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The fabrication of self-assembled InP ring-shaped QDMs has been first
proposed in this thesis. The influences of growth parameters on the formation and
characteristics of InP ring-shaped QDMs have been intensively studied. The InP ring-
shaped QDMs samples were prepared using solid-source MBE via droplet epitaxy
technique in InosGaosP matrices on semi-insulating GaAs (001) substrate. The
Investigated parameters relating to the In droplet deposition and crystallization
process were deposition temperature, crystallization temperature, In deposition rate
and In amount. The InP ring-shaped QDMs properties were thoroughly evaluated by
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The experimental results have shown that the formation of InP ring-shaped
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investigated and shows the feasibility as an altemative material system for quantum
computing technologies. The achievement on this thesis should renew the interest of
InP ring-shaped QDMs as a promising system and also be an important mile stone in
the development of ring-shaped QDM structure.
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