BIOHYDROGEN PRODUCTION FROM SYNTHETIC OILY WASTEWATER IN AN UP FLOW ANAEROBIC SLUDGE BLANKET REACTOR

Teerawat Sema

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole
2008

Thesis Title:

Biohydrogen Production from Synthetic Oily Wastewater in

an Upflow Anaerobic Sludge Blanket Reactor

By:

Teerawat Sema

Program:

Petrochemical Technology

Thesis Advisors:

Assoc. Prof. Sumaeth Chavadej

Asst. Prof. Pomthong Malakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Yanumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Assoc. Prof. Sumaeth Chavadej)

(Asst. Prof. Pomthong Malakul)

(Asst. Prof. Apanee Luengnaruemitchai)

(Dr. Malinee Leethochawalit)

ABSTRACT

4971022063: Petrochemical Technology Program

Teerawat Sema: Biohydrogen Production from Synthetic Oily

Wastewater in an Upflow Anaerobic Sludge Blanket Reactor.

Thesis Advisors: Asst. Prof. Pomthong Malakul, and Assoc. Prof.

Sumaeth Chavadej 80 pp.

Keywords: Biohydrogen/ Biodegradation/ Anaerobic treatment/ UASB/

Solubilization/ Nonionic surfactant

In this research, an upflow anaerobic sludge blanket (UASB) reactor, with a 16-liter working volume, was constructed from borosilicate glass for treating oily wastewater simulated from distilled palm oil and water, and for producing biohydrogen. A mixed bacterial culture was used as degrading microorganisms at an optimum temperature of 37°C and uncontrolled pH. Polyethylene sorbitan monoleate, or Tween 80, a nonionic surfactant, was used to enhance oil solubilization, and thus the biodegradation, as well as the biohydrogen production. The enhanced oil solubilization was first studied with various surfactant concentrations. At the optimum surfactant concentration, the effect of oil loading rate was then investigated. The percent oil removal (measured as COD and oil content in % v/v), biogas production rate, and hydrogen content in the produced gas were the main parameters observed in this study. In the solubilization study, the optimum surfactant concentration was found to be 0.10% w/v (which is equivalent to weight ratio of oil to surfactant of 18.8:1). The effect of COD loading rate was also determined and it was found that a 20 kg COD/m³d loading was the optimum COD loading rate. Under this optimal condition, 68.9% of COD removal and 89.9% of oil removal were achieved. Moreover, the biogas was composed of 81.8% CO₂, 28.1% CH₄, and 10.1% H₂ with the specific production rate of 1.37, 0.62, and 0.22 (I/d)/reactor volume, respectively.

บทคัดย่อ

ธีรวัฒน์ เสมา: การผลิตไฮโครเจนชีวภาพจากน้ำเสียสังเคราะห์ที่มีน้ำมันเป็นองค์ประ กอบในถึงปฏิกรณ์แบบยูเอเอสบี (Biohydrogen Production from Synthetic Oily Waste water in an Upflow Anaerobic Sludge Blanket Reactor) อ. ที่ปรึกษา : รศ. คร. สุเมช ชวเคช และ ผศ.คร. ปมทอง มาลากุล ณ อยุชยา 80 หน้า

ในงานวิจัยนี้ถังปฏิกรณ์แบบยูเอเอสบีขนาคความจุ 16 ถิตรถูกสร้างขึ้นจากแก้วเพื่อใช้ ในการบำบัดน้ำเสียสังเคราะห์ที่ผลิตจากน้ำมันพืชที่ได้รับการกลั่นแล้วผสมกับน้ำและเพื่อผลิต ไฮโครเจนชีวภาพ โคยใช้เชื้อแบคทีเรียหลายชนิคผสมกัน ที่อุณหภูมิที่เหมาะสมคือ 37 องศา เซลเซียสและ ไม่ ได้ทำการควบคุมค่าพีเอช สารลดแรงตึงผิวชนิด ไม่มีขั้ว คือ โพลีออกซีเอทีลีน ซอ บิแทน โมโนลีเอต หรือ ทวีน 80 ถูกนำมาใช้เพื่อเพิ่มการละลายของน้ำมันในน้ำ ทั้งยังสามารถช่วย เพิ่มการย่อยสลายทางชีวภาพและการผลิตไฮโครเจนชีวภาพได้อีกด้วย งานวิจัยในขั้นแรกคือ ศึกษาการละลายของน้ำมันในน้ำที่ความเข้มข้นของสารลดแรงตึงผิวต่างๆกัน เพื่อให้ทราบค่า ความเข้มข้นของสารลดแรงติงผิวที่เหมาะสมสำหรับการศึกษาขั้นต่อไป คือผลของอัตราภาระซีโอ คี โดยตัวแปรหลักที่ใช้ศึกษาได้แก่ ร้อยละของการสลายไปของน้ำมัน ซึ่งพิจารณาได้จากค่าซีโอดี อัตราการผลิตก๊าซชีวภาพ และสัดส่วนของก๊าซไฮโครเจนชีวภาพที่ผลิตได้ จากการทคลองพบว่า ความเข้มข้นของสารลดแรงตึงผิวที่ให้ผลในการละลายของน้ำมันดีที่สุดคือที่ร้อยละ 0.10 โดย น้ำหนักต่อปริมาตร ในการศึกษาผลของอัตราภาระซีโอดีต่อการย่อยสลายทางชีวภาพและการ ผลิตไฮโดรเจนชีวภาพ พบว่า อัตราภาระซีโอดีที่เหมาะสมที่สุดคือที่ 20 กิโลกรัมของซีโอดีต่อ ลูกบาศก์เมตรต่อวัน จากการทคลองในสภาวะที่มีสารลคแรงตึงผิวชนิคไม่มีขั้วและมีอัตราภาระซึ โอคีที่เหมาะสมที่สุดคังที่ได้กล่าวไว้ข้างค้นนั้น พบว่า ร้อยละ 68.83 ของซีโอคีและร้อยละ 89.84 ของน้ำมันถูกย่อยสลายไป นอกจากนี้แล้วยังผลิตก๊าซไฮโครเจนชีวภาพได้ร้อยละ 10.05 โดย ปริมาตร ที่อัตราการผลิต 0 1479 ลิตรต่อชั่วโมงอีกด้วย

ACKNOWLEDGEMENTS

This thesis could not have been possible without the assistance of the following individuals and organizations to whom the author would like to thank:

I am grateful for the partial scholarship and partial funding of the thesis work provided by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University.

First of all, I gratefully acknowledge Asst. Prof. Pomthong Malakul and Assoc. Prof. Sumaeth Chavadej from The Petroleum and Petrochemical College, Chulalongkorn University, for their encouragement, valuable guidance, and support. Moreover, I would like to thank them especially for providing many necessary things throughout this work.

Thanks are also extended to Mr. Chaturong Kongphriu from Suksomboon Palm Oil Company Limited, for kindly providing the bacterial sludge.

I would also like to thank Mr. Sanit Prinakorn and C.P.O. Poon Arjpru for their help and useful suggestions on reactor construction, and Mr. Robert Wright for his English advice.

I would also like to extend my gratitude to Ms. Ho Ngoc Linh and Ms. Pathamaporn Wattanaphan, the friends in my research group, who always encouraged and supported me when I was struggling to do my research.

Finally, I would like to express my deepest gratitude to my parents who always stand by and encourage me. My academic achievement is dedicated to them.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abst	ract (in English)	iii
	Abst	ract (in Thai)	iv
	Ackı	nowledgements	v
	Table	e of Contents	vi
	List	of Tables	ix
	List	of Figures	x
СH	APTE	R	
CL	I	INTRODUCTION	1
	П	LITERATURE REVIEW	3
	ш	EXPERIMENTAL	20
		3.1 Materials and Equipments	20
		3.2 Methodology	21
		3.2.1 Bacteria and Cultivation	21
		3.2.2 Feed Preparation	21
	T.	3.2.3 Effect of Time and Surfactant Concentration on Oil	
		Solubilization	21
		3.2.4 UASB Operation	22
		3.2.5 Effect of COD loading rate on Biiodegradation and	
		Biogas Production	22
		3.2.6 Effect of Surfactant on Biodegradation and Biogas	
		Production	25

CHAPTE:	R	PAGE
IV	RESULTS AND DISCUSSION	26
	4.1 Determination of the Optimum Mixing Time and	
	Surfactant Concentration on Oil Solubilization from	
	Solubility Parameter of Oil (Sp _o)	26
	4.2 Determiation of the Optimum Mixing Time and	
	Surfactant Concentration on Oil Solubilization from	
	Enhanced-Solubilization.	29
	4.3 Effect of COD loading rate on Biodegradation and	
	Biogas Production	31
	4.3.1 Chemical Oxygen Demand (COD) Removal	31
	4.3.2 Oil Removal	33
	4.3.3 Biogas Production	35
	4.3.4 pH Determination	40
	4.3.5 VFAs Determination	40
	4.3.6 Microbial Growth	43
	4.4 Effect of Surfactant on Biodegradation and Biogas	
	Production	44
v	CONCLUSIONS AND RECOMMENDATIONS	46
	REFERENCES	48
	APPENDICES	52
	Appendix A Experimental Data of Solubilization Study	52
	Appendix B Experimental Data of COD Removal	58
	Appendix C Experimental Data of Oil Removal	65
	Appendix D Experimental Data of Biogas Production	72
	Appendix E Gas Chromatograph's Calibration Curves	73
	Appendix F Experimental Data of Effluent pH	75

CHAPTER		PAGE
	Appendix G Determination of Volatile Fatty Acids as Acetic	c
	Acid by Distillation	76
	Appendix H Experimental Data of VFA Concentration	78
	Appendix I Experimental Data of MLSS	79
	CURRICULUM VITAE	80

LIST OF TABLES

TABI	TABLE	
2.1	Effluent standard for palm oil mill industry	4
2.2	Energy content per weight with different fuel	15
3.1	COD loading rate, flow rate, and hydraulic retention time	
	(HRT) for determining effect of oil load rate	23
4.1	The averaged effluent COD value and % COD removal at	32
	various COD loading rate with influent COD 22,000 mg/l	
4.2	The averaged effluent oil content (% v/v) and % oil removal	34
	at various COD loading rate with influent oil content of 2%	
	v/v	
4.3	Specific biogas production rate and content with various	
	COD loading rate	36
4.4	Biogas yield with various COD loading rate	37
4.5	The distribution of VFAs and ethanol concentration in % v/v	
	from the effluent at various COD loading rate	42
4.6	Parameters observed for studying effect of surfactant on	
	biodegradation and biogas production	45

LIST OF FIGURES

FIGURE		PAGE	
2.1	Degradation pathways in anaerobic degradation	14	
2.2	Diagram of the variation of surface tension, interfacial and		
	solubility with surfactant concentration.	17	
3.1	Flow diagram of UASB operation	23	
4.1	Solubility parameter of oil (Sp _o) with various surfactant		
	concentration and time with 1 to 1 oil to surfactant solution		
	volume ratio	27	
4.2	Solubility parameter of oil (Spo) with various surfactant		
	concentration and time with 1 to 4 oil to surfactant solution		
	volume ratio	27	
4.3	Solubility parameter of oil (Sp _o) with various surfactant		
	concentration at day 6 with 1 to 1 oil to surfactant solution		
	volume ratio	28	
4.4	Solubility parameter of oil (Sp _o) with various surfactant		
	concentration at day 6 with 1 to 4 oil to surfactant solution		
	volume ratio	28	
4.5	Equilibrium time required to solubilize oil in aqueous by		
	Tween 80	29	
4.6	Enhanced-solibilization of oil at the various surfactant		
	concentration	30	
4.7	Weight of solubilized carbon to weight of surfactant with		
	various surfactant concentration	30	
4.8	Effluent COD values with various COD loading rate and		
	operation time	32	
4.9	Percentage of COD removal with various COD loading rate		
	and operation time	33	

FIGURE		PAGE
4.10	Effluent oil content with various COD loading rate and	34
	operation time	
4.11	Percentage of oil removal with various COD loading rate and	
	operation time	35
4.12	Effect of COD loading on biogas production	37
4.13	Biogas content with various COD loading rate	38
4.14	Percentage of COD removal and H ₂ production rate with	
	various COD loading rate	38
4.15	Percentage of oil removal and H ₂ production rate with various	
	COD loading rate	39
4.16	Percentage of COD removal and CH4 production rate with	39
	various COD loading rate	
4.17	Percentage of oil removal and CH4 production rate with	
	various COD loading rate	40
4.18	Effluent pH with various COD loading rate and operation time	
		41
4.19	Final pH with various COD loading rate	42
4.20	VFA with various COD loading rate at steady state	43
4.21	TSS with various COD loading rate at steady state	41