EFFECTS OF ORGANIC MOLECULE ORIENTATIONS ON PEROVSKITE STRUCTURE

OF FORMAMIDINIUM LEAD IODIDE

Mr. Wiwittawin Sukmas

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Physics
Department of Physics
Faculty of Science
Chulalongkorn University
Academic Year 2018

Copyright of Chulalongkorn University



o a a A 9 4 o an A
Wﬁ"Uﬁ)\iﬂﬁﬂ1ﬂu@‘1/1ﬁ1/l1\‘16116Qillmf]lﬁﬁ)u‘ﬂiﬂﬁE]IﬂiﬂﬁileW@i@ﬂﬁhlﬂﬁﬂlBQWﬂiMWMﬂmﬂNmﬂ

ToTo'lag

WBIITIUN quIne

Y ]
1 =<

a a o, a3 (% =Y a @ a
WeniwusiiludunilavesmsanmaurangesilSygineenaasuriniade
a arAa 4 a ara 4
avnndand madnnand
a 4 4 a %
AULINNANTNT PNAINIUNYININGIAY
=S =
1UnsAny 2561

a a £ t4 a @
AUVANTUDIPWIANINTUNNIINYI0Y



Thesis Title EFFECTS OF ORGANIC MOLECULE ORIENTATIONS
ON PEROVSKITE STRUCTURE OF FORMAMIDINIUM

LEAD IODIDE
By Mr. Wiwittawin Sukmas
Field of Study Physics
Thesis Advisor Associate Professor Thiti Bovornratanaraks, Ph.D.
Thesis Co Advisor Associate Professor UDOMSILP PINSOOK, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of

the Requirement for the Master of Science

Dean of the Faculty of Science

(Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE
__________________________________________________________ Chairman
(Assistant Professor SOJIPHONG CHATRAPHORN, Ph.D.)
__________________________________________________________ Thesis Advisor
(Associate Professor Thiti Bovornratanaraks, Ph.D.)
__________________________________________________________ Thesis Co-Advisor
(Associate Professor UDOMSILP PINSOOK, Ph.D.)
__________________________________________________________ Examiner
(Associate Professor NAKORN PHAISANGITTISAKUL,
Ph.D.)

Examiner

(Associate Professor Sutee Boonchui, Ph.D.)



ii

MBI quIne : HaveIMsmvuaiinn1aved luanadsunidae Inseaiiaum
asetlalndvealesniiadiouan’leTo lad. (EFFECTS OF ORGANIC
MOLECULE ORIENTATIONS ON PEROVSKITE STRUCTURE OF
FORMAMIDINIUM LEAD IODIDE) ®.f1/3n1mdn : 3¢, a5.38 135aunsny,

0. M1Tn¥13 : 591 as.gandail Yuga

Latterly, an emergence of the hybrid organic-inorganic perovskites has captivated an
increasing rate of world-wide attention due to their approving physical properties.
Formamidinium lead iodide (FAPI), a promising compound owing to its high photovoltaic
performance, consists of an organic molecule, i.e. the formamidinium (FA) cation, dwelling in
the centre of the cubic unit cell, caged by the inorganic framework, Pbl,. By adopting the ab
initio method based on the density functional theory including the spin-orbit coupling (SOC)
effects, the effects of the FA cation on the cubic FAPI were thoroughly and systematically
investigated. Solidly armed with Euler’s rotations, energy landscapes responsible for various
sets of orientations of the FA cation were evaluated accordingly. From the energy landscapes,
the flipping energy barriers are interpreted as thermal agitations needed to flip the FA cation
over. The highest energy barrier amongst all those of other orientations is 24.7 meV which is
tantamount to T ~ 286 K—the temperature over which the FA molecules randomly reorient.
Moreover, it is found that a relatively lowest energy structure when the FA cation is directed
along (90°,60°, 45°) direction. Owing to the structural optimisation, the /-Pbh-I becomes angled
with less than 7°. The H-I distances are optimal and confined only in the shells in accordance
with the pair distribution function of the optimal configuration. The resulting configuration
additionally breaks the inversion symmetry that leads to the Rashba/Dresselhaus effect within
the electronic band structure. The largest Rashba splitting parameter determined along

the direction in the k—space is around 3.0 for the (90°,60°, 45°) configuration.
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1. INTRODUCTION

Most recently, an emergence of world-wide attention towards hybrid organic-inorganic
perovskite (HOIPs) has sharply arisen owing to their potential applications, for instance, in
thermoelectric, optoelectronic, and photovoltaic technology, resulting from their astounding
electronic, excitonic, and optical properties [1-4]. From 1978 to 2015, there have been some
intensive research into the optoelectronic properties of HOIPs and crucial findings in the
development of HOIP solar cell [3]. Weber et al were the first to synthesise
MAPbX; (CH3NH5Pbl3) and determine its crystal structure in 1978 [5]. A couple of decades later,
carried out by Mitzi et al., there came syntheses and characterisation of HOIPs for use in
electronic devices, specifically optoelectronic devices [6-9]. The first experiment report on a
HOIP-based solar cell, CH; NH;PbBr; on a mesoporous Ti05 surface, was published revealing the
solar cell exhibits 3.1% conversion efficiency [10]. The ongoing advancement was followed by
tremendous breakthroughs in syntheses and device fabrications of HOIP solar cells [11, 12].
However, the aspect of short-term and long-term stability of this type of material is still a big
challenge relating to ambient conditions [13].

It is also suggested that such systems’ nature of structure and dynamics, for instance, the
presence of supposed ferroelectric domains responsible for reducing rate of electron-hole pair
recombination enhances their optoelectronic properties [14] as well as the interaction between the
molecular cation and the inorganic framework [15], all impact upon the photovoltaic performance
of these very materials. Thus, many researchers have recently attempted to understand these
fundamentally structural and motional behaviours that lead to the development of this class of
materials towards devices.

Solar cell based on HOIPs, named Formamidinium lead iodide-HC(NH,),PbI; or FAPI
hereafter, has latterly displayed more than 20% of power conversion efficiency which draws
attention from many conventional silicon solar cell researchers and delivers marvellous prospects
for commercialisation in the near future [16], FAPI, the sister compound of Methylammonium
lead iodide or MAPI, exhibits 1.41 eV bandgap energy that is far better matched to solar spectrum
than that of MAPI [17].



There has been a myriad of experiments on the synthesis, structure, and phase transitions
of FAPI systematically conducted by Stoumpos et al. [18]. The material adopts a non-perovskitic
structure, hexagonal yellow phase (6 — FAPI), in the space group of P6;mc at low temperature,
whereas its cubic structure is generally formed at higher temperature. Nevertheless, by obtaining
data from the single crystal X-ray diffraction, Weller et al. have strongly confirmed that FAPI
crystallises at room temperature as a cubic phase (a-phase) [19]. Moreover, atomic positions of
FAPI investigated by using Neutron power diffraction reveals that the trigonal planar
HC(NH,), " or the FA cation lies in the central mirror plane of the unit cell where it orientates
over 12 equivalent sites so that the C — H bond is directed into a cubic face [19]. In addition,
FAPI was observed to have a thermal hysteresis for the cubic-to-hexagonal phase transition and
was also demonstrated that FAPI can be kinetically trapped and remains in a meta-stable state,
namely cubic state, upon temperature quenching from 400 K down to 8.2 K [20]. It was
additionally reported that the FA cation randomly reorients over 480 sites [20] instead of 12 sites
as previously suggested by Weller ef al. [19].

As extensively mentioned above, not only has there been a plethora of evidences
supporting the existence of the molecular dynamics of the FA cation in FAPI, but also does the
investigation into effects of diverse orientations of the organic molecule on the well-known
HOIPs, MAPI, which reported that MAPI exhibits indirect bandgaps owing to the effect of strain
induced by interaction between the organic molecular orientations and the inorganic framework,
i.e. Pbl, [21]. Apart from experimental results, many calculations regarding the rotational effects
of CH3;NH;"on MAPI have been made [22, 23] and revealed Rashba Splitting causing an indirect
bandgap in HOIPs [24]. Because of these phenomena, the effect of the organic molecule’s
arrangements must play a crucial role in structural stability and other physical properties of these
hybrid materials.

The objectives of this thesis is to use the Ab initio calculations based on the state-of-the-
art density functional theory (DFT) [25] to investigate effects of the FA cation on cubic FAPI,
together with applying rigid flips through Euler’s rotation on the organic molecule. The energy
landscape schemes accounting for the FA cation’s different orientations will be elucidated as well

as the electronic band structures.



2. THEORETICAL BACKGROUND

In this chapter, extensively, all theoretical background employed in this thesis are discussed. In
Section 2.2, the major technique used in this work, the so-called “Density Functional Theory”,

will be covered in detail.

2.1 Many body problems

With the help of quantum mechanics, one is able to describe the microscopic properties of
condensed matters by solving the well-known time-dependent Schrodinger equation. Yet for
many body problems, since systems in reality always contain a large number of atoms
(~10%3 atoms ), to solve for the exact solution of such systems are cumbersome and almost
impossible at the moment. The time-independent Schrodinger equation in Hartree atomic units is

given by;

HAW(ry, 2, ., Tn, Ri, Ro, ., Ry, ) = E¥(r1,75, .., Ty, Ry, Ry, ., Ry, ). (2.1)

where H is the Hamiltonian of the many-body system,
n N
o= 1272 12172 Z z Z (2.2)
YA ) i - R,I 2 |rl—r]| 2 |R,—R,| '

The small and capital letters denote electron and nuclei, respectively. The first two terms on right-
hand side of Eq. (2.2) are the kinetic energy of electrons and of the nuclei, respectively, where M,
represents the mass of the nucleus at site /. The following three terms are responsible for
Coulomb interactions of electron-nucleus, electron-electron, and nucleus-nucleus, respectively,
since both electrons and nuclei are electrically charged particles. The vector r; denotes the
position of electron at site i, whereas R; and Z; refer to the position and the charge number of the
nucleus at site I, respectively.

According to the Born-Oppenheimer approximation [26], the effect from nuclei in
electronic problem can be omitted at this point, since the nuclei are much heavier than the
electrons, so they move more slowly. In other words, to the electrons the ions are essentially

stationary. Therefore, the kinetic term accounting for the nuclei is separated, and the nucleus-



nucleus interaction term becomes a constant which will as well be taken into consideration

separately. The problem now to be solved is the Schrodinger equation for electrons, which can be

written as
}Te‘[’e(r, R) =E,¥Y.(r,R). (2.3)
where
n
A= 12\72 Z Z +1Z : (2.4)
=2 2. 2 TR T i AT -
= 01 Iri = Ryl 2i¢j|ri Tl

where W, (7, R) and E, are the electron wave function and eigenvalues, respectively.

So far the number of variables in the N.-body wave function has been reduced to 3N, ,
yet it is still problematic for solving Eq. (2.3). That being said, the many-electron wave function
can be purely obtained from a product of single-electron wave function as proposed by Hartree in
1928 [27]. However, this theory fails to describe the true nature of electronic properties due to the
violation of the anti-symmetry of the wave function—electrons are fermions—which in turn
implicitly lifts the ground state energy. An improvement from Hartree theory is known as the
Hartree Fock (HF) theory [28]. In the HF theory, the HF wave function was proposed as a
determinant of many single-electron wave functions named “Slater determinant”, explicitly

including the anti-symmetry of the wave function.

Ya(r) Pa(ry) Yn(ry)
1/)1(7’2).1/’2(7'2) . 1/)N€r2)

¢1(TN).¢2(TN) IIJN('rN)

1
'“PHF = mdet (25)
Although the total energy calculated employing HF theory is theoretically lower than that
obtained from Hartree method, the energy is still higher than the exact one. It is also worth noting
that the difference of energies calculated with the Hartree and HF methods is the “exchange
energy”, whereas it is called the “correlation energy” when being the difference between the

energy calculated with HF method and the true ground state, see Figure 1.



Hartree
method 1

Energy

Hartree — Fock
method

Correlation energy

True ground
state energy

Figure 1: The diagram describing energies theoretically calculated with various methods

By the way, the HF theory has various drawbacks, for instance, it is not suitable for systems
containing a large number of electrons owing to the consumption of huge memory resources and
expensive computational costs. Fortunately, enough, the density functional theory (DFT) is
introduced as a hopeful and appropriate tool with which one is allowed to solve the many-electron

problems. In the followings, a description of this reliable method will be discussed.

2.2 Density functional theory
The Density functional theory (DFT), first proposed in the year of 1964 by P. Hohenberg and W.
Kohn [25], is one of most popular and successful approach in investigating ground-state energies
and electronic structures accounting for many-body quantum systems. Despite being the exact
method, it needs, in principle, some approximations for exchange-correlation functionals. In the
followings, a description of the DFT will be discussed in detail.

2.2.1 The Hohenberg-Kohn theorems
Hohenberg and Kohn formulated two theorems that has been known to be the starting point of the
DFT. The two theorems are stated [25] as follows:
Theorem I: For any system of interacting particles in an external potential V,,.(r), there is a one-
to-one correspondence between the external potential and ground-state density, (7). In addition,

the ground-state expectation value of any observable quantity A is a unique function.



<Y|A|¥ > = A[ny()] , (2.6)
The theorem implies that the density parameter is the only variable being taken into account for
DFT instead of the wave function for Hartree-Fock theory.
Theorem II: For an arbitrarily external potential applied to an interacting system, it is feasible to

exactly define a universal total energy functional of the particle density, which is given as,
()] = B[]+ [ Vese () nCrr, )

where Eyy is the universal constant that does not completely relate to any information of any
types of nuclei or their positions. This hereby means it is considered as an arbitrarily universal
constant for the interacting system, yet it is unknown. Assuming the constant is given, the ground-
state energy can be determined by minimising total energy with respect to density with an
employment of the variational principle,

semml
on o1 =0 (2.8)

The exact ground-state energy, &,, corresponding to the ground-state density ny(r) is given by

€ = E[ne(™)] < E[n(™)]. (2.9)

2.2.2  Self-consistent Kohn-Sham equation
According to the Hohenberg-Kohn theorem, the density parametre is used as the main quantity
for calculating all observables. In the year of 1965, Kohn and Sham proposed a brand new
Schrodinger-like equation, namely “Kohn-Sham equation”, as a function of density [29]. One can
employ the electron density n(r)as a basic variable in lieu of solving for many-electron wave

function W, in Eq. (2.3). The energy functional is given as,

Eln(r)] = Toln()] + f | ”(r)_"(r')d @' + [Vexen@)dr + Een@). 2.10)

The first term on the right-hand side is non-interacting kinetic energy functional, responsible for
all electrons in the system. The second term arises from the electron-electron interaction, known
as Hartree energy. As for the third term, the external potential energy is due to nuclei and the

inner shells’ electrons. Finally, the last term is nothing but the exchange-correlation energy.



Within the Kohn-Sham scheme, the particle density n(r) of the system with non-interacting

particles can be obtained as

N N

n(r) = Z|w{<5(r)|2 =thi*’<5(r) WES (1), 2.11)
i i=1

i=1
The total energy in Eq. (2.10) is blatantly the functional of n(r) and/or W;(r). Thus the ground-
state energy can be obtained by minimising &[n(r)] with respect to the density in accordance with
Eq. (2.9). The energy minimisation can be achieved by adopting the Euler’s equation with a
Lagrange multiplier (4;), see Appendices for a rigorous derivation. For now, the Kohn-Sham

orbital (in atomic unit) is written as

2
[— vz—l + Veff(r)] wES(r) = ewES (1), (2.12)

where the effective potential is given by

Veff(r) = Vext(r) +Vy [n(r)] + ch[n(r)]: (2.13)
with
n(r") ,
Vy[n(r)] = f ] dr
and
VolnGr)] = 22240

The Kohn-Sham equation allows one to investigate complex quantum systems by completely
mapping an interacting system into a fictitious no-interacting system in which the particle is
dwelling. Note that, the Kohn-Sham orbital, W**(r), is not the wave function of the system, the
density obtained from the Kohn-Sham orbitals, however, is the exact density of the true system.
To solve the Kohn-Sham equation, described by flowchart in Figure 2, firstly, the initial
value of the density is guessed in order to obtain the effective potential. Secondly, the equation is
solved to output the total energies and the Kohn-Sham orbitals. Afterwards, the new density is
subsequently obtained from the just-calculated Kohn-Sham orbitals and then used for next step.
This iterative process runs self-consistently until the convergence criterion of density is fulfilled.
Finally, the output quantities, e.g. band structures and density of states, are calculated via the

converged density.



In Eq. (2.13), the first two terms, V,,.(r) and V,(r), are able to be exactly evaluated,
whereas the last term, Vy.[n(r)], is still unknown, which must be modelled. The exchange-
correlation potential, Vy.[n(r)], contains all unknown information—all the quantum mechanical
and explicit many-body effects.

As for the conventional exchange-correlation functions, there are two types of well-known
methods, namely the Local Density Approximation (LDA) and the Generalised Gradient
Approximation (GGA).

> Local Density Approximation (LDA): By far the simplest way to derive E,[n] is

the scheme called the local density approximation, wherein the exchange-correlation

functional is directly derived from the homogeneous electron gas [30]. The method
works quite efficiently for slow varying density, e.g. free electron-gas-like systems.

Practically, LDA approximates E,.[n] by assuming the exchange-correlation energy

: LDA
density, €2

[n(r)], at any point r in space is of the same form as the homogeneous
electron gas, eilzm [n(r)], which has been profoundly studied adopting Green’s-function

Monte Carlo method [31]. The proposed approximation is thus given by
ERA)] = [ n@) elemin(r)ldr. (.19

Nevertheless, it is conventionally not appropriate in using LDA in many cases, for

instance, in the case of rapidly-varying density systems—more complex systems.
> Generalised Gradient Approximation (GGA)

In real systems, mostly, the electron density is unlikely to be homogeneous and it is
therefore impractical for LDA scheme to be applied in many cases. There are,
nevertheless, many attempts to improve the LDA by considering higher-order terms of
the exchange-correlation energy. Consequently, not only is the electron density, n(r),
included in the exchange-correlation energy, but the gradient of density, Vn(r), is also

taken into account, which is expressed as

ESPA[n(r)] = j () exe[n(r), Vn(r)] dr. (2.15)



1 Initial guess n(r) ’

‘ Compute Vy[n(r)] + Vyc[n(r)] ’

‘ Veff = Vion + VH[n] + VXC[n] ’

‘ Solve [—%Vz + Veff(r)] YES(r) = kS () |

Generate new n(r)

‘ Compute n(r) = |1PLKS(T)|2 ’

NO

Self-consistent?

YES

Output quantities

Figure 2: Schematic diagram for solving self-consistent Kohn-Sham equation

2.2.3 The secular equation

In order to solve for the Kohn-Sham equation, the method for obtaining the solutions is described
as follows: Firstly, the Kohn-Sham orbitals are expressed as a linear combination of arbitrary

basis function,

Q
Y, (r) = Z Cloi(r), (2.16)
i=1

where C[' are sets of coefficients and Q — oo; practically, however, Q is always set to be as
possibly large as to increase a degree of accuracy of the Kohn-Sham orbitals. Subsequently, the

Kohn-Sham orbitals are substituted into the Kohn-Sham equation, Eq. (2.12), as follows:
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Q Q
e [ 5 Vm(r)] i) = ) CrEpi() 217)

i=1 i=1

Next, Eq. (2.17) is multiplied by the complex conjugate of the basis function, (p]’-‘(r), and

integrated over all space, written as

ZC"ffp,(r)

Eq. (2.18) can be viewed as a matrix form, where the integral on the left-hand side is represented

+ Veff(r)] @i(r)dr = Z ClE; f @; (1) @;(r)dr. (2.18)

as the Hamiltonian matrix, /', and the overlap matrix, @, being on the right-hand side. Now it

can thus be written as
HC = EOC, (2.19)

which is known as the “secular equation”. The Hamiltonian matrix and the overlap matrix are the
Q X Q dimensional matrices. This eigenequation can be solved using several methods. And, lastly,
the Q eigenvalues and the Q sets of eigenfunctions are obtained and they are used as primary

inputs for determining further interested quantities.

2.2.4 Techniques of calculation in DFT

2.2.4.1 Plane wave basis set
In solid, there are a variety of defects causing difficulties in solving the Kohn-Sham equation of
real solid. If one considers only a periodic solid, invariant under translational and rotational
symmetries, this complex problem can be simplified by exploiting Bloch theorem [32]. In Bloch
theorem, the electron wave function being the solutions of the Schrddinger equation is plane
waves multiplied with a periodic function uj (1) as
, (2.20)
Wi () = up@r) e,

where k is a wave vector and n is a band index. The wave function and energy eigenvalue must
fulfil these conditions:

EEK)=EKk+G), (2.21)

Yr(r) =Y, (2.22)
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with G being the reciprocal lattice vector. Consequently, the maximum value of G, G4y, 1S

related to the kinetic cutoff energy by the expression:

hz G%nax
£ = (2.23)
max Zm
As for the periodic function, it is defined as a summation over plane wave sets,
W) = ) G 229
Ji

By plugging Eq. (2.24) into Eq. (2.20), the volumetric normalised electron wave function is

conclusively written as

1 -
LHOEE= AT (225)
J

2.2.4.2 The PAW pseudopotential method

The Projected Augmented Wave or PAW method was adopted throughout the work. This
method was methodically adopted from the augmented plane wave method by separating the
wave function into two parts: partial wave expansions inside the sphere and envelope function
outside the sphere [33]. The envelope function must be differentiable and totally matched at the
sphere boundary. Since having countless number of partial waves close to the atomic core, the all-
electron wave function, ¥, is in turn mapped into a fictitious smooth function which is known as
auxiliary wave function, ¥, consisting of a smaller number of the partial wave basis. Within the
sphere of volume Qj, each of the wave function and the fictitious smooth wave function can be

expanded as a linear combination of the partial wave basis set:

W) = X;a;|¢;(r)), inside Qg (2.26)

and

|P(r)) = ;b |, (r)) , inside Qp. (2.27)

whereas the all-electron partial wave and the auxiliary partial wave outside the sphere are

identical:
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¢;(r) = ¢;(r). outside Qp (2.28)

The all-electron partial wave is the solution solved from the radial Schrédinger equation for an
isolated atom and the auxiliary wave function can be chosen from the all-electron partial wave
that match the all-electron partial wave outside the sphere. Accordingly, the all-electron wave

function and the auxiliary wave function are connected via the transformation operator, .
|¥) =z|P), (2.29)

the transformation operator can be defined as
R

As defined in Eq. (2.30), the transformation operator can generally be obtained by combining the
identity operator (1) with a sum of the atomic contribution (Sg) at each particular site R. The atomic
contribution reflects the difference between all-electron partial wave and the auxiliary partial

wave, that is to say,

S| = ls) =) (2.31)

Now the new operator needed to be defined: |B)as the projector operator expressing the local
character of a wave function in the atomic region [34]. The operator is bound to be orthonormal to

the smooth partial wave basis set,
<§m|$n) = Omn -

By using the mentioned property, the smooth wave function can be written as
1) = Y |5, {F|®) 23
By applying Eq. (2.30) into (2.32), we have
0 = (14080 ~180 ) )
i
As a result, the transformation operator in also written as

r=1+ Z(Iqbi) —|8)(E] (2.34)

Now consider an arbitrary operator represented as A, the expectation value of A:
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A=) fulWalAlw,),

= ) fulwaletarw,). 239)

The occupation number is denoted by f,. To apply the PAW approach to the Kohn-Sham
equation, this very equation can be rearranged as

(7 — €5)|F) = 0, (2.36)

where H = t1H 1 and § = 717 operators are represented as pseudo-Hamiltonian and overlap matrix,

respectively

2.2.4.3 Cutoff energy and k-point mesh
The reciprocal space, known as k-space, represents the Fourier transform of the repetitive
periodic lattice in the real space. In this work, the Kohn-Sham equation is solved within
reciprocal space using plane waves for basis sets. The infinite number of the plane-wave basis
sets in Eq. (2.25) gives the exact solution of the Kohn-Sham equation. It is, nevertheless,
impossible to evaluate the exact solution due to limited computational resources. Therefore, the
limited yet suitable number of plane-wave basis sets, as proposed by Monkhorst and Pack [35], is
conditioned by the kinetic cutoff energy, E.,;, which is defined through the maximum value of
the reciprocal lattice vector, G,,q,. Now the kinetic energy cutoff is written as
2
Ecyr < % |k + Gmaxlz _ (2.37)

The larger the number of the kinetic cutoff energies and the k-points, the more accurately the
energy is evaluated; it also requires more computational resources.

2.2.5 Geometry optimisation
The geometry optimisation is the process of finding an arrangement in space of crystal structures
where they are of minimum energies [36]. The considered structure is relaxed so that the net
interatomic force on each atom is satisfactorily close to zero the atomic positions are stationary
points. However, in DFT, the temperature is not taken into account, the system in contact with

any value of pressure and T = 0 K reservoirs prefers the minimum enthalpy, as given,
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H =E+PQ.. (2.38)

The strain components are of 9 dimensions, together with 3N , thus the enthalpy is now of the
functional of (9 4+ 3N)-dimensional space:

H =H(e1r,Ts T3, ..., Ty) . (2.39)
The first derivative of the enthalpy with respect to the coordinates of atoms, X;, gives rise to the
force vector, which is written as

an (2.40)

F:_axp'

The variation of enthalpy around the minimum X,,,;,, is defined as
1
6H = E(X =Xmin) BE=Xmin) , (2.41)

where B denotes the Hessian matrix. The quasi-Newton method [36] being used to
simultaneously relax lattice parameters and the internal coordinates of crystals under pressure
helps search for the X,,,;, from the force in one relaxation step. The X, is improve to obtain X,,;,

through the equation
AX, = HyFy (2.42)

where H = B~ Despite H, being unknown, it can be speculated and updated by the BFGS
method [37]. When X reaches its minimum, the crystal structure then satisfies the external
pressure and it also has the minimum enthalpy which is evaluated through the aforementioned

algorithm.

2.2.6 Electronic band structure
The solution of the Kohn-Sham equation, Eq. (2.12), outputs the ground-state wave function,
Y2 (r), and is also corresponding to the Hamiltonian of the system. Then, the electronic properties
of the system are obtained by evaluating the expectation values of the total energy responsible for
any k-vector, which is given by

~ 2.43
(Wokr || Wk) = €nkcenr - (2:43)
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After obtaining energies corresponding to each value of k, the electronic band structure is
determined by plotting this set of energy eigenvalues along the high symmetry points in the first

Brillouin zone.

2.2.7 Density of states
The density of states (DOS) describes the number of states which are available to be occupied by
the system at each level of energy. It is mathematically interpreted as a distribution via a

probability density function. The DOS for a given nt*-energy level, g (), is expressed as

dk
gn(e) = J‘mé‘(s — en(k)), (2.44)

where the integral is all over any primitive cell, €, (k) denotes the energy eigenvalue accounting
for the nt*-energy level. In the same manner, the partial density of states (pDOS) corresponds to

the projection of any particular orbital of the particular atom on the density of states.

2.2.8 Spin-orbit interaction
In hydrogen-like atoms, the central potential, as neglecting spin, suitable for the valence electron

is no longer of the pure Coulomb form. Since the electrostatic potential, @(r), presenting in

V() = ed(r) 2.43)

is no longer due only to the nucleus of the electric charge |e|Z; the cloud of negatively charged
electrons in the inner shells must be taken into account. Electrostatically, this results from the fact
that the higher angular momentum states are more susceptible to the repulsion due to the electron

cloud. Now the valence electron experiences the electric field

1
E=-— (;) L), (2.46)
Nevertheless, electrodynamically, a moving charge subjected to an electric field feels an effective

magnetic field given by

: - (g) x E. (2.47)

And since the electron has a magnetic dipole moment, g = eS/m.c. By plugging Egs. (2.45) and

(2.46) into the Hamiltonian of the dipole, this gives rise to the following interaction energy:
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1 14dy,
Hsoc =~ Bojp = ——55-—<(L"S). (2.48)

2méc2r dr

A factor of 2 is corrected in order that the energy includes the precession of the electron’s spin
moment, which is relativistic effect when in the absence of an external magnetic field. The
rigorous derivation, however, is traced back to the original work proposed by L. H. Thomas [38].
The SOC Hamiltonian, Hgp, will be added in the Kohn-Sham equation, Eq. (2.12), as a
correction term in order to precisely evaluate the system’s total energies and the electronic band

structures.
2.3 Hybrid organic-inorganic perovskites (HOIPs)

Materials with the formula ABX;, wherein situates cations A and B including an anion X, are
called perovskites. The ideal crystal structure of perovskite, as illustrated in Figure 3, consists of a
corner-sharing tetrahedral cage, BX,, with a linear B — X — B bond and A ions in the interstitial

positions [39].

Figure 3: The crystal structure of perovskite: ABX;

As for the hybrid organic-inorganic perovskites, A happens to be a monovalent organic cation [3].
The synthesis and the determination of crystal structure of CH;NH;Pbl; was first reported by

Weber [5], the usage of HOIPs in optoelectronic devices subsequently happened [7], while the
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power conversion efficiencies accounting for the HOIP solar cell were 4% and 20% for the year
of 2009 and 2015, respectively [7-9]. These fascinating performances of HOIPs have thus

stimulated bunches of HOIP-related research to be proliferating until now.

Figure 4: The crystal structure of HOIP

In this work, Formamidinium lead iodide, HC(NH,),Pbl; or FAPI, was systematically and
thoroughly investigated. FAPI adopts a non-perovskitic structure, hexagonal yellow phase (a-
FAPI), in the space group P6;mc at low temperature, whereas its cubic structure depicted in
Figure 4 is formed at higher temperature [18], it however was demonstrated that FAPI can be
kinetically trapped and remained in a meta-stable state, namely cubic state, upon temperature
quenching from 400 K to 8.2 K [20]. Thus, we are solely focusing on the investigation of the
physical properties of a-FAPI. The Pm3m structure of a-FAPI, shown in Figure 5(a), with an
experimentally reported lattice constant of 3.3613A [19]. The organic molecule, the
Formamidinium (FA) cation, lies in the central mirror plane of the unit cell, wherein it randomly

reorients over 480 possible sites as suggested by Chen et al. [20] .
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(b)

Figure 5: the cubic structure of FAPI (a). The relaxed structure of FAPI (b).

2.4 Eulerian angles

To transform one coordinate system to another can be represented by a matrix equation of the

form

r' =2r
The fixed system is identified with r and the rotated system with r’, then the rotation matrix 4
entirely describes the relative orientation of the two systems. The rotation matrix can be obtained
by the following series of rotations (See Figure 5):

> The first rotation is anticlockwise through an angle ¢ about the c -axis, with the

transformation matrix

cos¢p singp O
Ay = <— sing cos¢ O) (2.49)
0 0 1

> The second rotation is anticlockwise through an angle 6 about the a'-axis, with its

transformation matrix

1 0 0
Ag = (0 cosf sin 9) (2.50)
0 —sin8 cos@
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> The third rotation is also anticlockwise through an angle i about ¢’ -axis, with its

transformation matrix

cosyp siny O
Ay = (— siny cosy 0) (2.51)
0 0 1

> F inally, the new—rotated—coordinate system is evaluated by this equation

r'= Awﬂ.gﬂ,(t,r

x' cosy siny 0\ /1 0 0 cos¢p sing 0\ /x
(y') = <— siny cosy 0) <0 cos@  sin 9) (— sing cos¢ 0> (y) (2.52)
z' 0 0 1/ \0 —sinf8 cos#@ 0 0 1/ \z

In this work, the Eulerian angles method is applied in the FA cation—the organic molecule in

order to determine the energy landscapes corresponding to each orientation of the FA cation.

Figure 6: Eulerian angles geometrical definition. The fixed system is shown in black, the rotated

system is shown in red. The nodal line (N) is shown in blue
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3. CALCULATION DETAILS

In this work, the total energies accounting for each orientation of the FA cation were numerically
calculated. The energy landscapes were to be presented, and the possible lowest energy
orientation(s) is/are identified and used to evaluate the corresponding electronic band structures
and density of states.

To make these processes possible, Quantum Espresso Package [40] had been used to
investigate the physical properties of FAPI. The fully unconstrained noncollinear magnetism
within the projector augmented wave method was used [41] to describe the core and valence
electrons, the relaxation algorithm of atoms and lattice parameters used in this work is Broyden-
Fletcher-Goldfarb-Shanno algorithm [37] with a force/atom tolerance equal to 0.001 Hartree/Bohr.
The GGA method developed by Perdew-Burke-Ernzerhof (PBE) [42] has been selected. Since
this system consists of Pb atoms, the spin-orbit coupling and fully relativistic effects are
undeniably to be taken into account [43]. The spin-orbit coupling (SOC) [44] was applied to
determine the total energy, optimised structures, and the density of states. To precisely evaluate

physical quantities with the aid of DFT, the convergence test needs to be achieved systematically.

3.1 Convergence test of FAPI

The convergence tests are crucial in setting the limits of accuracy of the total ground —state
energy of the system. The parameters needing to be varied are the kinetic cutoff energies and the
k-point meshes. With both GGA functional, the conditions for the self-consistent field calculation
are set to the total energy tolerance change of less than 6 x 10~¢ Ry/atom, as the same value as of
the calculated geometry optimisation.

The cubic structure of FAPI was optimised by the condition: the internal atoms are allowed to
relax, while the shape and volume of 1737.1377 a.u.” are kept fixed in order to be consistent with
the experimentally reported value. There are two schemes of convergence test of FAPI. First, the
k-point mesh of 4x4x4 was selected and kept as a fixed parameter, then the cutoff energies
starting from 30 to 100 Ry were varied, and each of the calculated total energies corresponding to
each of cutoff energies were then plotted in Figure 7, the energies abruptly decreases during the

cutoffs from 30 to 70 Ry, the energies nearly maintain the same level of -2099.42 Ry, thus the
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cutoff energy cutoff of 80 Ry was selected, since the more of other values give no difference in
evaluating total energy of this system; the difference of cutoff energies between 80 and 90 Ry is

1.25 x 1075 Ry or 0.17 meV, which is technically tolerable.
k-point = 4x4x4
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Figure 7: The relationship between the total energies and the cutoff energies when k-point is fixed

at the value of 4x4x4
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Figure 8: The relationship between the total energies and the k-point meshes when cutoff is fixed

at the value of 80 Ry
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Second, likewise, the cutoff energy of 80 Ry was selected and kept as a fixed parameter, then
the k-point meshes starting from 4 X 4 X 4 to 10 x 10 X 10 were varied and plotted in Figure 8,
the energy profile slightly fluctuates at first, but it tends to remain stable at 8 X 8 x 8 onwards, the
difference of energies between the k-point meshes of 8 x 8 x 8 and 9 x 9 X 9is 1.0 x 1073 Ry or
0.13 meV, so thus the k-point mesh of 8 X 8 x 8 was accordingly selected. Henceforth, the cutoff
energy of 80 Ry and k-point mesh of 8 X 8 X 8 were used as input parameters in calculating other

physical properties of FAPI.

3.2 Relaxed structure of FAPI

As discussed in the previous section, the structure in the relaxation procedure with 80 Ry of
cutoff energy and 8 x 8 x 8 k-point mesh will be now called the “relaxed structure”, as depicted
in Figure 5(b) and Figure 18 in Appendices, consisting of the slightly deviated 7 atoms, i.e. ~0.03
A from their unrelaxed positions, and the slightly shifted FA molecule along the [100] direction.
As aresult, the inversion symmetry is already broken at this stage. This structure will be used as a

starting point in the energy landscape calculation.

3.3 Euler’s rotation applied to relaxed cubic FAPI

In order to search for the lowest energy structure of FAPI, the FA cation has no choice but be
reoriented through the Euler's rotation. As illustrated in Figure 9, the FA cation is planar lying in
the (002) plane, and polar with its dipole parallel to the C—H bond [45] (Blue arrow in Figure 9).
In this work, the starting point was chosen such that the dipole moment direction points along the
a—axis or [100] direction, denoted by the N-axis. Under rotation procedure, the centre of mass of
the FA cation was set to be the origin of the body axes, so that the displacement of the rigid
body-the FA cation—involves no translation of the body axes. Thus, the only change is in its
orientation, and hence the corresponding internal displacements of the atoms in the FA cation
according to the rotation about the body axes. The three Eulerian angles [46] are to rotate anti-
clockwise. The definition of the Euler's rotation is as follows (see Figure 9(a)); ¢ is the angle
between the N— and the a—axis (see Figure 9(b)), and 0 is the angle between the b'— and the ab—
plane (see Figure 9(c)), and v is the angle between the N- and the a'-axis (see Figure 9(d)). We

explicitly set (¢ = 0°,6 = 0°,¢ = 0°) as the starting point.
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Only in the range of 0° — 90° was preferred to rotate the FA cation through ¢, 8 and . The
flips of FA were discretised into 7 turning steps with a 15° step size for each angle of rotation, so
that the sets of simulation contain 343 samples of orientations—covering a large area of two
octants of the simulation cell. The remaining areas are just the repetition of nearly equivalent
points in three dimensional space. After systematically applying the rigid flips to the FA cation,
the energy calculation without structural relaxation was performed. The total energy of each
orientation of the FA cation can be viewed as a function of ¢,6 and ¢, i.e. E = E(¢,0,¢). The
scattered data accumulated from the total energy calculations were interpolated adopting Renka-
Cline gridding method [47] for plotting the energy landscape. However, it is worth mentioning
that the order of the Eulerian angles cannot be interchanged. Consequently, the energy landscape
plots can exactly be viewed as the plots between the energy and the corresponding FAPI

configuration with the FA orientations specified by ¢, 6 and 1 rotations in orderly fashion.

Figure 9: The corresponding Eulerian angles for the organic molecule of FA where C—H axis is
directed to N—axis (a). First rotation is anti-clockwise through an angle ¢ about the c—axis (b).

Second rotation is anti-clockwise through an angle 6 about the a'-axis
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4. RESULTS AND DISCUSSIONS

This section carefully describes all processes within this work as follows: First, we
surveyed the energy landscape in the sample parameter space with ¢ = 0°—90°8 = 0° —90°,
and 1 = 0° —90°, in order to search for the FA orientations having considerable potential for
being the lowest energy configuration(s). After the candidates had already been found, the
structural relaxation was then performed to guarantee that these orientations have the lowest
possible energy. Then, the structural properties were analysed in terms of pair distribution
function for bond-lengths. Finally, we performed the electronic calculation and reported the

electronic band structures and the selections of the projected density of states.

4.1 Energy landscapes

As our simulations contain 343 samples of the FA cation’s orientations—covering two octants
of the simulation cell, one can construct the energy as a function of orientation parameters
specified by (¢, 6,y). For simplicity, it is reported here some cross section of E(¢,8,y). The
cross section through 1y = 0°is a quintessential interpretation, thus one can present E(¢ = 0° —
90°,0 = 0° —90°,3 = 0°) in a three dimensional (3D) plot, as shown in Figure 10. In this saddle-
like landscape, there are a few special paths in this 3D plot which represent the so-called single
axis rotation. It is worth considering that the path with the FA cation oriented via (¢p = 0° —
90°,6 = 0°,1 = 0°) simply represents the rotation about the c—axis. Quintessentially, the energy

along this transition path resembles a Gaussian-like barrier, with the barrier height of 17 meV.

Table 1: Some energies calculated for ¢, 6 and Y, relative to FAPI with (90°,60°, 45°)—FA.

() 0(°) P(©) E-E, (meV)

0 0 0 7.63
90 15 0 8.10
90 75 0 7.34
45 60 45 0

A similar calculation was performed by Fabini et al. [48], who reported the barrier height of 21

meV along a similar path. The discrepancy arises from the fact that we do not perform further
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structure relaxation at this stage. Another path is along (¢ =90°68 = 0°vy = 0°) which
represents the rotation about the N-axis. The energy barrier along this path is as low as 2.5 meV.
Thus the FA cation can easily flip along this path, despite at very low temperature. Here, we
reported also some selected points in the energy landscapes in Table 1 in comparison with the

results reported by Fabini et al. [48].

Figure 10: The total energy profile as a function of ¢, 8, and = 0°, taking the lowest total
energy as a reference. The scattered data are interpolated adopting Renka-Cline gridding method

[47]. The starting point is responsible for (0°,0°,0°) configuration.

The energy barriers can be interpreted as entities, to some extent, intertwining with thermal
agitation, i.e. AE~kgT, where AE indicates any flipping energy barrier. It was found that the
highest barrier of all sets of rotations is of 24.7 meV (see Figure 20 in the Appendices), which is
corresponding to T = 286 K of thermal excitation energy. This means that at temperature higher

than 286 K, the FA cation is able to freely and randomly rotate to any values of ¢, 6 and .
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Another important consideration is the cross section cutting through 1 = 45°. We present
E(¢p =0°—90°6 = 0°—90°y = 45°) in the 3D plot, as shown in Figure 11. As for the
(90°,60°,45°)-FA orientation landscape, it is found to be the lowest possible energy structure
(see Point A in Figure 11 and Figure 27 in Appendices for the energy and Figure 12 for the
structure). Consequently, this configuration was taken and performed further structure relaxation.
The result suggests that its energy is the lowest possible and the final structure changes slightly,
see Figure 19 in the Appendices. The Pb and / atoms slightly shift, and the I3 — Pb — I3 angle is
reduced by ~7°, but FAPI remains a cubic structure. Our lowest energy structure, the

(90°,60°,45°) configuration, is in contrast with the (0°,0°,0°) configuration previously suggested
by Weller et al [19].

E — Eq (meV/ formule)

Figure 11: The total energy profile as a function of ¢, 6, andp = 45°, taking the lowest energy
as a reference (point A). The scattered data are also interpolated adopting Renka-Cline gridding

method [47]. The next higher energy (point B) is responsible for the equivalent lowest energy

configuration.
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Figure 12: The optimum structure of FAPI with the FA cation orienting along (¢ = 90°,0 =

60°,¢ = 45°) direction.

4.2 Pair distribution function for bond-lengths of three structures of FAPI

The distribution of distances between pairs of particles, in this case the bond lengths of H—/
bonds, contained within a given volume can be described by the pair distribution function (PDF)
[49]. One can determine the PDF by calculating the bond lengths of all pairs of H-I and binning
them into a histogram.

As for further analysis on the structure properties of the (0°,0°0°) and (90° 60° 45°)
configurations, as depicted in Figure 13, Table 5 and 6 in the Appendices, we found that the I-H
pair distribution of the unrelaxed and (0°,0°,0°) configuration can be roughly divided into three
shells as follows: 2.75-3.20 A, 3.40-4.20 A and around 4.70 A (orange and turquoise bars in
Figure 13). The /I-H pair distribution, of the (90°,60°, 45°) configuration, on the other hand, can
be divided into only two shells as follows: 2.75-3.20 A and 3.40-4.20 A (purple bars in Figure
13). It can be interpreted that the lowest energy structure has the optimum bond-lengths between
the 7 and H atoms. There will be soon an explanation on a weak interaction between the FA cation
and the Pbl, framework.

In the perfect cubic structure, the positions of the / atoms, i.e. /1, 12, and I3, are exactly

equivalent in terms of spatial symmetry. Therefore, the organic molecule would not be restricted
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to arrange itself just only in the preferred orientation, (90°,60°45°). Rather it must have a
multiple of three equivalent sites. We found that Point B in Figure 11 is an example of these
equivalent configurations. Even though the point B appears to have higher energy in Figure 11,
after relaxation process, it falls into the lower energy state, and its structure becomes equivalent to
that of the (90°,60°, 45°) configuration. These different orientations of the FA cation, together
with the corresponding displacements of the Pb and I atoms, directly lead to the inversion
symmetry breaking in Pb/,, the inorganic framework. Consequently, this structural asymmetry

will be responsible for the change in the electronic property, vide infra.

T T T T T T T T T

5 H-l bonds unrelaxed |7
g (0°,0°,0°) !
4 I (90°, 60°, 45°) ]

N w

Population (arbitrary unit)

2.5 3.0 3.5 4.0 4.5 5.0
Bond lengths (A)

Figure 13: The pair distribution of H-I bonds for three FAPI structures, Ii.e.

unrelaxed, (0°,0°,0°), and (90°,60°,45°) configurations, respectively.

4.3 Electronic band structures

It was reported in the case of MAPI that the conduction band minimum (CBM) stems from
the Pb(6p)-I(5p) anti-bonding states, whereas the valence band maximum (VBM) is brought
about by the Pb(6p)—I(5p) bonding and the /(5p) non-bonding states. In addition, the VBM is

mostly dominated by the I(5p) lone pair states [50]. These features are similar to the case of FAPI
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as well. In our unrelaxed a—FAPI unit cell, there are three equivalent sites for the / atoms in the
perfect Pm3m space group. As a consequence, the density of states responsible for those three
1(5p) lone pairs are degenerate. Surprisingly, the bandgap from the sole PBE calculation (1.44 V)
is fortuitously close to the experimental reported value, i.e. 1.41 eV [17]. While performing the
SOC calculation, we nevertheless found that the CBM band is splitting due to the strong SOC
effect on the Pb(6p) states. The position of the CBM is lowered down and the electronic bandgap
is narrowing [51]. A similar feature was reported by Mosconi et al. in MAPI [52]. But the
bandgaps can accurately be corrected by including the effects of the strongly correlated electrons
which can be achieved by using the G method or the hybrid functionals [51, 53, 54].

The effect of the orientations of the FA molecule on the electronic structure was carefully and
systematically inspected. Figures 14 and 15 exhibit the electronic structures along the selected
high-symmetry points in the first Brillouin zone of the relaxed (0° 0°,0°) and (90° 60°,45°)
configurations, respectively. The energy gaps of the (0°0°0°) and the (90°60°45°)
configurations read 0.15 and 0.28 eV, respectively, compared with the experimentally reported
value of 1.41 eV [17]. The discrepancies are explained due to the strongly correlated nature of the
electrons: PBE+SOC removes degeneracies [17, 55] from PBE, generally underestimates
bandgaps (for further discussion of this issue, see Perdew [56] et passim, thanks to the spin-orbit
coupling (SOC) effect which largely stemmed from the Pb atoms. The tendency of the SOC
splitting reduces the bandgap by about 1 eV. Strictly speaking, if one compare the bandgap of
1.44 ¢V, from the PBE calculation, with the bandgap of 0.28 eV obtained from the PBE+SOC

calculation of the (90°,60°,45°) configuration, the difference is of order of 1 eV.
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Figure 14: The electronic band structure of the relaxed FAPI with relaxed (0°,0° 0°)—FA

molecule. The dashed circle reveals weak interaction between the I atom and the Pbl, framework.

Energy (eV)

Figure 15: The electronic band structure of the relaxed FAPI with (90°,60°,45°) —FA. In the
same manner, the dashed circle reveals weak interaction between the I atom and the Pbl

framework.
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4.4 Projected density of states

The effects of the FA cation on the inorganic cage is further verified by calculating the
projected density of states (pDOS), as shown in Figures 16 (a and b). As mentioned above, there
exists the non-bonding /(5p) orbitals of the /1, 12 and /3 atoms in the valence states. In the
unrelaxed configuration scheme, these three states are theoretically degenerate, i.e. the branches
never split. However, upon the FA molecular rotation, the inversion symmetry of cubic FAPI is
broken. Consequently, the /1, /2, and /3 atoms become clearly distinguishable, and the
corresponding electronic bands are splitting. The pDOS of the (0°,0°,0°) configuration are shown
in Figure 14. The three highest peaks near the Fermi level are those of the distinguishable /1, /2,
and 73 atoms. It is worth mentioning that one of the three peaks is out of alignment (brown) and
the position of the peak is at lower energy compared with the other two, pointed by red arrow the
Figure 16(a). This causes the (0° 0°,0°) configuration to dwell in a slightly lower energy state,
compared with the unrelaxed configuration.

The pDOS of the (90° 60°,45°) configuration are shown in Figure 16(b). Again, the three
highest peaks near the Fermi level are those of the distinguishable /1, /2, and /3 atoms. These
three peaks shift towards lower energies in a similar manner, thus the (90°,60°,45°) configuration
possesses the relatively lowest possible energy. As these / non-bonding states are dominating the
VBM, we also found that the bandgap in this configuration is widened slightly to be 0.28 eV,
compared with 0.15 eV of the (0°,0°,0°) configuration.

The unfavourable states corresponding to the non-bonding p-orbitals of the / atoms of the
PbI inorganic framework are likely to adjust themselves to dwell in a more stable configuration
by deviating the I3—Pb—I3 angles of the (0°,0°,0°) and the (90°,60°,45°) configurations to be less
than 180°, i.e. around 173° and 167°, respectively, leading to the so-called octahedral tilting. The
investigation of octahedral tilting in MAPI was thoroughly carried out and discussed by J. H. Lee
et al [50].

In addition, Figures 14 and 15 also show a couple of nearly non-dispersive bands in the
valence and the conduction bands, which can be assigned to the FA molecule. The dashed circles
reveal the weak interaction between the FA cation and the Pb/, inorganic framework. The
interaction is a little stronger in the (90°,60°,45°) configuration. Apart from this weak interaction,

the FA cation seems to only exert strain onto the Pb/, cage, leading to the structural asymmetry
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which eventually leads to the Rashba splitting effect, as will be discussed next. These
aforementioned results are similar to a previous work on MAPI which suggested that MAPI is a
dynamical bandgap semiconductor [21].

The most important effect of our specific orientations of the FA molecule is to remove
the inversion symmetry. The perovskite structure already becomes non-centrosymmetric. This
symmetry breaking regime has a crucial impact on the electronic structure. Apart from the
vertical SOC splitting, the electronic band also exhibits an exotic horizontal spin-splitting
phenomena [57], the Rashba/Dresselhaus effect [45], as zoomed in the inset of Figures 14 and 15.
For the (0°,0°,0°) configuration, the Rashba splitting in the conduction band minimum is at
around R + 0.01 (see Figure 14 and the inset). For the (90°,60° 45°), configuration, the Rashba
splitting in conduction band minimum is at around R + 0.025 (see Figure 5 and the inset). From
these R-points, the Rashba parameters can be evaluated by calculating 2a = Ae/Ak[58]. For the
(90°,60°,45°) configuration, along the R - M branch, the Rashba parameters are responsible for
ac ~3.0 and ay ~1.4 of the CBM and VBM, respectively, and along the R — T branch, a; ~2.3
and ay ~1.4 for the CBM and VBM, respectively. For comparison, MAPI also exhibits the

Rashba splitting and a~2 as reported by Mosconi et al [58].
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Figure 16: The projected-density of states for the relaxed FAPI. The relaxed structure with
relaxed (0°,0°,0°) oriented FA with a peak of 13 shifting leftwards compared to that of the perfect

cubic FAPI (a). The corresponding FAPI with (90°,60°,45°)-FA (b).
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5. CONCLUSION

Effects of the organic molecules of formamidinium (FA) on FAPbI, are thoroughly and
systematically inspected. Equipped with Euler’s rotation, the mechanistic explanations of both the
structural and electronic properties of this system emerge unexpectedly. The perfect cubic
structure of FAPI had first been optimised to possess the optimal energy structure. The agreeable
values of kinetic energy cutoff and k-point mesh as the selected products from the convergence
tests were hereafter used throughout all processes of calculation. Then, the relaxed structure was
kept fixed except for the organic molecule in order to be applied a rigid turn based on Eulerian
angles to verify its energies accounting for different orientations of the FA cation. Crucially, the
energy landscapes responsible for different orientations of the organic molecule were studied and
turned out that the relatively lowest energy structure of FAPI happens to consist of FA cation
oriented in (¢p = 90°,6 = 60°,1 = 45°) direction and its equivalent orientations. The flipping
energy barriers were interpreted to be thermal agitations required for FA to turn to other
orientations. As a consequence, the electronic band structures of two cases, i.e. FAPI with
(0°,0°,0°)-FA and that with (90°,60°,45°)-FA display various types of phenomena. Specifically,
the latter one exhibits an interesting result, i.e. the well-known Rashba-Dresselhaus effect
originating from concurrent appearance of spin-orbit interaction and inversion symmetry breaking
in crystal structure. As for the future work, various types of organic molecules dwelling in the
perovskite structure are to be studied. Not only do theirs structural and electronic properties, but
also do their optical response that leads to industrialisation. Finally, we suggest that a possible
way for engineering the band-edge tunable FAPI is to exploit its temperature dependence. Not
only may these discoveries possibly enhance the utilisation of this material in the memory and

data storage industries, but also vivid potential candidate for optoelectronic applications.
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APPENDICES

A. Energy minimisation
The ground-state energy can be achieved by adopting variational principle, specifically Euler’s

equation with a separate Lagrange multiplier (1;), which is written as

N
&iﬂ [e[n(r)] - Z P f n(r)dr] ~0 (A1)

Due to the normality constraint of each orbital, the number of electrons must be conserved,

N
z f WK (1) WES () dr = N, (A2)
Recall the total energy functional:
n(r )n(r’)
en(r)] = Ton(r)] + ff —————drdr +fVext(r) n(r)dr (A3)
tExc[n(r)],

where Ty[n(r)]is defined as the kinetic energy of the non-interacting electron gas with density

n(r).

To[n(r)] Z f WS (1) < ) WES (r)dr. (A4)

According to Liu et al. [59], a rigorous proof of derivative of Ty[n(r)] was discussed in detail.
Thus we have

8To[n()]

Sn(r) + Veff (1') = A, (A5)

where

Vers(r) = ext(r)-l'fl dr + Vxc, (A.6)

and the exchange-correlation potential is written as

OE
Vyc(r) = # . (A7)

Eq. (A.5) with the constraint (A.2) is exactly the same equation as one obtains from DFT when
one applies it to a system of non-interacting electrons moving in the external potential V(7).

Therefore, we can write Eq. (A.5) as
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1 8To[n()]
wikS () swKS(r)

+ Verr(r) = A, (A.8)

Finally, to solve for the ground —state energy and density, all one has to do is solve the one-
electron equation,

2
[— % + Vess (r)] Wi (r) = WK (). (A.9)

B. Euler’s method for the Hartree energy

Given the Hartree energy as,
n(r)n r’
JIn(r)] = ﬂ (r) ( ) dr’ (A.10)

According to variational principle, one can implement Eq. (A.11) in order to obtain the Hartree
potential. The functional derivative of any functional, J[n(r)], is defined by Eq. (A.11), where
¢(r) is an arbitrary function.

f &/[n(r)]

) p(r)dr = [— n(r)+s¢(r)]] (A.11)

£=0

ff [n(r) + ep ()] (") + e (r')]
de2

=1 drd] (A.12)

£=0

-gnww@) ﬂ"“WW)rm'cmw

lr — 1|

Since r and 7"’ are interchangeable, thus the two integrands are equal. As a result, the variation of

the Hartree energy is expressed as

§jn(] _ [ n()

sn(r) ) lr—1'|

(A.14)
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C. Atomic coordinates of the input structure of FAPI

The cubic structure of HC(NH,),Pbl; or FAPI [19] with a lattice parameter of 3.3613 A
consists of atoms as described in Table 2 and depicted in Figure 16.

The relaxed structure of FAPI with a lattice parametre of 3.3613 A consists atoms as
described in Table 3 and depicted in Figure 17.

The lowest energy structure of FAPI with a lattice parametre of 3.3613 A consists atoms

as described in Table 4 and depicted in Figure 18.

Table 2: Atomic fractional coordinates of FAPI

Atoms X y z

C 0.569011 | 0.500000 | 0.500000

N1 0.475280 | 0.682927 | 0.500000

N2 | 0.475280 | 0.317071 | 0.500000

H1 0.741416 | 0.500000 | 0.500000

H2 | 0.814009 | 0.567630 | 0.500000

H3 0.315280 | 0.704462 | 0.500000

H4 | 0.315280 | 0.295538 | 0.500000

H5 0.567630 | 0.185991 | 0.500000

Pb 0.000000 | 0.000000 | 0.000000

I1 0.000000 | 0.500000 | 0.000000

12 0.500000 | 0.000000 | 0.000000

I3 0.000000 | 0.000000 | 0.500000

Table 3: Atomic fractional coordinates of relaxed FAPI with (0°, 0°, 0°)-FA

Atoms X y zZ

C 0.572103 | 0.4997166 | 0.500000

N1 0.478304 | 0.682889 | 0.500000

N2 0.478309 | 0.316526 | 0.500000

H1 0.743669 | 0.500131 | 0.500000




Atoms X y z
H2 0.570939 | 0.813387 | 0.500000
H3 0.319234 | 0.703188 | 0.500000
H4 0.319128 | 0.296325 | 0.500000
H5 0.571127 | 0.186119 | 0.500000
Pb 0.001372 | 0.000009 | 0.000000
I1 0.005391 | 0.499948 | 0.000000
12 0.493962 | -0.000113 | 0.000000
I3 -0.029541 | -0.000127 | 0.500000

Table 4: Atomic fractional coordinates of relaxed FAPI with (90°, 60°,45°)-FA

Atoms X y z

C 0.454035 | 0.546184 | 0.500231
N1 0.460160 | 0.416006 | 0.340906
N2 0.583702 | 0.540707 | 0.660055
H1 0.332394 | 0.667728 | 0.499895
H2 0.348420 | 0.427592 | 0.225528
H3 0.566894 | 0.296596 | 0.331098
H4 0.703094 | 0.434121 | 0.670797
H5 0.571145 | 0.652515 | 0.775273
Pb 0.001541 | -0.005318 | 0.999580
I1 0.014478 | 0.499174 | 0.008818
12 0.497450 | -0.013184 | 0.989476
13 -0.037545 | 0.038506 | 0.498344
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Figure 19: relaxed o—FAPI with (90°,60°,45°)-FA
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D. Energy landscapes

Energy landscapes are scatter-plotted in three-dimensional space, where the scattered data were

interpolated adopting Renka-Cline gridding method [47]. The energy landscapes with fixed ¢p—

angle are plotted in Figures 20-26.
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Figure 20: Energy landscape of (¢ = 0°,6,¢9)—FA
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Figure 27: The energy landscape cross section of the (90°,60°,45°)—FA configuration.

E. Equivalent configurations

The relaxed structures of three configurations possessing nearly the same value of total energies

are described in Table 5. The equivalent results from the fact that C—H bond is likely to point to /

atoms: /1, 12, I3.
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Table 5: The bond-lengths of three different structures of FAPI: unrelaxed structure, (0°,0°,0°)—

FA structure, and (90°,60°,45°)—FA structure.

i (0°,0°,0°)-FA | (90° 60° 45°)-
Types of bonding | Unrelaxed (A) ) i
(A) FA (A)
Pb-11 3.18 3.18 3.15
Pb-12 3.18 3.13 3.15
Pb-13 3.18 3.18 3.19
11-H1 357 3.59 3.87,3.96
11-H2 4.64,5.22 4.66, 5.19 2.57
11-H3 3.98,5.52 3.97,5.55 3.73,4.27
11-H4 3.98,5.22 3.97,5.55 2.95,4.67
11-H5 4.64,5.22 4.66,5.20 3.33,3.96
2-H1 4.75 4.77,4.77 3.97,3.86
2-H2 3.42 3.43 3.32,3.97
12-H3 3.87 3.86 2.96, 4.65
12-HA4 3.87 3.86 3.73,4.26
12—-H5 3.42 3.43 2.57
13-H1 3.57 3.49 333
13-H2 2.98 2.80 3.89
13-H3 2.77 291 3.19
13-H4 2.77 291 3.20
13-HS5 2.97 2.80 3.92




Table 6: Some possible lowest energy relaxed configurations of FAPI

Bond-lengths

(90°,60°,45°)-FA

(30°,60°,45°)-FA

Pb-I1 3.15 3.19
Pb-12 3.15 3.17
Pb-I3 3.21 3.20
11-H1 3.87,3.96 3.80,4.06
11-H2 2.57 3.28
11-H3 3.73 3.00
11-H4 2.95 3.69
11-H5 2.57 2.56
12-H1 3.97,3.86 3.45
12-H2 3.32,3.97 3.82
12-H3 3.32 3.06
12-H4 4.26,3.73 3.11
12-H5 2.57 3.11
13-H1 3.33 3.84,3.94
13-H2 4.94 2.58
13-H3 3.19 3.83
13-H4 3.20 2.97
13-H5 391 3.31
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