CHAPTER JII

ROLLE'S THEOREM IN BANACH SPACES

In this chapter, we establish theorems, analogous with Rolle's theorem, for functions from a subset of R" into a real Banach space B. And as a consequence we obtained a version of mean valued theorem.

Theorem 3.1. Let $f: D(x_o, r) \to \mathbf{B}$ be continuous on $D(x_o, r)$ and Fréchet differentiable on $B(x_o, r)$. If there is a continuous linear functional $\phi: \mathbf{B} \to \mathbf{R}$, and a point $z_o \in B(x_o, r)$ such that $\phi(f(x) - f(z_o))$ does not change sign on $S(x_o, r)$, then there exists a vector $c \in B(x_o, r)$ such that

$$\phi\left(\,\iota lf(c)(u)\,\right)=0\qquad for\ all\ u\ \in\ {\bf R}^n.$$

Proof. Let ϕ be a continuous linear functional on **B** and z_0 a point in $B(x_0, r)$ such that ϕ ($f(x) - f(z_0)$) does not change sign on $S(x_0, r)$. Let $g: D(x_0, r) \to \mathbf{R}$ be defined by $g(x) = \phi(f(x))$ for each $x \in D(x_0, r)$. Then g is continuous on $D(x_0, r)$ and differentiable on $B(x_0, r)$. Assume that $\phi(f(x) - f(z_0)) \le 0$ for all $x \in S(x_0, r)$. Then for any x in $S(x_0, r)$, $g(x) \le g(z_0)$. Since g is continuous on the compact set $D(x_0, r)$, then g attains its maximum on $D(x_0, r)$. That is, there is a point $c \in B(x_0, r)$ such that $g(c) = \max\{g(x) \mid x \in D(x_0, r)\}$. Thus dg(c) = 0, and hence $\phi(df(c))(u) = d(\phi \circ f)(c)(u) = dg(c)(u) = 0$ for all $u \in \mathbb{R}^n$. The proof for the case $\phi(f(x) - f(z_0)) \ge 0$ for all x in $S(x_0, r)$, is similar

If the assumption in theorem 3.1 is slightly weaken by replacing the condition that there is $z_0 \in B(x_0, r)$ such that $\phi(f(x) - f(z_0))$ does not change sign on $S(x_0, r)$ with the condition that

 $\phi(f(x)) = k$, for each x in $S(x_0, r)$, where k is a constant then the conclusion is still the same.

Theorem 3.2. Let $f: D(x_0, r) \to \mathbf{B}$ be continuous on $D(x_0, r)$ and Fréchet differentiable on $B(x_0, r)$. If $\phi: \mathbf{B} \to \mathbf{R}$ is a continuous linear functional such that $\phi(f(x))$ is constant on $S(x_0, r)$ then there is a vector c in $B(x_0, r)$ such that

$$\phi(df(c)(u)) = 0$$
 for all $u \in \mathbb{R}^n$.

Proof. Let $\phi : \mathbf{B} \to \mathbf{R}$ be a continuous linear functional such that

 $\phi(f(x)) = k$ for all $x \in S(x_0, r)$, where k is a constant

Then $\phi(f(x) - f(x_0)) = \phi(f(x)) - \phi(f(x_0)) = k - \phi(f(x_0))$ for all $x \in S(x_0, r)$.

Therefore the map: $x \mapsto \phi(f(x) - f(x_0))$ is a constant map on $S(x_0, r)$. By theorem 3.1, there exists a point $c \in B(x_0, r)$ such that

$$\phi(df(c)(u)) = 0$$
 for all $u \in \mathbb{R}^n$.

Theorem 3.1. and theorem 3.2. are not necessarily true when the space \mathbf{R}^n is replaced by an infinite dimensional Banach space, as illustrated by the following example.

Example. ([2]) Let L and R denote the continuous linear operators in I_2 given by

$$L(x) = (x_2, x_3, ...),$$

 $R(x) = (0, x_1, x_2, x_3, ...), \text{ for } x = (x_1, x_2, x_3, ...) \in I_{2}.$

Let T be the map $T: l_2 \rightarrow l_2$ defined as

$$T(x) = ((1/2) - ||x||^2) e_1 + R(x)$$
, where $e_1 = (1,0,0,...)$, for $x \in I_2$.

Define the function $f: l_2 \rightarrow \mathbb{R}$ by

$$f(x) = \frac{1-||x||^2}{||x-T(x)||^2}$$
, for $x \in I_2$.

Since the map T has no fixed point, $||x - T(x)|| \neq 0$ for any $x \in I_2$ and f is well defined. Then f is continuous in I_2 and f(x) = 0 for every $x \in S(0,1)$. As shown in the example in chapter II, the Fréchet derivative of g where $g(x) = ||x||^2$ at $x \in I_2$ is the continuous linear function $dg(x) : u \mapsto 2\langle x, u \rangle$. So, T is Fréchet differentiable at x and, for each $u \in I_2$,

$$dT(x)(u) = -2\langle x, u \rangle e_1 + R(u)$$

Hence the Fréchet derivative of h where $h(x) = ||x - T(x)||^2$ at $x \in I_2$ is the continuous linear function $dT(x) : u \mapsto 2\langle x - T(x), u - dT(x)(u) \rangle$ for each $u \in I_2$. Then by the corollary 2.9, f is Fréchet differentiable at every $x \in I_2$ and, for each $u \in I_2$,

$$df(x)u = \frac{1}{\|x - T(x)\|^4} \times \left[-2\|x - T(x)\|^2 \langle x, u \rangle - 2(1 - \|x\|^2) \langle x - T(x), u - dT(x)u \rangle \right].$$

Since
$$\langle T(x), e_1 \rangle = \frac{1}{2} - ||x||^2$$
 and $\langle x, Ru \rangle = \langle Lx, u \rangle$, $L(T(x)) = x$, it follow that

$$\langle x - T(x), u - dT(x)u \rangle = \langle (1 + 2x_1 + 2||x||^2)x - T(x) - L(x), u \rangle.$$

Therefore,

$$df(x)u = \frac{-2}{\|x - T(x)\|^4}$$

$$\times \langle \|x - T(x)\|^2 + (1 - \|x\|^2) (1 + 2x_1 + 2\|x\|^2) x - (1 - \|x\|^2) (L(x) + T(x), u \rangle.$$

For each x in l_2 , let

$$F(x) = \frac{-2}{||x - T(x)||^4} \times [||x - T(x)||^2 + (1 - ||x||^2)(1 + 2x_1 + 2||x||^2)x - (1 - ||x||^2)(L(x) + T(x))].$$

Then $df(x)(u) = \langle F(x), u \rangle$ for all $u \in l_2$,

We note that if df(x)(u) = 0 for all $u \in l_2$, then F(x) = 0 for all $u \in l_2$.

Next, we show that there exists no x in B(0,1) such that df(x) = 0.

Suppose that
$$df(x) = 0$$
, for some $x \in B(0,1)$. Since $\frac{-2}{\|x - T(x)\|^4} \neq 0$, then

$$[||x-T(x)||^2 + (1-||x||^2)(1+2x_1+2||x||^2)x - (1-||x||^2)(L(x)+T(x))] = 0.$$

That is,
$$\left(\frac{||x-T(x)||^2}{1-||x||^2}+1+2x_1+2||x||^2\right)x=L(x)+T(x)$$
.

Let
$$s = \frac{||x - T(x)||^2}{1 - ||x||^2} + 1 + 2x_1 + 2||x||^2$$
. (1)

Then L(x) + T(x) = sx and $L^2(x) - sL(x) + x = 0$. So, for each $n \ge 1$,

$$x_{n+2} = sx_{n+1} - x_n$$
.

That is, $x \in \text{Ker}(L^2 - sL + I)$ is a recurrent sequence of order two in l_2 . The associated characteristic equation for this type of sequence is

$$t^2 - st + 1 = 0.$$
(2)

This equation gives us three different alternatives according to the sign of its discriminant. That is, |s| = 2, |s| < 2 and |s| > 2.

Case 1. |s| = 2.

For each $n \ge 1$,

$$x_n = A \left(\frac{s}{2}\right)^n + B(n) \left(\frac{s}{2}\right)^n$$
, for some real numbers A, B.

Since $(x_n) \in I_2$, $\lim_{n \to \infty} x_n = 0$, so we have that A = B = 0, i.e, x = 0.

Since $F(0) = 16e_1$, then $df(0)(u) = \langle F(0), u \rangle = \langle 16e_1, u \rangle = 16u_1$ for all $u \in l_2$, and this is a contradiction.

Case 2. |s| < 2.

Then the characteristic equation has two complex roots given by

$$\alpha = \cos\theta + i\sin\theta$$
, $\beta = \cos\theta - i\sin\theta$, $\sin\theta \neq 0$.

Then, for each $n \ge 1$,

$$x_n = A(\cos\theta + i\sin\theta)^n + B(\cos\theta - i\sin\theta)^n$$
.
= $(A+B)\cos n\theta + (A-B)i\sin n\theta$.

So $x_n = C \cos n\theta + D \sin n\theta$ where C = A + B, D = (A - B)i.

Since $\sin\theta \neq 0$, then if C or D is nonzero, then the sequence (x_n) has no limit. But $\lim_{n\to\infty} x_n = 0$, then C = D = 0. That is, x = 0. As in the case |s| = 2, this is a contradiction.

Case 3. |s| > 2. We have two real roots

$$\alpha = \frac{s + \sqrt{s^2 - 4}}{2} \quad , \quad \beta = \frac{s - \sqrt{s^2 - 4}}{2} .$$

We note that one of these roots has absolute value greater than one and the other less than one. Assume that $|\alpha| \ge 1$ and $|\beta| \le 1$. Again, we have a solution of (2) is

$$x_n = A\alpha^n + B\beta^n$$
, for each $n \ge 1$

Since $\lim_{n\to\infty} x_n = 0$, we have A = 0. Then $x_n = B\beta^{n-1}$, for each $n \ge 1$

So
$$x = (x_1, x_1\beta, x_1\beta^{\frac{7}{2}}, ...)$$
, $||x||^2 = x_1^2 \left(\frac{1}{1-\beta^{\frac{7}{2}}}\right)$, and
$$||x - T(x)||^2 = ||\left(x_1 - \left(\frac{1}{2} - \frac{x_1^2}{1-\beta^{\frac{7}{2}}}\right), x_1\beta - x_1, x_1\beta^{\frac{7}{2}} - x_1\beta, ...\right)||^2$$
$$= ||\left(x_1 + \frac{x_1^2}{1-\beta^{\frac{7}{2}}} - \frac{1}{2}, x_1(\beta^{\frac{7}{2}} - 1), x_1\beta^{\frac{7}{2}} (\beta^{\frac{7}{2}} - 1), ...\right)||^2$$
$$= \left(x_1 + \frac{x_1^2}{1-\beta^{\frac{7}{2}}} - \frac{1}{2}\right)^2 + \frac{x_1^2(1-\beta)}{1+\beta^{\frac{7}{2}}}$$

Since $\beta^2 - s\beta + 1 = 0$, then $s = (\beta + \frac{1}{\beta})$.

From
$$sx = T(x) + L(x)$$
, we have $sx_1 = \left(\frac{1}{2}\right) - ||x||^2 + x_1\beta$.

Therefore

$$x_1^2 + \frac{1-\beta^2}{\beta} x_1 - \frac{1}{2} (1-\beta^2) = 0. (3)$$

Since (3) implies

$$x_1^2 - \frac{1}{2}(1 - \beta^2) = -\left(\frac{1 - \beta^2}{\beta}\right)x_1$$
, then

$$||x - T(x)||^{2} = \left(\frac{x_{1}(1-\beta^{2}) + x_{1}^{2} - \frac{1}{2}(1-\beta^{2})}{1-\beta^{2}}\right)^{2} + \frac{x_{1}^{2}(1-\beta)^{2}}{1-\beta^{2}}$$

$$= \left(\frac{x_{1}(1-\beta^{2}) + \frac{(1-\beta^{2})}{\beta}x_{1}}{1-\beta^{2}}\right)^{2} + \frac{x_{1}^{2}(1-\beta)^{2}}{1-\beta^{2}}$$

$$= \left(x_{1} - \frac{x_{1}}{\beta}\right)^{2} + \frac{x_{1}^{2}(1-\beta)^{2}}{1-\beta^{2}}$$

$$= x_{1}^{2} \left[\left(1 - \frac{1}{\beta}\right)^{2} + \left(\frac{1-\beta}{1+\beta}\right)\right]$$

$$= x_{1}^{2} \left[\left(\frac{\beta-1}{\beta}\right)^{2} + \left(\frac{1-\beta}{1+\beta}\right)\right]$$

$$= x_{1}^{2} \left[\frac{(1-\beta)^{2}(1+\beta) + \beta^{2}(1-\beta)}{\beta^{2}(1+\beta)}\right]$$

$$= \frac{x_{1}^{2}(1-\beta)}{\beta^{2}(1+\beta)} \left[\left(1-\beta^{2}\right) + \beta^{2}\right]$$

$$= \frac{x_{1}^{2}(1-\beta)}{\beta^{2}(1+\beta)}.$$
From (3), we have $x_{1}^{2} = \frac{(1-\beta)^{2}(\beta-2x_{1})}{2\beta}$ and $\frac{2x_{1}^{2}}{1-\beta^{2}} = \frac{\beta-2x_{1}}{\beta}$.

Hence, by substituting in (1), we have

$$\beta + \frac{1}{\beta} = \frac{x_1^2(1-\beta)}{\beta^2(1+\beta)} \cdot \frac{1-\beta^2}{1-\beta^2-x_1^2} + 1 + 2x_1 + \frac{2x_1^2}{1-\beta^2},$$

SO

$$1 = \frac{x_1^2 (1 - \beta)^2}{\beta (1 - \beta)^2 - x_1^2} + \beta + 2x_1 \beta + (\beta - 2x_1) - \beta^2$$

$$1 = \frac{x_1^2 (1 - \beta)^2}{\beta (1 - \beta)^2 - x_1^2} + (\beta - 2x_1)(1 - \beta) + \beta$$

$$1 = \frac{(1 - \beta)^2 (\beta - 2x_1)(1 - \beta)^2}{2\beta^2 (1 - \beta)^2 - x_1^2} + (\beta - 2x_1)(1 - \beta) + \beta$$

$$1 - \beta = \frac{(1 - \beta)^2 (\beta - 2x_1)(1 - \beta)^2}{2\beta^2 (1 - \beta)^2 - x_1^2} + (\beta - 2x_1)(1 - \beta)$$

$$1 = (\beta - 2x_1) + \frac{(1 - \beta)^2 (\beta - 2x_1)(1 - \beta)}{2\beta^2 (1 - \beta)^2 - x_1^2}$$

$$1 = (\beta - 2x_1) 1 + \left[\frac{(1 - \beta)^2 (1 - \beta)}{2\beta^2 (1 - \beta)^2 - x_1^2} \right]$$

$$(4)$$

From (3), we consider two subcases:

Subcase 3.1.
$$x_1 = \frac{-1+\beta^2 - \sqrt{1-\beta^2}}{2\beta}$$

Since
$$||x|| < 1$$
, $1 - \beta^2 > x^2$. i.e, $x_1^2 + \beta^2 < 1$.

From (4), we have that $0 \le \beta - 2x_1 \le 1$. Then

$$\beta - 2x_1 = \beta - 2\left(\frac{-1+\beta^{-2}-\sqrt{1-\beta^{-4}}}{2\beta}\right) = \frac{1+\sqrt{1-\beta^{-4}}}{\beta}$$

so
$$0 < \frac{1 + \sqrt{1 - \beta^{-4}}}{\beta} < 1$$
. Thus $\beta > 1 + \sqrt{1 - \beta^{-4}} > 1$.

A contradiction, since $|\beta| \le 1$.

Subcase 3.2.
$$x_1 = \frac{-1 + \beta^{-2} + \sqrt{1 - \beta^{-2}}}{2\beta}$$

Note that $1 - x_1^2 - \beta^2 = 1 - \left(\frac{-1 + \beta^{-2} + \sqrt{1 - \beta^{-4}}}{2\beta}\right)^2 - \beta^2$

$$= (1 - \beta^2) - \left(\frac{1}{2\beta}\right)(1 - \beta^2)\left[\frac{1 - \beta^{-2} + 1 + \beta^{-2} - 2\sqrt{1 - \beta^{-4}}}{2\beta}\right]$$

$$= \frac{1}{2\beta}(1 - \beta^2)\left[\beta + \frac{2(-1 + \beta^{-2} + \sqrt{1 - \beta^{-4}})}{2\beta}\right]$$

$$= \frac{1}{2\beta}(1 - \beta^2)(\beta + 2x_1).$$

From (4), we have that

$$1 = \frac{1}{\beta} \left(1 - \sqrt{1 - \beta^{-4}} \right) \frac{2\beta^{-2} - \beta + \sqrt{1 - \beta^{-4}}}{2\beta^{-2} - 1 + \sqrt{1 - \beta^{-4}}}$$

$$\beta \left(2\beta^{2} - 1 + \sqrt{1 - \beta^{-4}} \right) = \left(1 - \sqrt{1 - \beta^{-4}} \right) \left(2\beta^{2} - \beta + \sqrt{1 - \beta^{-4}} \right)$$

$$2\beta^{3} = \left(1 - \sqrt{1 - \beta^{-4}} \right) \left(2\beta^{2} - \beta + \sqrt{1 - \beta^{-4}} \right) + \beta \left(1 - \sqrt{1 - \beta^{-4}} \right)$$

$$2\beta^{3} = \left(1 - \sqrt{1 - \beta^{-4}} \right) \left(2\beta^{2} + \sqrt{1 - \beta^{-4}} \right)$$

$$2\beta^{3} \left(1 + \sqrt{1 - \beta^{-4}} \right) = \beta^{4} \left(2\beta^{2} + \sqrt{1 - \beta^{-4}} \right)$$

$$2\left(1 + \sqrt{1 - \beta^{-4}} \right) = \beta \left(2\beta + \sqrt{1 - \beta^{-4}} \right)$$

$$2 + 2\sqrt{1 - \beta^{-4}} = 2\beta^{3} + \beta\sqrt{1 - \beta^{-4}}$$

$$2\left(1 - \beta^{3} \right) = (\beta - 2)\sqrt{1 - \beta^{-4}}$$

This is also a contradiction, since $2(1-\beta^3) \ge 0$ but $(\beta - 2)\sqrt{1-\beta^4} < 0$

With ϕ = the identity function on \mathbb{R} , and z_0 be any point in B(0,1), we have for each x in S(0,1), $\phi(f(x)) = f(x) = 0$ and $\phi(f(x) - f(z_0)) = f(x) - f(z_0) = -f(z_0)$ in S(0,1) but there is no point x in B(0,1) such that df(x) = 0 on I_2 .

The following results are directly obtained when replace $D(x_o, r)$ by the closure of any open bounded set of \mathbb{R}^n in Theorem 3.1 and Theorem 3.2.

For a subset A of \mathbb{R}^n , let \overline{A} and ∂A denote the closure of A and the boundary of A, respectively. We have the following theorem.

Theorem 3.3. Let A be any open and bounded subset of \mathbb{R}^n , $f: A \to B$ be continuous on A and Fréchet differentiable on A. Let $\phi: \mathbb{B} \to \mathbb{R}$ be a continuous linear functional and let z_o be an element in A such that $\phi(f(x) - f(z_o))$ does not change sign for all $x \in \partial A$. Then there exists $c \in A$ such that

$$\phi(df(c)(u)) = 0$$
 for all $u \in \mathbb{R}^n$

Proof. Since \overline{A} is a compact, then the proof is similar to that of theorem 3.1 with $D(x_0, r)$ is replaced by \overline{A} .

And also we have the following corollary.

Corollary 3.4. Let $f: \overline{A} \to \mathbf{B}$ be continuous on \overline{A} and Fréchet differentiable on A. Assume that there exists a continuous linear functional $\phi: \mathbf{B} \to \mathbf{R}$ such that $\phi(f(x))$ is constant for all $x \in \partial A$. Then there exists $c \in A$ such that $\phi(df(c)(u)) = 0$ for all $u \in \mathbf{R}^n$.

Rolle's theorem can be proved by using corollary 3.4.

Corollary 3.5. (Rolle's Theorem)

Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a)=f(b) then there is a point $c\in(a,b)$ such that df(c)=0.

Proof. Assume that f(a) = f(b). Let $\phi : \mathbf{R} \to \mathbf{R}$ by $\phi(x) = x$. Then ϕ is a continuous linear functional such that $\phi(f(a)) = f(a) = f(b) = \phi(f(b))$. By corollary 3.4, there is $c \in (a,b)$ such that $\phi(df(c)(u)) = 0$ for all $u \in \mathbf{R}$. Then $\phi(df(c)(u)) = df(c)(u) = 0$ for all $u \in \mathbf{R}$, so df(c) = 0.

In 1996, Yamsakulna [7] proved Rolle's Theorem in Hilbert space. The corollary 3.7 is Yamsakulna's Rolle's Theorem. It can be obtained immediatly from theorem 3.2 as shown below.

Corollary 3.6. Let **H** be a Hilbert space. Let $f: D(x_o, r) \to \mathbf{H}$ be continuous on $D(x_o, r)$ and differentiable on $B(x_o, r)$. Assume that there exists a vector $v \in \mathbf{H}$ such that $\langle v, f(x) \rangle$ is constant on $S(x_o, r)$. Then there exists a vector $c \in B(x_o, r)$ such that $\langle v, df(c)(u) \rangle = 0$ for all $u \in \mathbf{R}^n$.

Proof. Let $v \in \mathbf{H}$ be such that $g(x) = \langle v, f(x) \rangle$ is constant on $S(x_o, r)$. Let $\phi : \mathbf{H} \to \mathbf{R}$ by $\phi(x) = \langle v, x \rangle$. Then ϕ is continuous linear functional and $\phi(f(x)) = \langle v, f(x) \rangle$ is constant in $S(x_o, r)$. By theorem 3.2, there exists $c \in B(x_o, r)$ such that $\phi(df(c)(u)) = 0$ for all $u \in \mathbf{R}^n$. Thus

$$\langle v, df(c)(u) \rangle = \phi(df(c)(u)) = 0$$
 for all $u \in \mathbb{R}^n$

The next corollary is the Rolle's theorem of Furi and Martelli [4], mentioned in the chapter I

Corollary 3.7. Let $f: D(x_o, r) \to \mathbb{R}^p$ be continuous on $D(x_o, r)$ and differentiable on $B(x_o, r)$. Assume that there exists a vector $v \in \mathbb{R}^p$ such that $v \cdot f(x)$ is constant on $S(x_o, r)$. Thus there exists a vector $c \in B(x_o, r)$ such that

$$v \cdot df(c)(u) = 0$$
 for every $u \in \mathbb{R}^n$.

As a consequence of theorem 3.2 we have a theorem analogous to Sanderson's Mean Value Theorem.

Theorem 3.8. Let $a \le b$ and $f: [a, b] \to \mathbf{B}$ be k times Fréchet differentiable. Assume that there exists a continuous linear functional $\phi: \mathbf{B} \to \mathbf{R}$ such that $(\phi \circ f)(a) = (\phi \circ f)(b) = 0$ and the first k-1 derivatives of f at a and $\phi \circ d^{k-1}f(a)$ are 0. Then for some $c \in (a, b)$, $\phi \circ d^k f(c) = 0$.

Proof. By theorem 3.2, there exists $c_1 \in (a, b)$ such that $\phi \circ df(c_1) = 0$. The theorem 3.2 can be applied to df in the interval $[a, c_1]$, so there exists $c_2 \in (a, c_1)$ such that $\phi \circ d(df)(c_2) = 0$. i.e. $\phi \circ d^2 f(c_2) = 0$. Again, we apply the theorem 3.2 to $d^2 f$ in the interval $[a, c_2]$, so there exists $c_3 \in (a, c_2)$ such that $\phi \circ d^3 f(c_3) = 0$. This procedure can be repeated k-1 times to obtain $c = c_k \in (a, c_{k+1}) \subseteq (a, b)$ such that $\phi \circ d^k f(c) = 0$.

The next theorem is the Mean Value Theorem of Sanderson [6] We show here that the theorem can be easily proved by using the theorem 3.8.

Theorem 3.9. (Sanderson's Mean Value theorem)

Suppose $f:[a,b] \to \mathbb{R}^n$ is a k times differentiable n-dimensional vector-valued function and f(a), f(b) and the first k-l derivatives of f at a are orthogonal to a non-zero vector v_0 . Then for some c between a and b, v_0 is orthogonal to $d^k f(c)$.

100

Proof. Let $\phi: \mathbb{R}^n \to \mathbb{R}$ by $\phi(x) = x \cdot v_0$ for each $x \in \mathbb{R}^n$. Then ϕ is continuous linear functional and $\phi(f(a)) = f(a) \cdot v_0 = 0 = f(b) \cdot v_0 = \phi(f(b))$. By theorem 3.8., there exists $c \in (a, b)$ such that $\phi \circ d^k f(c) = 0$. Thus $d^k f(c)(u) \cdot v_0 = (\phi \circ d^k f(c))(u) = 0, \text{ for all } u \in \mathbb{R}^n.$

So v_0 is orthogonal to $d^k f(c)$.