CHAPTER |l
AN ELEMENT OF THEORY OF FRECHET
DIFFERENTIATION

In this chapter, we give a definitions of Fréchet derivative and present
some basic theorems on Fréchet differentiable functions which are essential for
our work. The proof of the theorems whose proof are omitted can be found
in Flett [3] .

Throughout the chapter, X, Y, and z will denote Banach spaces over
either the real or the complex field, unless otherwise stated.

Letf : A—Y where A & X and a0 an interior point of A. Thenf is
said to he Fréchet differentiable at a, if there is a continuous linear function
L : X —» Y such that for every positive real number  there is a positive
real number () such that for every vector X e X satisfying UIX-a,\ <5 () we
have xe A and

W(x) -fao) -LocaQ I < ilx-a0h. (1)

Remark  The condition (1) in the above definition can be expressed by the
equation

lim Tf(x) -f(a0 - L(x-a0 0 (2)
V- 0 " X-avl



If such a linear function L in (1) or (2) exists, then it is unique. The
linear function L is called the Fréchet differential of f at a, or the Frécliet

derivative of f at a, and will be denoted by df(a0).

Example. Consider the space I, of all sequences (x,) of real numbers such that

Zx: < @.

For . - ) and y=. in/z the inner product of x and y is defined oy

XT>=Z xyl. It is known that ~ with the inner product defined above is a

1
Hilbert space and it is a Banach space with the norm |x| = <,x)2.

Define/: ~-> R by f(x) - Ixpforexhre .
Let On he any element in /2We note that

(%) 0-2<a0,x-a0>1 = llx 2-Ndo D-2<a,, X-tf0)
= tlyl- II- 244, v) #23, 10, >

Y "2 + Ilcm 2' 2<«0|X)

= lix-flali2,
d th _ ]!7(7\7/7 ({“J— 2<cl‘,,.\‘ 7,”,”,>E |im X- an
an en \|Fl]11, | TR— Jm X. 2,
. -«
= 0

Therefore f is Fréchet differentiable at af and t/flaf is the continuous linear

function dflaf :  2<«0,//) , for each I G2 .



For normed spaces X and Y, we denote by J*(X,Y) the space of all
continuous linear functions from X to Y It is known that XI(X.Y ) is a normed

space under the operations of addition of functions and multiplication of

functions by scalars, with the norm

fr = sup {UTXH Ixe X,0kI < 1}
It is well known that, if X and Y are Banach spaces, then JI{X,Y)is

also a Banach space. This follows from the following proposition.

Proposition. (|5) If X is a normed space and Y is a Banach space then

£(X,Y) is a Banach space.

Let E be the set of interior points X of A such that df(x) exists. The

function from E to di(X,Y) which assigns for each X in E the linear function

df(x) is called the Fréchet differential of f and denoted by df

If A is an open set in X, a function which is Fréchet differentiable at

each point of A is said to be Fréchet differentiable on A

Note that if function f ;A G Rn— R™' then the Froéchet derivative of

[ at a) is the derivative of/ at ao.
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The next theorem is immediatly obtained from the definition of Fréchet

differentiability of a point fl) in AQ.

Theorem 2.1 Let A & X , and letf : A — Y be Fréchet differentiable at a
point @, in AQ Then for each ¢ > 0 there exists a neighbourhood  of a, in

X, contained in A, such that for all x e |

WiM-fa0 I < (\df(aQ\ +E )lix-a 0\

As it is known that a linear function from a normed space f to a
normed space Y is continuous if and only if it is bounded. Hence if df(a0) is

continuous then there is a constant real number K such that ndf(a,) I < K.

We note that the inequality in Theorem 2.1 yields that the Fréchet
differentiability of a function / at a point implies the continuity of / at that

point. So we have the following theorem.

Theorem 2.2, Iff is Fréchet differentiable at a0, then f is continuous at a0.

If a function / : X — Y is a linear function then the function / itself
satisfies the condition for the Fréchet differential of / at any point in X. Since

for each a0 e X

fix) - f(aQ - fix -flo) = 0,



for any X in a neighbourhood of a, hence the left hand side of (1) is zero

and thus (1) holds,

Theorem 23 () If f:X —Y is a linear function then f s bréchet
differentiable on X and df (x) =f for any X in X,
(i) 1f f:X —Y is a constant function then f is Fréchet

differentiable on X and for any X in X, df(x) is the zero function.

The next result gives some equivalent formulations of the differentiability.

Theorem 2.4. Letf be a function from a set A & X into Y, let aa be an

interior point of A, let T be a linear transformation from the sel X into Y,

and let
R(h) = f(a0+h)-f(a,)- T(h) (a,t+h€A)
Then the following statements are equivalent :
(i) f is Fréchet differentible at aQ with df(aa) = T,
(i) for each bounded set e X 1R(thy,1 = 0 ast —so in R, uniformly
for h in E;
(Hi) for each sequence (tn) in R\{o} converging to o and for each bounded

sequence (h,) in X ,R(t,h,)/l,=>0a —=»@



Further 1 if X is finite - dimensional, then each of (i) - (Hi) is equivalent to
(iv) for each compact set E ¢z X, R(th)/ 1—> 0 as t—» 0 in R uniformly for

h in E.

Theorem 25.(1) 1f A CZ X, and f : A -> Y is Fréchet differentiable at a0,
then for each scalar a the function af is Fréchet differentiable at a0 and
differential at a0 is adf(aD.

(i) IfA,B E&X,andf : A=Y and g : B—» Y are Fréchet
differentiable at a, then f + g is Fréchet differentiable at a0 and

d(f+g)(aa) = df(aa) + dg(a,).

These two results in theorem 25 assert that if ~7) is the set of
functions which are Fréchet differentiable at a point a0 of A, then *7) is a

vector space under the operations of addition of functions and multiplication of
functions by scalar. Moreover, the function / h> df(a0) is a lingar function

from ) into A{X, V).

The next result is the chain rule, which asserts that the derivative of the
composition of two Fréchet differentiable functions is the composition of their
derivatives.



Theorem 2.6. (The chain rule).
Let AC- X, BClY, letf : A —Y be Fréchet differentiable at a,,
and let g :H—>1z Dbe Fréchet differentiable at the point bo =f (aB). Then

the function g of is Fréchet differentiable at a0, and

d(gof) (a,) =dg (bo) odf(a,).

Theorem 2.7 Let AE£ X, f :A-»R, g :A—R Iff and g are Fréchet
differentiable at ¢ then the product functionf eg which assigns for each « in A

the product j%x)g(x) is Fréchet differentiable at ¢ and for each G X,
d(f-g)(c) : 12g()df(c)(ii) tHe)dg{e)(). (3)

Proof. Let d and g he Fréchet differentiable at c. Then df(c) and dg(c) are
continuous linear fonctions and hence d(f g)(c) defined in (3) is a continuous
linear function from X into R. Since

it-g)(x) - (f-g)(c) - [g(c)d{c)(x - ¢)-f{c)dg(c)(x - c)]

=g()[f(x) -Ac) - dife)fx-c)] +1(C)[9(X) - a(c) - dg(c)(x - )] +(a(x)- g(c))[df{c)(x- )l
then

W{I-9)(x)- (1 -g)(c) - [9( )df (\)( c)- f (c)dg(c)(x- o))



1gV\M\-f"x~f"'C IIIIIII ¢){x-c)\, lg&)\g{x ”* C” X-C)\

+10IX) -g() THAHE) 1. e (4)
By the definition of df[c), we have Ndf[c) I is finite. Hence it is clear from (4)

that dim 1(/-)jx)- if -g)(c [gJCI}E—e?X ¢)- f (c)dg(c)(x-c)] 1 =0

X-*C

That is, f- ¢ is Fréchet differentiable at ¢ and for each Ue X,
dif-g)(e)( ) = glc)af(c)(u) +j[c)ag(c){u).

Theorem 2.8. Let A CI X, [: A—R be such that fx) *0 for any xe A. If
f IS Fréchet differentiable at ¢ then the function fl X K>f'iz)(1)- for each
re A is Fréchet differentiable at ¢ and

= ) dfo)), for all ex 6
Proof. Let / be Fréchet differentiable at c. Then the function d(= ){c) IS a

continuous linear function from X into R. Since

XY "yt (c) -9
T A R+ a0
then I(*) 7/7(63 +7(85‘ c/(c)(x-c)
1 Fix)-f(C)- df(c)(x- ) (x-¢) 1 1

fix)fie) I1*-| V(] tinfe) fie)y



We note that  df(c) <\*X:CC\) < dffc) I implies

- C |]7T' 77@+7---(C)df(c)(x- )

| f(x)-f(c)-df(c)(x- . 1 1
< 1 (x) (cﬁX_C’(’c)(x c) +||dj(C)||/ o1 20

Therefore

im |x-1c||L7/W T 7841000+ o

- 1 - [(C)- df(c)(x=C AT
< lim I fim (WX)_C7-(--1(-----)-L-hlldj(c) I im F0f(e)- 1 20)

\f\i)\ -0 t+ udftc) I-o

0.

Hence 1 Is Frchet differenteable at ¢ and for each ¢ X

Corollary 29. Let AEX, f\A—= R, g:A—R be such that g(x) 5 0 for
each x e A, Iff and g are Fréchet differentiable at c then the quotient‘c

is Fréchet differentiable at ¢ and for each e X,

g 2(c)

| 192CG537
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Proof. Let / and g be Fréchet differentiable at c. Then the function L/(8—)(C)

defined in (s) is a continuous linear function from X into R By applying
theorem 2.7 and 2.8, we have

d{~) (e)u) = d(f -H)(c)(«)

dfic)( )+ f(c)(--"— dg(c)(u))

g(c)df(c)(u) -  (c)dg(c)(u)
§2{c)

Hence L is Fréchet differentiable at ¢ with d(£)(c) is as defined in (o).

The next theorem is a mean value inequality for functions / from a
subset of a Banach space into a Banach space.

Theorem 2.10. Let a b be distinct points of X, let  be the dosed line
segment in X with endpoints a and b, and let f be a function from a
subset of X containing into Y which is continuous on  and Fréchet

differentiable on . Then there exist a point ¢ e  such that

(b -f(a) I < Il df(c)(b-a) I

Recall that if / s a function from a set d ¢ | into vand differentiable
at every point in a subset E of A, then the differential, df\ of / is a function
from the set E into the Banach space X(x, Y). That is df:E —d(X. ). S0



we can define the Fréchet differential of df at a point do in E°. This is the

way the higher Fréchet differential defined.

Let f : A—»Y where A C X and aQan interior point of A, Then f is
said to he twice Fréchet differentiable at al if df is defined for X in a
neighbourhood of a, in X and there exists a continuous linear function

T:X => X(X, Y) such that

lim 1df{x) - df(a0) - T(x-a,) | =
X—) « IX-. . j!

We call the continuous linear function T, the second Fréchet
differential of f at , and denote by d%(a(.

Generally, the k-th Fréchet differential dif of f is defined inductively
by the formulae

d'f = dfl di = d(dk-1) where = 2,3/4,..

If dk isdefined at the point ale X, we say that f isk-timesFréchet
differentiable at ,1and we call the value dkf(a0) of dk there, the Ath
Fréchet differential of f at .

Note that df = X xI(XY)
d2= d{df) : v > (X X {XX))

dif= dicff) 1 X -> (6 X {XX {XX))

et'[f:d{ctf) A > (X X{x,...x {x.Y)).



We can simplify this notation by using the isometric between

A (XX X\ 1) and Y).
X( XXX(KY) and A{XXxXXxXY)

A (X L6 A (X 10)  and

The next theorem come naturally from the above definition as the

consequence of the theorem 2.5.

Theorem 2.11.

(i) If f: A=Y is n-times Fréchet differentiable at a0, where A € X, and a
is a scalar, then af is n-times Fréchet differentiable at ao0.

(i) If f: A—>Y and g: A—Y are n-times Fréchet differentiable at a0l

where A¢r X, then f +g is n-times Fréchet differentiable at a0.

Theorem 212, Let A ®X ,B EY, let f: A -» Y be n-times Fréchet
differentiable at the point aQ, and let g:B-> <z be n-times Fréchet
differentiable at the point bo= f{a0) Then ¢ Of is n-times Fréchet

differentiable at a0.
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