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ABSTRACT

4892010063:  Polymer Science Program
Pomsri Pakeyangkoon: Novel Polymer Foam via Polymerized High
Internal Phase Emulsion (PolyHIPES)
Thesis Advisors: Asst. Prof. Manit Nithitanakul, Assoc. Prof.
Rathanawan Magaraphan and Asst. Prof. Pomthong Malakul 176 pp.
Keywords:  High internal phase emulsion/ PolyHIPE/ Bentonite/ Organo-
modified clay/ Porous clay heterostructure/ Gas adsorption

In order to obtain polyHIPE polymeric foam with improved properties for
performance in ever-broadening applications i.e. adsorbent for CO2 adsorption and
scaffold for tissue engineering application, the present work focuses on how to
elevate the overall properties of polymerized high internal phase emulsion (PolyHIPE
porous foam) to above their inherent values including studying the effect of
surfactant system, Soxhlet extraction time, addition of organoclay as inorganic filler
and also plasma surface modification technique.

Plasma surface modification technique was used to improve the surface
properties of polyHIPE scaffold in tissue engineering applications. After surface
modification, poly(S'EGDMA)polyHIPE scaffold prepared from styrene and ethylene
glycol dimethacrylate monomers with greater hydrophilic properties, were obtained
leading to improve the interaction between the living cells and the polyHIPE
substrate. The amount of cell adhesion and proliferation was further increased with
the utilization of the surface modification technique via atmospheric pressure plasma
treatment that would impart the hydrophilic improvement to the polyHIPE scaffold
surface due to the polar-like property of the biofluid cell medium.

With the aim of designing suitable adsorbent materials i.e. high surface area
with superior mechanical properties and also good adsorption capacity that would
adsorb such gases before being liberated into the environment, polymerized high
internal  phase emulsion of divinylbenzene; poly(DVB)polyHIPE  foam  was
successfully prepared by using two different systems of three-component surfactants



and toluene as porogenic solvent ( 20M_T and S80M _T). Samples prepared using
S20M_T and S80M_T showed relatively similar characteristics which indicated the
effectiveness of the two three-component surfactants for use in preparation of
poly(DVB)polyHIPE foam. Moreover, it was also demonstrated that the usage of
Soxhlet extraction technique for poly(DVB)polyHIPE foam improved surface area of
the obtained materials by 107% as compared with the unextracted polyHIPE porous
foam. The optimum Soxhlet extraction time to achieve the highest surface area with
the best mechanical properties for S20M T systems was around 6 h whereas
S80M _T system, composed of span80 as non-ionic surfactant that had longer alkyl
chain length in the structure, needed around 12-24 h to remove nearly all the residue
materials from the obtained polyHIPE porous structure. However, polyHIPE foam
without any reinforcement phase also exhibited poor mechanical properties i.e. low
crush strength and brittleness. Thus, to further improve the overall properties of
polyHIPE porous foam, poly(DVB)polyHIPE fdled with organoclay was prepared.
Three types of organoclay including hybrid —organic-inorganic porous clay
heterostructure (HPCH), organo-modifed hentonite (MOD) and acid treated organo-
modified bentonite (AC-MOD) were used as inorganic reinforcement for polyHIPE
foam. The effect of different type of organoclay on physical properties and CO2
adsorption capacity of poly(DVB)polyHIPE nanocomposites foam was investigated.
In all system, the addition of organoclay into polyHIPE matrix resulted in the
improvement of the overall properties of the resulting polyHIPE foam. The surface
area and the decomposition temperatures (Td) for the series of poly(DVB)polyHIPE
filled with organoclay increased with increasing the clay content from 0to 10 %
whereas the maximum improvement for mechanical properties was observed at 5
wt% organoclay. The adsorption of CO2 gas by poly(DVB)polyHIPE foam filled with
organoclay was found to increase as well when compared with neat
poly(DVB)polyHIPE foam. Additionally, it has been demonstrated in this study that
the CO2 gas adsorption of poly(DVB)polyHIPE nanocomposites foam was increased
in the following order: neat poly(DVB)polyHIPE foam < poly(DVB)polyHIPE foam
filled with MOD < poly(DVB)polyHIPE foam filled with HPCH <
poly(DVB)polyHIPE foam filled with AC-MOD.
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