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ABSTRACT

4581005063:  Petrochemical Technology
Suratsawadee Kungsanant: Volatile organic compound removal from
nonionic surfactant coacervate phase solutions by co-current
vacuum stripping
Thesis Advisors: Prof. Somchai Osuwan, Prof. John F. Scamehom,
Asst. Prof. Boonyarach Kitiyanan,
and Assoc. Prof. Thirasak Rirksomboon 98 pp.
Keywords:  Coacervate/Co-current operation/Vacuum stripping/
Cloud point extraction

Cloud point extraction (CPE) has been demonstrated to remove volatile
organic compounds (VOCs) from wastewater by using a nonionic surfactant as a
separating agent. To make the CPE process economically feasible, the surfactant in
the concentrated, or coacervate, phase must be recycled and reused. This work
utilized a packed column operated under rough vacuum in co-current mode to
remove the VOCs (benzene, toluene, ethylbenzene, 12 dichloroethane,
trichloroethylene, and tetrachloroethylene) from the t-octylphenolpolyethoxylate
(OP(EQT) coacervate solution. Despite the viscous nature of the coacervate
solution, the co-current operation can effectively avoid plugging, excessive foaming,
and flooding. The Henry’s law constants of the VOCs are substantially reduced up to
90% due to the solubilization of VOCs in the surfactant micelles. For continuous
operation, more than 87% for all VOCs is removed from a 450 mM OP(EQ):
solution within a single stage operation. The voc removal percentage decreases
with increasing liquid loading rate, column pressure, surfactant concentration, and
solute hydrophobicity, but it substantially increases with increasing number of
distributor holes and temperature.
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