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ABSTRACT

5072025063:  Polymer Science Program
Thitima Sarachat:  Separation and Partial Purification of
Biosurfactants by Foam Fractionation Technique
Thesis Advisors: Assoc. Prof. Ratana Rujiravanit, Prof. Masahiko
Abe, and Assoc. Prof. Sumaeth Chavadej 93 pp.
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Pseudomonas aeruginosa SP4, isolated from petroleum-contaminated soil
in Thailand, was used to produce a biosurfactant from nutrient broth supplemented
with palm oil. Normally, crude biosurfactant has been extracted from culture broth by
organic solvent extraction. Owing to high cost and toxicity to environment and
human health of organic solvents, foam fractionation, a surfactant-based separation,
was used in this study to concentrate and remove the biosurfactant from cell-free
nutrient broth solution. The effects of the air flow rate, column height, pore size of
sinter glass disk, solution volume and the collecting time on enrichment ratio and
percentage of biosurfactant recovery were investigated to determine the optimum
condition for separating the biosurfactant from nutrient broth solution. It was found
that increasing of either column height or pore size of sinter glass disk resulted in
higher enrichment ratio but lower percentage of biosurfactant recovery. On a
contrary, increasing of air flow rate resulted in a decrease in enrichment ratio but an
increase in the percentage of biosurfactant recovery. The initial biosurfactant solution
and biosurfactant in collapsed foam from foam fractionation process were
fractionated by using HPLC-ELSD technique. The HPLC patterns of hoth
biosurfactant samples are identical. However, the peak intensities of the biosurfactant
in the collapsed foam were higher than those of the initial biosurfactant solution,
indicating the higher biosurfactant concentration.
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