\operatorname{im} \, \psi}(d)$ because $\mathbb{I}_{\operatorname{im} \, \psi}(d) \subseteq \mathbb{I}_{\mathbb{D}}(d)$. Let $\mathbb{W} = \mathbb{Q}^+(x)/_{\ker \, \psi}$ and $\mathbb{W} = [x]$, so $\mathbb{W} \cong \operatorname{im} \, \psi$. Thus \mathbb{W}^2 and $[1] \in \mathbb{W} \setminus \mathbb{I}_{\mathbb{W}}(w)$.

Let $D_1 = im\psi$ and $S_1 = D_1 \cap S$. Claim that

- (1) $S_1 = \Phi$ or $(S_1, +) \leqslant (I_{D_1}(d), +)$,
- (2) $D_1 \setminus S_1$ is an ideal of $(D_1,+)$.

To show (1), we assume that $S_1 \neq \Phi$. Let x, y ϵ S_1 . Then x, y ϵ D and

x, y \in S. Thus x+y \in D₁ and x+y \in S because S is an additive subsemigroup of $I_D(d)$. Hence x+y \in S₁. So we have (1). Now we shall show (2). Since $1 \in D \setminus I_D(d)$ and $S \subseteq I_D(d)$, we get that $1 \in D_1 \setminus S$. Since $D_1 \setminus S_1 = D_1 \cap S_1^C = D_1 \cap (D_1 \cap S)^C = D_1 \cap (D_1^C \cup S^C) = (D_1 \cap D_1^C) \cup (D_1 \cap S^C)$ = $\Phi \cup (D_1 \cap S^C) = D_1 \cap S^C = D_1 \setminus S$, we get that $D_1 \setminus S_1 = D_1 \setminus S$. Thus $1 \in D_1 \setminus S_1$, so $D_1 \setminus S_1 \neq \Phi$. Let $X \in D_1 \setminus S_1$ and $Y \in D_1 \setminus S_1$. Thus $X \in D_1 \setminus S_1$, so $X \in D \setminus S$. By Theorem 2.50, we have that $X \in D_1 \setminus S$ is an ideal of $X \in D_1 \setminus S$, so $X \in D \setminus S$. Since $X \in D_1 \setminus S_1$, $X \in D_1 \setminus S_1$. So we have (2).

Since $S_1 = D_1 \cap S$ and $D_1 \setminus S_1 = D_1 \setminus S$, we get that $S_1 \subseteq S$ and $D_1 \setminus S_1 \subseteq D \setminus S$. Then a+x = a for all $x \in S_1$ and a+x = d+x for all $x \in D_1 \setminus S_1$. By Theorem 2.43 (1) and (2), a+a = d+d. Then by Theorem 2.51, we obtain that $D_1 \cup \{a\}$ is a semifield. Thus im $\psi \cup \{a\}$ is a semifield. Using the same proof as in Subcase 2.4.2.2.1, we get that $K \cong \text{im } \psi \cup \{a\}$. Since $\mathbb{Q}^+(x)/_{\ker \psi} \cong \text{im } \psi$, we get that $K \cong \mathbb{Q}^+(x)/_{\ker \psi} \cup \{a\}$. Claim that 1+x, $\frac{1+x}{x} \in \mathbb{Q}^+(x) \setminus \ker \psi$.

Suppose that 1+x & ker ψ . Then $\psi(1+x)=1$. Thus 1+d = 1, so $d+d^2=d$. Hence $d^2\in I_D^-(d)$, a contradiction. Thus 1+x & $\varrho^+(x)$ ker ψ . Now suppose that $\frac{1+x}{x}$ & ker ψ . Then $\psi\frac{(1+x)}{x}=1$. Thus $\frac{1+d}{d}=1$, so 1+d=d. Hence 1 & $I_D^-(d)$. a contradiction. Thus $\frac{1+x}{x}$ & $\varrho^+(x)\setminus \ker \psi$.

Therefore we get that ${\mathbb Q}^+(x)/_{\ker \psi} \cup \{a\}$ is the semifield given in Remark 4.28 and $K'\cong {\mathbb Q}^+(x)/_{\ker \psi} \cup \{a\}$. #