MOLECULAR DESIGN OF BENZOXAZINES: AN APPROACH FOR INCLUSION COMPOUNDS

Ms. Ratinan Pacharaprakiti

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2001 ISBN 974-13-0724-1

Thesis Title: Molecular Design of Benzoxazines: an Approach for

Inclusion Compounds

By: Ms. Ratinan Pacharaprakiti

Program: Polymer Science

Thesis Advisors: Asst. Prof. Suwabun Chirachanchai

Prof. Hatsuo Ishida

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyalint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Suwabun Chirachanchai)

(Prof. Hatsuo Ishida)

(Assoc. Prof. Sujitra Wongkasemjit)

บทคัดย่อ

นางสาวรตินั้นท์ พัชรประกิติ: การออกแบบเบนซอกซาซีนในระดับโมเลกุล: การไปสู่ สารประกอบอินคลูชั่น (Molecular Design of Benzoxazines: an Approach for Inclusion Compounds) อ. ที่ปรึกษา: ผศ. คร. สุวบุญ จิรชาญชัย และ ศ. คร. ฮัทสุโอะ อิชิคะ (Prof. Hatsuo Ishida), 42 หน้า ISBN 974-13-0724-1

อนุพันธ์ของเบนซอกชาซีนไดเมอร์ ไดเมอร์ที่มีหมู่เอสเทอร์ และสารประกอบวงแหวน ออลิโกเบนซอกซาซีนที่มีความแตกต่างในโครงสร้างที่หมู่วงฟืนอล และหมู่ที่ให้อิเล็คตรอนได้ถูก ออกแบบและสังเคราะห์ได้สำเร็จดังที่ได้ตรวจสอบผลวิเคราะห์โครงสร้างด้วยเทคนิค FTIR, ¹H-NMR, EA และ MS ปรากฏการณ์อินคลูชั่นศึกษาโดยการจำแนกไอออนด้วยเทคนิคปีเคอร์ สัน (Pedersen's technique) ที่ความเข้มข้นของไดเมอร์และโลหะไพเครตกล่าวคือ โซเดียม และโพแทสเซียมเท่ากับ 5.6×10⁻² และ 7×10⁻⁵ โมลาร์ (Molar) ตามลำดับ การทดลองให้ผลว่า เบนซอกซาซีนไดเมอร์และไดเมอร์ที่มีหมู่เอสเทอร์สามารถจับไอออนโลหะได้ 43-62% และ 75-94% ตามลำดับ การที่ความสามารถในการจับไอออนแตกต่างกันตามประเภทของเบนซอกซาซีน แสดงให้เห็นถึงอิทธิพลของโครงสร้างร่างแหพันธะไฮโดรเจน และความมีบริเวณที่มีอิเล็คตรอน หนาแน่นในโครงสร้างของเบนซอกซาซีนแต่ละชนิด ในกรณีของสารประกอบวงแหวนออลิโก เบนซอกซาซีนพบว่าไม่มีการจับไอออนโลหะ ซึ่งบ่งถึงขนาดช่องว่างที่ไม่เหมาะสมกับขนาดของ ไอออนโซเดียมและโพแทสเซียม

ABSTRACT

4272011063: POLYMER SCIENCE PROGRAM

Ratinan Pacharaprakiti: Molecular Design of Benzoxazines: an

Approach for Inclusion Compounds.

Thesis Advisors: Asst. Prof. Suwabun Chirachanchai,

Prof. Hatsuo Ishida, 42 pp ISBN 974-13-0724-1

Keywords: Benzoxazine Monomer/ Benzoxazine Dimer/ Esterified Dimer/

Cyclic Oligobenzoxazine/ Metal Picrate/ Inclusion Phenomena

A series of benzoxazine dimer, esterified dimer, and cyclic oligobenzoxazine derivatives having different phenol rings and electron donor groups were designed and successfully prepared as structural characterized by FTIR, ¹H-NMR, EA, and MS. The inclusion phenomena with metal ions were studied by Pedersen's technique using metal (sodium, and potassium) picrate salts, and the prepared dimers at the concentrations of 5.6×10^{-2} and 7×10^{-5} M, respectively. Benzoxazine dimers showed ion extraction ability at 43-62% while that of esterified dimers at 75-94%. The ion extraction ability depended on the type of benzoxazine dimer implies the effect of hydrogen bonding network and the electron rich area in each benzoxazine dimer structure. For cyclic oligobenzoxazine, unexpectedly, the ion interaction could not be observed which implies that the cavity size was not proper for the sodium and potassium metal ions.

ACKNOWLEDGEMENTS

The author would like to express deeply gratitude to her Thai advisor, Asst. Prof. Suwabun Chirachanchai who gave intensive suggestions, useful guidances, laboratory skill, and vital help throughout this research work. She also would like to give the great appreciation to her U.S. advisor, Prof. Hatsuo Ishida for recommendation on the research.

She greatly appreciates all Professors and teachers for tendered invaluable knowledge at the Petroleum and Petrochemical College, Chulalongkorn University. She would like to give her appreciation to Assoc. Prof. Sujitra Wongkasemjit for her helps in the use of mass spectroscopy and Dr. Buncha Pulpoka, department of Chemistry, Faculty of Science, Chulalongkorn University not only for ¹H-NMR measurement, but also his recommendation in ion extraction study. Her great gratitude is extended to thank the National Metal Materials Technology Center (MTEC) for mass spectroscopy (TOF) measurement.

She would like to extend her thanks to Mr. Apirat Laobuthee for intensive guidance and suggestion throughout this work. In addition, she also wishes to express her appreciation to the entire college members, her friends at the Petroleum and Petrochemical for warm support.

Last but not least, the sincerest appreciation is to her family whose love, encouragement, and understanding played the greatest role in her success.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	V
	Table of Contents	vi
	List of Schemes	X
	List of Figures	xii
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE SURVEY	3
	2.1 Host-Guest Chemistry	3
	2.2 Well-Known Inclusion Compounds	4
	2.2.1 Crown Compound	4
	2.2.2 Cyclodextrin	5
	2.2.3 Calixarenes	6
	2.3 From Calixarenes to Benzoxazine	7
	2.4 Molecular Design	8
	2.5 Cyclization	11
Ш	EXPERIMENTAL	13
	3.1 Materials	13
	3.2 Instruments	13

CHAPTER	PAGE
3.2.1 Fourier Transfor	m Infrared Spectro
photometer (FTIR	•
3.2.2 Fourier Transform	
Resonance Spectr	rometer (FT-NMR) 13
3.2.3 Ultraviolet-Visibl	e Spectrophotometer
(UV-Vis)	14
3.2.4 Mass Spectromete	r (MS) 14
3.2.5 Vortex Mixer	14
3.3 Methodology	14
3.3.1 Preparation of Be	nzoxazine Monomer;
3,4-Dihydro-6-me	ethoxy-3-propyl-2H-
1,3-benzoxazine,	1 , 3,4-Dihydro-6-me
thyl-3-propyl-2H-	-1,3-benzoxazine, 2
3.3.2 Preparation of E	Benzoxazine Dimer;
N,N-bis(5-methox	xy-2-hydroxybenzyl)
propylamine, 3, 1	N,N-bis (5-methyl-2-
hydroxybenzyl) p	ropylamine, 4 15
3.3.3 Preparation of Est	terified Dimer;
N,N-bis (5-metho	xy-2-benzoylbenzyl)
propylamine, 5, N	I,N-bis (5- methyl-2-
benzoylbenzyl) pr	ropylamine, 6 16
3.3.4 Preparation of C	yclic Oligobenzoxa
zine, 7	17
3.3.5 Preparation of M	Ietal Picrate Solution 17
3.3.6 Study on Ion Extr	action Ability 18

CHAPTER			PAGE
IV	RESULT	S AND DISCUSSION	19
	4.1 Chara	cterization of Benzoxazine Monomers	19
	4.1.1	Structural Characterization of 3,4-Dihy	
		dro-6-methoxy-3-propyl- 2H-1,3-ben	
		zoxazine, 1	19
	4.1.2	Structural Characterization of 3,4-Dihy	
		dro-6-methyl-3-propyl-2H-1,3-benzox	
		azine, 2	21
	4.2 Chara	cterization of Benzoxazine Dimers	21
	4.2.1	Structural Characterization of N,N-bis	
		(5-methoxy-2-hydroxybenzyl) propyla	
		mine, 3	21
	4.2.2	Structural Characterization of N,N-bis	
		(5-methyl-2-hydroxybenzyl) propyla	
		mine, 4	24
	4.3 Chara	cterization of Esterified Dimers	26
	4.3.1	Structural Characterization of N,N-bis	
		(5-methoxy-2-benzoylbenzyl) propyla	
		mine, 5	26
	4.3.2	Structural Characterization of N,N-bis	
		(5-methyl-2-benzoylbenzyl) propyla	
		mine, 6	27
	4.4 Struct	tural Characterization of Cyclic Oligomer,	
	7		29
	4.5 Ion E	xtraction Studies	31
V	CONCLI	ISIONS	38

CHAPTER	PAGE
REFERENCES	39
CURRICULUM VITA	E 42

LIST OF SCHEMES

SCHEME		PAGE
2.1	Model of inclusion compound (Fisher, 1894)	3
	Crown ether	4
	Cyclodextrin	5
	Calix[4]arenes	6
2.5	Four possible conformations of calixarenes (a) cone,	
2.3	(b) partial cone, (c) 1,2-alternate, and (d) 1,3-alter	
	nate (Shinkai, 1993)	7
2.6	Structures of (a) calixarenes, and (b) oligobenzoxa	8
2.0	zine	O
2.7		
	groups (pencil-like compound)	9
2.8	Lasso-like compound	10
	Tong-like compound	10
2.10	O Cyclization method (Dietrich <i>et al.</i> , 1993)	11
2.1	l Heterogeneous method of acyloin cyclization	
	(Herceg et al., 1972)	12
2.12	2 Cyclization in solid-liquid heterogeneous medium	
	on a polymer support (Dietrich et al., 1993)	12
3.1	Preparation of benzoxazine monomers 1, and 2	15
3.2	Preparation of benzoxazine dimers 3, and 4	15
3.3	Preparation of esterified dimers 5, and 6	16
3.4	Preparation of cyclic oligobenzoxazine 7	17
4.1	Possible fragmentation of 1, (a) $m/z = 136$, (b) m/z	
	= 71	19

SCHEME		PAGE
4.2	Possible fragmentation of 3, (a) $m/z = 194$, (b) m/z	
	= 137	22
4.3	Expected hydrogen bonding network in 3, and 4	33
4.3	Expected structures with high electron density	
	region of 5, and 6	35
4.5	Structures of 5, 6, and 8 (Techakamolsuk et al.,	36
	1999)	

LIST OF FIGURES

FIGURE	PAGE
4.1 ETIP anatrum of 1	20
4.1 FTIR spectrum of 1	
4.2 MS spectrum of 1	20
4.3 FTIR spectrum of 2	21
4.4 FTIR spectrum of 3	23
4.5 ¹ H-NMR spectrum of 3	23
4.6 MS spectrum of 3	24
4.7 FTIR spectrum of 4	25
4.8 ¹ H-NMR spectrum of 4	25
4.9 FTIR spectrum of 5	26
4.10 ¹ H-NMR spectrum of 5	27
4.11 FTIR spectrum of 6	28
4.12 ¹ H-NMR spectrum of 6	28
4.13 FTIR spectrum of 7	30
4.14 ¹ H-NMR spectrum of 7	30
4.15 MS spectrum of 7	31
4.16 Ion extraction of 3 with ○) Na; ▲) K, at picrate salt	
concentration 7x10 ⁻⁵ M	32
4.17 Ion extraction of 4 with ○) Na; △) K, at picrate salt	
concentration 7x10 ⁻⁵ M	32
4.18 Extraction percentage of benzoxazine dimer	
derivatives 3-6, and 8 at concentration 5.6×10^{-2} M	
with sodium picrate at concentration $7x10^{-5}$ M	33
4.19 Ion extraction of 5 with ○) Na; △) K, at picrate salt	
concentration 7x10 ⁻⁵ M	3/1

FIGURE	PAGE
4.20 Ion extraction of 6 with ○) Na; ▲) K, at picrate salt	
concentration 7x10 ⁻⁵ M	34
4.21 Ion extraction of 7 with ○) Na; △) K, at picrate salt	
concentration 7x10 ⁻⁵ M	37