
CONCEPTUAL FRAMEWORK

Economists and financial market participants often hold quite different points 
of view about the pricing of assets3. Given the assumption of rational behavior and of 
rational expectations, economists usually believe that the price of an asset must simply 
reflect market fundamentals, that is to say, can only depend on information about current 
and future returns from this asset. Deviations from this market fundamental value are 
taken as evidence of irrationality. On the other hand, financial market participants believe 
that fundamentals are only part of what determines the price of assets. Extraneous events 
may well influence the price, is believed by other participants to do so; “crowd 
psychology” becomes an important determinant of prices.

Oliver J. Blanchard and Mark พ. Watson (1982) mentioned that “the 
economists have overstated their case. Rationality of both behavior and of expectations 
often does not imply that the price of an asset be equal to its fundamental value. In other 
words, there can be rational deviations of the prices from fundamental value, rational 
bubbles”.

3 Oliver J. Blanchard and Mark พ . Watson, “Bubbles, Rational Expectations and Financial Markets,” 
NBER Working Paper series. No. 945 (July 1982) : 1-28.
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2.1) R a tio n a l Bubbles

Grant McQueen and Steven Thorley (1994) stated that “Rational 
speculative bubbles allow stock prices to deviate from their fundamental value without 
assuming irrational investors4”. Investors realize that prices of assets exceed 
fundamental values, but they believe there is a good probability that the bubble will 
continue to expand and yield a high return. The probability of a crash is exactly 
compensated by the probability of a high return; thus, the model shows the rationality of 
staying in the market despite the overvaluation. They also concluded, “the empirical 
characteristics of bubbles include a long-run up in price or a long run of positive 
abnormal returns followed by a crash”.

2.1.1) Bubble Model

A simple efficient market condition is that the expected return of an asset is
equal to the required return

(1) E,[R,+I ]  = r,+i

where E, denotes the mathematical expectation given the information set at time t, R,+1 = 

(Pt+I -  Pi +  d,+j )/p, , and r t+1 is the time-varying required rate of return. In terms of

Grant McQueen and Steven Thorley, “Bubbles, Stock Returns and Duration Dependence,” Journal of 
Financial and Quantitative Analysis 29, No.3 (September 1994) : 379-401.
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prices, the competitive equilibrium condition in Equation (1) states that the current price 
equals the expected future price and dividend discounted at the tax-adjusted return 
required by investors,

n = E \ p , +X + d ,+1]
(2) p ' = (1 + '• , ,1)

Solving Equation (2) recursively yields one solution to the equilibrium 
condition: the fundamental value of the asset,

* _ y 1 E t [^ 1+1 ]
๓  I I  O ' )

However, Shiller(1978), Blanchard and Watson(1982), and West(1987),

among others, note that any price of the form,

(4) p 1 = p]  + b 1 where E1[b 1+1]= (l + rt+1)bt

is a solution to the equilibrium condition as well. Thus, the market price can deviate from 
the fundamental value by a rational speculative bubble factor, bt, if, on average, the factor 
grows at the required rate of return.
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Diba and Grossman (1987), (1988) show that the bubble model in equation
(4) rules out negative bubbles since they have to grow more negative over time, yet total 
stock prices will never be negative. The theoretic potential for positive, but not negative, 
bubbles suggests that bubble tests should allow for nonlinearity. In contrast to traditional 
variance bound and time series tests, the duration dependence test developed in the thesis 
specifically allows for nonlinearity by estimating separate hazard rates for runs of 
positive and negative returns.

The following rational bubble process, based on Blanchard and Watson 
(1982), allows for bubbles to grow and burst,

(5) b 1 = 0  + r i + 1 1__ 0______ K with probability ท,
1+1 ท ท

= a 0 , with probability (1 -ท).

In this process, the bubble factor grows by the exact amount needed to 
compensate investors for the probability, 1-71, that the bubble will crash and the price 
will revert to the small initial bubble value, a 0 >0. In Blanchard and Watson’s original 
model, the bubble crashes to zero, a 0 =0. The additional of the a 0 term, similar to West 
(1988) and Bollerslev and Hodrick (1992), facilitates the initial bubble and allows for 
multiple crashes since bubble cannot restart after they crash completely (see Diba and 
Grossman (1987), (1988)). In order for the Blanchard and Watson model to be consistent 
with the two traditional characteristics of bubbles, a long run-up in price followed by a
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crash, the probability of the bubble continuing, 7โ, must be greater than Vi. Blanchard 
and Watson (1982), show that the expected duration of the bubbles is (1- 7T)'1; therefore, 
the restriction that 7โ>1/2 result in the average bubble lasting more than 2 periods.

The rational speculative bubbles model allows for unexpected price changes, 
e,+i = (R, + 1  - r,+i) p, , from two unobservable sources: unexpected changes in the 
fundamental value,

(6) M , + i = p  *+1 + d  , + 1 -  0  + r 1+ \ ) p  t ’

and unexpected changes in bubble,

(7) TJt+i = bl+1 -  (l + rt+1 )bt

The observable unexpected price change e ( +1 = + ท , .  1 equals the sum of the
fundamental and bubble changes,

(8) e t + 1 = p  1 + 1 + ( 1 ~ -  ) ( ( 1 +  r  1 + 1 ) b  1 -  a  0 )

with probability ท,

= p  r +1 -  (l + r l +1 y> 1 + a 0 , with probability (1 -  ท )
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As required by the efficient markets condition, the expected value of the total 
price innovation is zero. However, the probability of the positive innovation or abnormal 
return can be greater than Vi even if the fundamental innovations are symmetric around 
zero. This is due to the inherent skewness of the bubble innovations. If the bubble 
continues, its innovation is positive and small relative to an infrequent but large negative 
innovation if the bubble bursts. The asymmetry of bubble innovations results in observed 
excess returns that tend to be positive while the bubble continues, causing 
autocorrrelation and longer runs of positive excess return than expected from a 
temporally independent series.

For illustrative purposes, assume that fj.t+ 1  is unimodal and symmetrically 
distributed with mean zero. From equation (8), the probability of a negative innovation, 
is k  , +1 = prob [e t +1 < 0 J

(9) At+1 = 7rF 0  -  ท )
( (  1 +  r t + , ) b , -  a o ) + (1 - r c ) F [ ( l  + rl +1) b, -  a 0]

where F(.) is the cumulative density function for Pt+1 . For value of ao, and consequently 
bt , greater than zero, the observed excess return distributed is negatively skewed so that 
^  t + 1 is less than Vi. Specially, the probability of a negative innovation decreases with 
the bubble factor,

(10) ÔÀt + 1

dbt = - ( l - K ) ( l  + rt+1) f ( J ± H L L (( l + rt+1)b, a0))~ f ( ( l  + rl+1)b, - a 0) <0.
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With TT >1/2, the absolute value of the argument of the second density,/^, is 
greater than the first , making the term in square brackets positive. This illustration 
assumes fundamental innovations are symmetrically distributed. From many numerical 
analysis shows that the larger the bubble, the smaller the probability of an observed 
negative price change.

In addition to autocorrelation and skewness, bubble also induce kurtosis by 
mixing low variance return distributions associated with small bubbles with higher 
variances as the bubbles grow. Unfortunately, diagnostic tests for the bubbles based on 
positive autocorrelation, skewness, or kurtosis are inconclusive, even if significant, 
because fundamental price movements can also be associated with these attributes.

Equation (5) and (10) suggest a more discriminating testable implication 
about price innovations without directly observable fundamental values. Equation (5) 
requires that the bubble is explosive, growing in each period that it survives. Equation 
(10) shows that larger bubble factors result in a lower probability of a negative excess 
return. As the bubble component grows, it begins to dominate the fundamental 
component; consequently, negative abnormal returns become less likely, occurring 
primarily when the bubble crashes. Thus, a log run of positive excess returns suggests the 
presence of the bubble, and a bubble decreases the probability of a negative abnormal 
return. Together, Equation (5) and (10) imply that if price contain bubbles, then run of 
observed positive abnormal returns will exhibit duration dependence with an inverse 
relationship between the probability of a run ending and the length of the run. Formally,
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the probability of a negative observed innovation conditional in a sequence of i prior 
positive innovations, ht = Pr o b (e t < 0|e,_ 1 > 0 ,e (_,> 0,..., e,_; > 0 , 0 ) ,  
decreases with i. That is, Equations (5) and (10) imply that hj+ 1  < hi for all i if bubble are 
present. This is true even if the bubble crashes probability, (1-7โ), is constant. Since 
bubbles cannot be negative, a similar inequality does not hold for runs of negative 
abnormal returns. Consequently, bubbles generate duration dependence in runs of 
positive, but not negative abnormal returns.

2.2) D u ra tio n  Dependence

To test duration dependence, returns are transformed into series of run lengths 
on positive and negative observed abnormal returns. For example, a return series of four 
positive abnormal returns followed by three negative, two positives and finally four 
negative abnormal returns is transformed into two data sets: a set for runs of positive 
abnormal returns with values of 4 and 2 and a set for runs of negative abnormal returns 
with values of 3 and 4. The separation of returns into two states is similar in nature to the 
tests by Blanchard and Watson (1982), Evans (1986), and Mcqueen and Thorley 

(1991).

Formally, the data consist of a set, St, of T observations on the random run 
length, /. A run is defined as a sequence of abnormal returns of the same sign. Thus, /  is a 
positive valued discrete random variable generated by some discrete density function,/ = 
Prob(7—i), and corresponding cumulative density function, Fi = Prob(7<z). Define A, and
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P i  as the count of complete runs and partial runs, respectively, of length i in the sample. 
A partial run may occur in the beginning (left-censored) and at the end (right-censored) 
of the time period being examined. The density function version of the log likelihood is

(11) L(0  \ร1. ) =  Ê  N ,L n f  1 (1 -  F 1) ,

where 9 is vector of parameters. The hazard function, hi = Prob(7=z 11 >i), represents the 
probability that a run ends at i, given that it lasts until i. A hazard function specification 
describe data in terms of conditional probability in contrast to the density function 
specification, which focus on unconditional probabilities. The choices between a hazard 
and density specification depends on the economic question of interest. This article 
investigates whether the probability that a stock return run continues is conditional on the 
length of the run; consequently, the hazard specification is appropriate. An additional 
reason for using the hazard specification is the lack of closed-form multi-parameter 
discrete density functions. The hazard function is related to the density function by

(12) hi = (1 and /,• = hf [  C1 -  hi)

Using the relationship in Equation (12), the hazard function version of the log likelihood 
is 13

(13) L { 6  |s 7. ) =  X  N  1 Lnh 1. + M .Ln (1 -  h 1.) + Q  1. Ln (1 -  h 1. ),
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where Mi and Qi are the count of completed and partial runs with a length greater that /', 
respectively. The terms containing Pi and Qi in the log likelihood (Equation (11) and
(13) ) are included to incorporate information contained in partial runs and may be 
ignored in large samples.

To perform tests of duration dependence, a functional form must be chosen 
for the hazard function. Similar to Mcdonald, McQueen, and Thorley (1992), the tests 
of duration dependence in this thesis are based on the logistic transformation of the log of 
i

( 14) h  i ~  I  +  6 -  ( a  + ( U n i  )

The log-logistic function transforms the unbounded range of a + p  Ln (z) into 
the (0,1) space of hi '  the conditional probability of ending a run. The null hypothesis of no 
bubbles implies that the probability of a run ending is independent of the prior returns or 
that positive and negative abnormal returns are random. In term of the model, the null 
hypothesis of no duration dependence is that p  = 0 (constant hazard rate or geometric 
density function). The bubble alternative suggests the probability of a positive run ending 
should decrease with thee run length or that the value of the slope parameter, p, is 
negative (decreasing hazard rate).

Tests are performed by substituting Equation (14) into (13) and maximizing 
the log likelihood function with respect to a and p. Under a suitable description of the
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data set, hazard function can be estimated as logit regression. In the logit transformation, 
the independent variable is the log of the length of the run and the dependent variable is 1 
(0) if the run ends (does not end) in the next period. The Likelihood Ratio Test (LRT) of 
p  = 0 is asymptotically distributed X2 with one degree of freedom.


	CHAPTER 2 CONCEPTUAL FRAMEWORK
	2.1) Rational Bubbles
	2.2) Duration Dependence


