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ABSTRACT
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Dr. Thanyalak Chaisuwan 183 pp.
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Polylactide (PLA) is the most widely known biodegradable polymer in use
today. Additionally, natural proteins in silk, sericin, have been increasingly used.
This work emphasized the synthesis of a graft copolymer, Sericin-g-PLA, in the
presence of surface treated marl as a filler, followed by blending with
polybenzoxazine to harden the obtained biocomposite. Polybenzoxazine precursor
was synthesized from aliphatic diamine, bisphenol-A, and paraformaldehyde by
using the faster quasi-solventless approach with 88% yield. The synthesized
polybenzoxazine precursor was blended with marl having surface modified by (3-
aminopropyl) trimethoxy-silane. The chemical structures of the graft copolymer and
polybenzoxazine precursor were confirmed by FTIR and NMR. The results from
SEM revealed the better interfacial adhesion between the graft copolymer and the
polymer matrix after modification surface of marl. The results of DSC and TGA
techniques showed that graft copolymer filled with modified marl can lower the
curing temperature of polybenzoxazine; meanwhile, the thermal stability was
increasing. The effects of the polybenzoxazine content on the mechanical properties
of the biocomposite, particularly flexural strength and impact strength, were
exhibited that the biocomposite from 20% graft copolymer added modified marl with
polybenzoxazine gave the highest flexural modulus and impact strength.
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