
CHAPTER II
QUANTUM STATISTICAL MECHANICS 

AND DENSITY MATRIX
2 .1  C A N O N IC A L  D IS T R IB U T IO N , P A R T IT IO N  F U N C T IO N  A N D  F R E E  E N E R G Y  [1]

The old method used in finding some important quantities of the system at a give 

temperature was based on the macroscopic aspects of the general theory of statistical 

thermodynamics. Flowever it was discovered that greater insight and power could be 

gained by considering also the microscopic aspects of the theory. Therefore, some 

important ideas for microscopic theory will be reviewed as follows: Normally the system is 

classified in to two categories. First, the “ isolated system" and second, the “system in 

contact with a reservoir." The isolated system is the system which maintains its energy and 

number of particles all the time i.e., It doesn’t exchange its energy and number of particles 

with another system. เท the real nature, such a system may not occur because when we 

look at a particular system, we frequently find something interacting with the system in 

some ways. By these reasons, it is more advantageous to study the system in contact with 

a reservoir than the isolated system. The reservoir can not be isolately defined, it must be 

defined with respect to the system in contact with it. It is defined as the system which has 

larger degree of freedom than that of the system in contact with it. The question then 

arises, how much degree of freedom than that of the system in contact with it. The 

question arises, how much degree of freedom does the reservoir need? The answer is that 

it needs more degrees of freedom than what the system needs to make the reservoir’s 

temperature(chemical potential) remain uneffected by whatever small amount of energy 

(particles) it gives to the system.

Now, let’s consider the system in contact with a (heat) reservoir which exchanges 

only the energy by each other. เท thermal equilibrium situation the interaction between the 

system and the reservoir is weak so that their energy are additive, then the probability of 

the system is in state r  is Pr oc e-/JEr where p  =  {kBT ) 1, ^ B is Boltzmann constant and 

T  is the temperature of the system which equals to the temperature of the reservoir. Since 

the probability must be normalized, the form of the probability is
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(2 . 1 )

where

(2 .2 )

Here ^  is the summation over all a cce ss ib le  states of the system.
r

The exponential factor e pEr is ca iled  the “Boltzmann factor”; the correspond ing 

probability distribution eq. (2.1) and the ensem ble is known as the “canonica l distribution" 

and “canonical ensem ble” respectively, z  in eq. (2.2) is ca lled  the “partition function.” By 

using this partition function, the (Helmholtz) free energy F  is defined by the following 

relation

To understand the physica l meaning of free energy, let's substitute eq. (2.3) into 

eq. (2.1) which shows that the normalize probability is Pr = * . By this equation, it

is c lea r that the free energy represents most of the energy of the systems in the canonical 

ensemble. Note that if there exists state /• such that Er = F  1 then the system is in "pure 

state” /• i.e., the system is in state /■ only (with probability Pr = 1).

Eq. (2.1) and eq. (2.2) are not restricted to be used only in c la ss ica l or quantum 

m echan ics since the acce ss ib le  states are general. They can be both d iscrete and 

continuous.

2.2 DENSITY OPERATOR AND DENSITY MATRIX [2]

เท quantum m echanical problem , we usually act as if the system  we are interested 

in com prised the entire universe. Now, let U S  see what happens if we d iv ide the entire 

universe into a system and the rest of the universe.

Let \(p1) be a complete set of vectors in vector space  describ ing  the system, and 

let I(9, ) be a com plete set for the rest of the universe. The most general vector (state) in 

the entire vector space  can be written as

(2.3)

(2.4)
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Â  = Z A , r เ^ )!# ; ) (# ; 1(^,1 (2.5)

where A ,■1.. = (<£>11Â I <£>1,) is the matrix element of Â  in the basis of vector space 

describing the system.

From eq. (2.4) and eq. (2.5), we can find the expectation value of Â  with respect 

to general state เ^ / ) ,

L e t  Â b e  t h e  o p e r a t o r  o n  t h e  e n t i r e  v e c t o r  s p a c e  t h e  a c t s  o n l y  o n  t h e  s y s t e m .

W h e n  Â  A c t s  o n  p r o d u c t  s t a t e  ( e . g . , |  <£>1.)! # 1 ) )  w e  r e a l l y  m e a n  Â |  <£>1) ! # ^  )  =  ( A |  <£>1) ) ! # ; ) .

S o ,  w e  c a n  w r i t e  Â  in  t h e  f o r m  o f

(Â )  = ( y ,  |Â I พ )  = X  ÿ , ,  ( ô  1 I{<pt I Â I ( p ,  )\ e  1. )

= {<Pi | Â |  <£>1 )p ,.,  ( 2 . 6 )

where

P n  = X c e .บ ่ij (2.7)

P  1.1 in eq. (2.7) is called the “density matrix” . From this equation, we can define the

“density operator” p  by

P i ;  = ( « v |p k - )

where p  operates only on the system.

Inserting eq. (2.8) into eq. (2.6), we get

(2 .8 )

( À )  = X (< A  |Â  Z k 'X ^ V  Iyp \< p .)

= Z  (<A |Âp| (p  1 )  -  T r(Â yô)=T r(pÂ ) (2.9)

where the symbol “Tr” is called the “ trace” which represents the diagonal sum of the 

matrix elements. From eq. (2.7) and eq. (2.8), it is obvious that p  is hermitian. Therefore, it 

can be diagonalized with a complete orthonormal set of eigen vectors |/)and  real eigen 

value พ i 1

p  = ( 2 . 1 0 )
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Any system is described by a density ope ra to rp , where p  is of the form 

2 > ,  I/•)(/• I and

a) the set I/} is a complete orthonormal set of vectors.

b) พ, > 0

c)

d) Given an operator Â 1 the expectation of Â  is given by

(Â )  = T r(p Â )
Notice that

( Â )  = T r ( p Â ) = £ ( / ' | p Â | / ')

= H W'( 1\M ')  (2 . 1 1  )

From eq. (2.11) and properties b) and c) above, one can interpret IV, as the probability 

that the system is in state | / ) . Since พ, is an eigen value of p  1 one can conclude that the 

density matrix is the quantity that contains all about the information of the rest of the 

universe which influences the system. We can look at this fact directly by considering eq. 

(2.7). Since p  1..1. (=  IV,5 1.1.for basis |/) ) comes from the sum over state index j  which is the 

index describes the state in the rest of the universe, p , 1 will effectively contain the 

behaviors of the rest of the universe that influence the system. Now, the question arises, 

how does the rest of the universe influence the system? The answer is that when we fix the 

system state index / there are many types of vector which correspond to index i in the 

rest of the universe. These many types of vector are not the same for each system index / .  

By this reason, many different types of vector in the rest of the universe corresponding to 

different index /  constitute the different probability พ , for each / .  To understand this 

concept more clearly, let’s consider the following equations:

Let X describe the coordinate of the system. From eq. (2.9), we have

F r o m  e q .  ( 2 . 9 )  a n d  e q .  ( 2 . 1 0 ) ,  o n e  c a n  r e f o r m u l a t e  q u a n t u m  m e c h a n i c s  a s  f o l l o w s  [ 2 ] :

( Â )  =  T r (ô Â )=  J rfr(x |p Â | x )  
= II dxdx'p(x, x')a (x', x) ( 2 . 1 2 )
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w h e r e  0 ( x , x ' )  =  ( x | Ô | x ' ) , Ô  i s  a n y  o p e r a t o r .

L e t  y  d e s c r i b e  t h e  c o o r d i n a t e  o f  t h e  r e s t  o f  t h e  u n i v e r s e .  O n e  c a n  s h o w  t h a t

(Â) = = JJf d x d x 'd y \ { x \  X  V  * (x', >’V(x, y ) (2.13)

where y / ( x , y ) - ะ (x |(_ y |^ )is  the entire wave function. 

Comparing eq. (2.12) with eq. (2.13), we obtain

p ( x ,  x ' )  = j  dyy/{x ,  > 'V  * ( x \  y ) (2.14)
Eq. (2.14) shows that the density matrix can be found from the knowledge of the 

entire wave function which implies that the density matrix contains all of the information 

from the rest of the universe which influences the system.

2.3 DENSITY MATRIX IN STATISTICAL MECHANICS [2]
เท this section, we will make the general description of the density matrix in 

previous section more practical in the real nature by using the knowledge of canonical 

distribution in section 2.13.

Let the whole universe be composed of system and reservoir which is the rest of 

the universe. The density matrix now contains the information about reservoir that 

influences the system. If we impose the system is influenced by the (heat) reservoir (there 

is only the exchange of energy), then, by using canonical distribution, the reservoir 

influences the system in such a way that the probability that the system is in state |/} 

which is characterized by energy £ 1 is น’, = e ~ pE‘/ z  . By these reasons, we can choose 

the basis that diagonalizes the density operator as the energy eigen ket I (p 11) .  Hence, the 

form of density operator becomes

(2.15)

where

( 2 . 1 6 )
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F r o m  e q .  ( 2 . 9 ) ,  e q .  ( 2 . 1 5 )  a n d  e q .  ( 2 . 1 6 ) ,  t h e  e x p e c t a t i o n  v a l u e  o f  a n y  o p e r a t o r  Â  i s

Note that all of the result in this section can only be used in quantum mechanics since we 

have used the concept of bra, ket and operator. By this reason, the statistical mechanics 

which has just been shown above is called “quantum statistical mechanics” . To 

understand more clearly why it is quantum, one should look at eq. (2.11). Eq. (2.11) can 

be written in the form

where £7, and I a , )  are the eigen value and eigen vector of an operator Â  respectively. 

Note that in this equation พ 1 - e ' pE’ / z  and |/) is the energy eigen ket corresponding to 

eigen value E , .

From eq. (2.18), one can see the probability that the system is in state I 

denoted by p  depends on both พ1 and น’, which are the probability due to the thermal 

fluctuation and quantum fluctuation respectively. So, it is clear that the expectation value 

of any operator Â  can be calculated via the probability which is composed of the effect 

from thermal and quantum behavior.

Notice that eq. (2.15) and eq. (2.17) can be obtained by using the general 

formalism of the density matrix in previous section. Flowever instead of the use of general 

formalism of density matrix, we can also derive these equations by using basic probability 

theory and some of the basic knowledge in quantum theory as follows:

Let น ' , be the probability that the system is in state | /}.  Let พ ' , . be the transition 

probability from state |/) to state |<7y  ̂ i.e., the probability that the system is found in state 

I i f  initially it has been known in state | / } . Since the event that the system is in state |/) 

and the event that the system changes from (initially known) state |/') to state | t fy  ̂ are 

independent to each other, the event that the system is in state |/) and then transition to 

state |tfy^is the successive event of these two independent events so the probability of

( À )  =  I > , ( ' | Â | / )  =  ; พ ' , ^  =  \{a  1 1')!

=  Y a P  ■ p  = Y  น' น'A u  J j  ’ J A u I i-*J (2.18)
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this successive event is the product of the probability of these two independent events i.e., 

HMV( . From quantum mechanics, we know that ( / | / ')  = £1.1., so if the system is in state 

I / ),  it is not in state j / ' ) which imply that the event that the system is in state I/ ) and state 

[ / ' ) , / '  ะt  i form the mutually exclusive event. Hence, the probability that the system is 

found in state denoted by p  1 is equal to the sum of the probability that the system is 

in state |/) and then transition to state over all mutually exclusive events |/) i.e., 

p  = ^ UMV1 . From probability theory, the expectation value of the random variable

which is an operator A  in our case is (À  = 2
J J 1

theory, พ , ^  =  |( fl; |/) |: so (A )  = Y H a j w \ { a j |7) f  = พ 7} -

. From quantum 

เท this section,

IV = e pE‘ 12  and H |/) = E , \ i )  so (A ) = X  {/> ■ ^  A |/) /z  = £ ( / >  /#nÂ |/> /z

= T r(A c _7ni )/T r(tj pH )=  Tr(/ÔÂ) where p  -  e~pH/ z  , z  = Tr(e-/?H ) . These above 

results are identical to eq. (2.11), eq. (2.15), eq. (2.16), and eq. (2.17).

Now, from eq. (2.15) we define the “unnormalized density operator” p  1. by 

p v =e~p ''เท place of Py we will hereafter write p".  From eq. (2.16) and eq. (2.17), it 

is clear that if one knows p  especially in position representation, p(.Y,A-')= ( x |p |.y ') 1 the 

partition function (by eq. (2.16), Z  = I p(x,x)c/x ) and expectation of any operator can be 

found easily e.g., by eq. (2.12). So, the problem of quantum statistical mechanics now 

hinge on finding the density matrix. เท order to find it, one should first find Its equation of 

motion.

Considering the (unnormalized) density operator which we regard as a function of 

p .  />(/?)= e - '" ’ . it is easy to prove that

= H p  with initial condition p(o) = l (2.19)d p  ’
We can write eq. (2.19) in the position representation as follows:

dp{x, X , p ) _ ^ x' , p )  with initial condition p ( x , x \ o ) =  d(x -  x') (2.20) 
d p

Here the subscript xon  H x indicates that H v operates on Y in p{x ,x ' , p ) .  One of the 

simple example of solving density matrix via eq. (2.20) which will be used in the next 

section is the density matrix of the one-dimensional free particle. The Hamiltonian is
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2m

Inserting eg. (2.21) into eq. (2.20), we get

ท 2 d 2

2 m  d x 2
(2 .2 1 )

- ^ ' x  , — p ( x \  x '; p )  with the initial condition p ( x , x ' \ 0 ) =  s ( x  -  x ' )  (2.22)
d p  2 m  dx

This is ล diffusion-type equation so its solution can be written down readily:

p { x ,  x '; p )  ร p f1.ee (x, x '; p )  =
p

exp
m

2  t r p .
{ x - x ’) 2 (2.23)

Although we have the differential equation to determine the density matrix, its 

solution with initial condition may not always be solved exactly. เท the next section, we will 

review the path integration method for calculating the density matrix which is the very 

powerful method in many problems such as the quantum Brownian motion problem which 

will be discussed in the next chapter.

2.4 PATH INTEGRATION FORMULATION OF THE DENSITY MATRIX [2], [3]
The (unnormalized'i density operator can be written as

p{U) = e-ilche-*E!h ...e'üc/h ; บ = pti
=  p (ร)p ( e ) . .. p ( ร )  ( ท factor) ; แ ร  =  บ  (2.24)

เท coordinate representation, eq (2.24) can be written in the form

p(x, x'; บ) = J J p{x, x„_, ; ร)p{xn_ 1, x„_2 ; ^). p{x11 x'; s)dx1 ... dx„_ 1 (2.25) 
Eq. (2.25) can be written symbolically as

p(x,x'-,u) = J /)x (r)0 [x (r )] (2.26)

where <D[x(r)] and D x(r)is a functional of the path x(r) and functional measure 
respectively which will be determined later. The integration eq. (2.26) is called the “path 
integration". We will discuss later why we use this name.

เท order to find the forms of <I>[x(r)]and Dx(r) , one should know the form of 
p(xท-\’ xท-ะ'’ 5) f°r each n and use eQ- (2-25) to determine them. เท general case of 
particle in any potential i.e., H = P :/2 m + v{x), one can think that the density matrix
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gives

p (x , x '; ร ) -  P 1ree (x, x '; ร )  = 8  p ( x ,  x '; ร)

~ j d x "\  P.free ( ^  ร -  T) p ( x ") Pfree (x", x '; t ) ~  (2.27)

For low ร , because p free is a very localized Guassian, most of the contributions in the 

integral over A'"occur near x" =  X0where x0 = (โX +  ( ร - โ ) x ' ) / ร .  So we can, for small ร ,  

write eq. (2.27) as

8 p ( x , x '; ร ) « - J y y ( x „ ) f d x ' p j " ( x ,x " ;ร -  โ ) P  ̂  1 ( x " ,x '; r )

= - j y  V (X0 )̂ P  free (x, x '; ๙) (2.28)

Now, if X «  x ', x 0is also close to xand F (x „)is  constant over the range of integration. So, 

eq. (2.28) can be written as

/ ? ( x , x ' ;  ๙ )  w i l l  d i f f e r  f r o m  p fre e ( x ,  x ' \  ๙ )  f o r  s m a l l  ร  b y  a  s m a l l  c o r r e c t i o n  d u e  t o  t h e

p r e s e n c e  o f  t h e  p o t e n t i a l  v ( x ) .

F r o m  p e r t u r b a t i o n  t h e o r y  o f  t h e  d e n s i t y  m a t r i x  [ 2 ] ,  [ 3 ] ,  t h e  f i r s t  o r d e r  a p p r o x i m a t i o n

S p (x ,  v ( x ) Pfree (x, x '; ๙)

or

1 -  r ( . r ) |

Inserting eq. (2.23) into eq. (2.29), we get

(2.29)

p ( x , x ' ,  ร)'.
I m — พ(x — x')~ ๙ v (x )
il 2ท tie cxp 2 he h

Inserting eq. (2.30) into eq. (2.25), we obtain

(2.30)

p ( x ,  x ';บ) =  J D x ^ ) e x p \ -  J  J ■ /fix2 ( โ )  +  F ( x ( โ ) ) ร1โ (3.31)

where the functional measure Dx(โ )  =  (m/2k hร)' ,,2dx̂ dx2...dxn_1. By comparing eq.

(2.31) with eq. (2.26), we get 0 [x ( r ) ]  = - ( l / f t ) f [ / w x 2 ( r ) / 2  + v(x(โ ) ^ โ .
0
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Notice that eq. (2.31) looks like the ordinary path integration in quantum 

mechanics [3]. So in order to make an interpretation of path integration in quantum 

statistical mechanics, we should compare the result in this section with the ordinary path 

integration and consider again how we can interpret it.

เท quantum mechanics, the propagator K (ajr/r), the probability amplitude of the 

particle starts from point a and reach point b within the time interval T , can be expressed 

in the form [3]

K (a, b j )  = h\üx{()e  ̂ ๒°’ (2.32)
a

T
where S [x (/) ] = ^L{x,x,i)dt is called the "action” and L(x,x,t) is called the

0

“ Lagrangian" which is in the form (for velocity independent force field)

L{x, x )  =  - ^ -nix"  ( / )  -  v(x(t)) (2.33)

Another form of the propagator is [3]

K (1a,b j)= J _ ]<pl(a)co„(b)e ;'En7 (2.34)

where (pn{x) anci En are the enargy eigen function and corresponding energy eigen 

value respectively. Moreover, K { c i , b , T ) satisfies the partial differential equation (Schrô­

dinger equation for the kernel)

Ù aK ( a M T )  =  ih —  K { a , b \ T )  (2.35)dT
where the subscript a on H a indicates that H (1 operates only on a in K (a,b,T )

เท quantum statistical mechanics, the density matrix, by eq. (2.31), can be 

expressed in the form

p(x,x ',บ) = ^ Dx(T)e~*S ^<r̂  (2.36)
x'

บ
where 5 E[x ( r ) ]  = ^LE(x,x,t)dT is called the “ Euclidean action” and LE(x,x) is called 

0

the “ Euclidean Lagragian" which is in the form (for velocity independent force field)
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I e (x , x ) = ~̂ wx~ (t) + I r(x ( r ) )  (2.37)

Another form of the density matrix, like in eq. [2.34], can also be obtained by considering

p { x , x ' - , u )  =  { x \ p \ x ' )  = พ e '' (2-38)

Moreover, like eq. (2.35), p ( x ,  x ' ,บ )  satisfy the partial differential equation, by eq. (2.20),

H  1./? (x, x '; u )  = - h - ^ j  / ?(x, x '; บ  ) (2.39)

Now, comparing eq. (2.34) with eq. (2.38) and eq. (2.35) with eq. (2.39), it is clear 

that these formulas in quantum mechanics coincide with the formulae in quantum 

statistical mechanics when we replace โ  by -  iu(= -  i p  f t ) . Moreover, ( / / f t ) ร [x (/) ] 

coincides with - ( l / f t  ) 5 E[x (r ) ]  when the particle in quantum mechanics moves within the 

time interval T  =  - i U .  เท quantum mechanics, the path integration formalism of the 

propagator, eq. (2.32), can be interpreted as a “sum over all possible path” [3] since the 

functional measure D x ( t )  [3],[5] is composed of the integration over real line of each 

intermediate step, x l , x 2, . . . , x fI(see fig. 2.1).

Fig. 2.1: The sum over all possible paths is defined as a limit, in which at first the path is 

specified by giving only its coordinate X at a large number of specified times separated 

by very small intervals e . The path sum is then an integral over all these specific 

coordinates. Then to achieve the correct measure, the limit is taken as £  approach 0 (see 

ref. [3]).
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So, by using those comparisons we have shown above, the path integration 

formalism of the density matrix can also be interpreted as a “sum over all possible path” 

(since the functional measure D x { l )  also contains the integration of each intermediate 

step, X, 5 x 2, . . . , x n , see eqs. (2.25) and (2.31 ). This is the answer why eq. (2.26) is called 

the path integration.) but the particle, instead of moving within the real time interval, 

moving within the imaginary time interval. By these reasons, the path integration formalism 

of the density matrix is sometimes called the “ imaginary time path integration” while the 

path integration formalism of the propagator is sometimes called the “real time path 

integration” . Moreover, by using the connection between imaginary and real time path 

integration (/ = - i r ) ,  the path integration formalism of the density matrix eq. (2.36) can 

^Iso be derived in a different way (without using the perturbation theory) via a real time 

path integral formalism [3]. When looking at eq. (2.32) or eq. (2.36), one may ask: what is 

the main contribution path of the path integral ? The answer is the path which is called the 

“classical path” . Its corresponding action functional or Euclidean action functional IS 

minimum which implies that Ô ร  = 0 or ร  ร E = 0 at this path. This answer comes from the 

fact that 1first, in quantum mechanics, the integrand is exp(/S//?)so many paths near the 

classical path make a constructive interference because there is, in the first order at least, 

no change in ร  among these paths while the other paths make a destructive interference, 

second, in quantum statistical mechanics, the integrand is exp(- ร ' 1/ h )  so the path which 

is far from classical path makes a large Euclidean action which implies that exp( - S E/ h )  

is small due to a large exponentially decay. However, the event that the classical path is a 

main contribution path will occur when the order of ร  or ร E is big comparing to h  (this is 

a situation which classical physics might be expected to work) otherwise other paths may 

become a contribution path too.

เท standard classical mechanics [4], the minimization of action gives US that the 

classical path must be the path which obeys the Lagrange’s equation and the rough 

pictorial of classical motion can be obtained by drawing the potential f/ (x)w ith specific 

particle’s total energy E . Similarly but not exactly the same for our case of quantum 

statistical mechanics, the system, instead of describing by the action, is described by the 

Euclidean action ร E . The classical path in this case is also defined as the path that
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minimizes the Euclidean action i.e., Ô ร E = 0 and this minimization also provides that the 

classical path must satisfy the Lagrange's equation. The Lagrangian in this case is now 

the Euclidean Lagrangian which is, instead of T  -  V  1 equal to T  + V  = T  -  ( -  y ) .  Hence, 

the rough pictorial of classical motion can be obtained by drawing the “ inverted potential’’ 

~ v { x )  instead of v(x)  with specific particle's total energy - E  instead of E . There are 

many techniques [3], [5] which can be used to evaluate the path integration but the most 

conventional technique is the technique of expanding paths about the classical path. This 

technique is quite powerful because when expressing any path to be the classical path 

plus its deviation from this classical path, the original path integration will reduce to the 

simple form F (7 ’)e x p (- iSd /h) or F (บ)exp(-sfi/ft), where ร c] and S/เ are the action 

and Euclidean action evaluated at the classical path respectively, when ./''(Y’) or m  

are still the path integration but all paths are the close path starting and ending at the 

same point which is equal to zero. Moreover, F ( t ) or F ( u )  consists of only the quadratic 

term in the exponent of the integrand. By these reasons, F(T) or F (u)  can be easily 

evaluated by using Fourier series [3].

Now, let us summarize the main ideas in this section. The density matrix can be 

calculated by using the path integration formalism via eq. (2.36). This density matrix can 

be interpreted as the propagator of particle moving within the imaginary time interval. The 

main contribution of the path integral comes form the classical path which is defined as 

the path corresponding to the minimum Euclidean action. The classical motion is identical 

to the motion of particle in the inverted potential with minus of the total energy.

Before ending this chapter, it is worth to note that the reader should be careful in 

making interpretation of path integration in quantum statistical mechanics (imaginary time 

path integration). เท the real nature of statistical system, there exists no real padicle 

moving along this path or that path within the given time interval, the interpretation was 

made by using the analogy to quantum mechanics which surely has the real moving 

particle. This interpretation has been made in order to help someone understand the 

abstract statistical problem more pictorial concerning the motion of particle in the sense of 

classical physics.
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