CHAPTER M
ROLLE’S THEOREM IN BANACH SPACES

In th:s chapter, we establish theorems, analogous with Rolle’s theorem,
for functions from a subset of R"™ into a real Banach space B And as a

consequence we obtained a version of mean valued theorem.

Theorem 3.1. Letf:D(x,, r) — B he continuous on D(x,, r) and Fléchet
differentiable on B(x,,r). If there is a continuous linear functioned if: B — R,
and a point 20£ B(x0, /) such that if)( fix) -J{z0 ) does not change sign on
(x0, /o), then there exists a vector ¢ £ B(x0,r) such that

it>(dfic)u)) =0  for all e R"

Proof. Let ., be a continuous linear functional on B and zCa point in B(x01r)
such that ) ( f{X) -f{z0) ) does not change sign on .{(Xo, I) .Let g :D(xp, I -> R
be defined by ¢(x) = Iiffffx)) for each X e D(xa, r). Then g iscontinuous on
D(x0, /) and differentiable on B(Xo 1/). Assume that . fix) - fizo)) < 0 for all
Xe (xOLr). Then for any X in (Xol/s), g(x) < g(z0). Since ¢ is continuous on
the compact set D(x0,r), then g attains its maximum on D(x01/-). That is, there
is a point ¢ G B(x0, ) such that g(c) = max {*(x) I X G D(Xo, I) }. Thus
dg(c) = 0, and hence () (dfic))(u) =d((f)of)(c){u) =dg(c)(u) =0 for all 1/ G R"

The proof fol the case Iffl{x) - fiz0)) > o for all X in S(Xo, /), is similar
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If the assumption in theorem 3.1 s slightly weaken by replacing the

condition that there is z0 e B(x0O1r) such that ()( J\x) -f[z0)) does not change

sign gn S(x0, r) with the condition that
G(f[x) ) = « , for each x in  (x0,r). where « is a constant

then the conclusion is still the same.

Theorem 3.2. Let  : D(x0,/*)=> B be continuous on D(x0, r) and Fréchet
differentiable on B(x0 r). If $: B-> R is a continuous linearfunctional such
that (f[x)) is constant on  (x0,r) then there is a vector ¢ in B(x0, r) such
that r

§(dfc)(u))=0 for all e R

Proof. Let <4 : B —R be a continuous linear functional such that

P(f{x)) = « for all x ¢ (x0,r), where Ais a constant
Then (){fix) - f[xo0)) = $(fix)) - ()(/(x0)) = k-(f>ifxo) for all Xe (x0,T).
Therefore the map: x <[> (f[x)-f[x O) is a constant map on (x0, r). By
theorem 3.1, there exists apoint ce B(x0,r) such that

()(df[c){u)) =0 for all « ¢ R".

Theorem 3.1. and theorem 3.2. are not necessarily true when the space
R" is replaced by an infinite dimensional Banach space, as illustrated by the

following example.
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Example. ([2]) Let L and R denote the continuous linear operators in /2 given

by
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(0. i, X2,X3,...), for X = (Xi x2,%3,...) G/a.
Let T be the map T:12 = h defined as
) = ((112) - WXjr) t+R(X), where 1=(1,00,.), for X6 h

Define the function f 12 — R by

AX) - QK . for XG 2.

- »
Since the map T has no fixed point, IX- T(X) 02 0 for any . G 12 and / is
well defined. Then / is continuous in /2 and fix) = 0 for every x G S(0,\). As
shown in the example in chapter Il, the Fréchet derivative of g where g(x) = |2
at XG /2is the continuous linear function dg(x) : Il h>2(x, ). So, T is Fréchet
differentiable at X and, for each lig h

dT(x)(u) = -2 (x, )&\ + R(n).

Hence the Fréchet derivative of N where h(X) = IX-7(x) |2 at XG /2 is the
continuous linear function dT(X) : > 2(X- T(x), -dT(x)(u)) for each G 2.
Then by the corollary 29 f is Fréchet differentiable at every X G/7 and,

for each G Iz,

difu = |x _ x FALX-TOOVY (x, )-2( L-|[x || (x-T(x),n-dT(x)n)]

Since <7'(x), ) = - - XMWand (Xjili) = (L, ),7.(1(x)) = X, it follow that
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BT (x),u-dT(x)u>= <{(1+2x,+2|[x[]2)x-:r(x)-1(x),M >.
Therefore,
S M

K <IXT(O2+(i-iwid L+ 2%, + 2JMI2)x LWL () + T(x), ).

For each x In 12 et
Ninn 41’ X T{ON2 + (HW [2)(1 '211x12\ ' 1‘”“ L{) ‘
Then di{X)(U) = (F(x), ) forall b

We note that if df(x)(u) = 0 for all e /2, then F(x) = 0 for all e 12

Next, we show that there exists no X in B(0,1) such that dj{x) = 0.

Suppose that df(X):O, for some xe 5(0,1). Since ---;(----f—l . %0, then

[[x-r(x)'id
[ IX-FO)N2+ (1-]x]1) (1 + 2x, + 2]x])2)x-(H M [2( L(X) + T(X))] = o.
That is, Feax, +2x) X = LX)+ T(x).
Let 5= “Xlz\xx)”z Pl x4 2] (1)

Then L(X)+ T(X) = X and L2X)-SL(X)+x = 0. So, for each > 1,

X +2 = SXN+1 mX @
That is, Xe Ker(F2-SL+ /) is a recurrent sequence of order two in /2. The

associated characteristic equation for this type of sequence is
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t2-St+ 1= 0. (2)
This equation gives US three different alternatives according to the sign of its
discriminant. That is, 151 = 2,1 1 <2 and 151> 2.
Case 1. I 1= 2

For each > 1,

{ n n
[s s

xp = A ) + B(n) —j , for some real numbers 4, B.
(2 2

Since (xn) e 122, limxn= 0,50 we have that A =B = 0,ie, * = 0.

Since F(o) = 16g|, then df{0)(u) = )= (l6e,, )= 16m, for all e L2,
and this is a contradiction. r
Case 2. 151< 2.

Then the characteristic equation has two complex roots given by
a = cosd + isin0, p = cosO - ising, sind I o.
Then, for each > 1,
xn = A(cosO + isin0)n + B(cosO-isin9)n .
- (A+B)cos 0 + (A-B)isin 9.
So xn= Ccosnd+ Dsmnd  where C=A+B, D =(A-B)i.
Since 9 * 0, then if C or D is nonzero, then the sequence (xn) has no

limit. But lim y(l= 0, then C=D =0. That is, X = 0. As in the case | I=2,

this is a contradiction.

Case 3. 1 I> 2. We have two real roots

S+ \//:vz_-j s—s’ -4
e —————— 5B =

9




We note that one of these roots has absolute value greater than one

and the other less than one. Assume that \a 1> 1 and \pI < 1 Again, we

have a solution of (2) is
xn = Act? + Bp", for each > 1

Since lim xn- 0, we have A- 0. Then X, = BprA, for each 1/ > 1

/ —=00

So X-= (X17x\P7x\Pz, )iz = xiz 1 and

I AR

%1 \2~\_p 2J,><jfi-><Ax1p Z'X,/?,.

= Xi(p -1 (po- )

1+ 1-p 2~2
X2 0\ x2i-in)
X+1-p2 V \+p
Since , .. .,. 1 =0, then :(p+_)

From X = 7(x) + L(X), we have XL = [—] - x| + XP.

Therefore

W+ 1 2(1-A) =0 (3:

Since (3) implies



x-100) | p 2 {-p
x0~p2)+LZA ) )2
1-p \-p2
le yy . X22(\-py
v Pl |-172
= -y
l1p) r{l+p)
yg-1y  fl-[n
“ X YR HIHY
=y 0-18 )2(l+1g )+ 172(1-jg )
’ B -(1+12)
*2(1-17) 1L 02 2
*20-17 )
P 2\+P ')
From (3), we have X,Z:-(\-PZ%?) -2%,) andl\--_--zlf)z(-%2 Ff"_l_z'f('
Hence, by substituting in (1), we have
1:*1M) I'/72+1+2X|+2|’

pp2\+p)l-[?72%2

Xp\-p2+x2- X{\-p2) . x(\-PY



SO
i/
0 \:r_(;)/'f\gf]a) £+ 2+ (Ma2x) - P
PU{;%_Z; b 05-2X0(1 1) + 17

(1-17 2)(J7-2x )(!1-17 )2
217 2(1-17 2-x,2)

;&yﬁ_Y ¢+ (P-2xx 1-P)

+09-2x0(1 -17) + P

X

>

(- 2p-2
P = = f b

(1-12 2X1-2X,)(]-1? )

1= 00-2x0 + 2(1-17 2-x,2)

1= 05-2X,) 1+ (1'/? 2)(1'/0
P P 2-x 1)

From (3), we consider two subcases :

_ L4p 13-y !
Subcase Xi = 2
Since x| < L, 1-P2>xa e x2+tp2 <

From (4), we have that 0</?-2xi<I|. Then

1?2 2-VI-yg 4l = 1tVI-yg 4

- 2x1 = -2
p- 2x1 P D 0

so 0 < I+A 7 < L Thus 3 > 1+ VI-/? 4 >

A contradiction, since \p 1< 1

26
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\+P z+j\~p~

Subcase 3.2. X = 2

— 143 2+\1- (3 4
Note that |-X~-p2—1- + 24('3 ( (3_

1- 3 2414P 2- 2M\~p
(")<1->) 203

2(-1+@ 2+ M

From (4), we have that

_a bt 23 2-p +J1-(3
12 g (B 40 2)oa 0.y 4473 -

P(2p2-1+ ™ (34)

(1-4"-Pa)@22-1 + 4]~p 4)
2/?73= (@1 -71-P 4)@2?2-12 + vI-yft T) +P(I-J\-P 4)
P3=(1-Vi-£ 4)272+ Vi-E 4)

2001+ 41-p 4) = 142 +

o1+ A~p 4y = pp+4\-p o

2+247p 4 = 2IT + pd\~P 4

Y = (p2)ap L

This is also a contradiction, since 2(1 -/?") > 0 but (/7 - 2)MI p



With () = the identity function on R, and z0 be any point in B(0,1), we
have for each X in  (0,1), ()(j{x)) = fix) = 0 and ()(/(x) -/(20)) = fiX) -/(z,) =

-f{z0) in  (0,1) but thereis no point x in B(0,1) such that U/(x) = 0 on /2

The following results are directly obtained when replace D(x0,r) by the
closure of any open bounded set of R" in Theorem 3.1 and Theorem 3.2.
For a subset A of R", let A and OA denote the closure of A and the

boundary of A, respectively. We have the following theorem.

Theorem 3.3. Let A be any open and bounded subset of R f: A—H be

continuous on A and Fréchet differentiable on A. Let () : B— R be a
continuous linear functional and let 2o be an element in A such that
<pffix) - f(z0) does not change sign for all X € dA. Then there exists ¢ ¢ A
such that

()(df{c){u)) = 0 for all ¢ R"

Proof. Since A is a compact, then the proof is similar to that of theorem 3.1

with D(X0, 1) is replaced by A. I

And also we have the following corollary.



Corollary 3.4. Letf: A— B be continuons on A and Fréchet differentiable
on A, Assume that there exists a continuous linear functional ®: B — R such
that (Pif(x) ) is constant for all X ¢ &A. Then there exists ¢ e A such that

®(df{c){u)) = 0 for all e R"

Rolle’s theorem can be proved by using corollary 3.4.

Corollary 3.5. (Rolle’s Theorem )

Let f :[a, b] -> R be continuous on [a, b] and differentiable on (a, b).

Iff{a) = f(b) then there is a point ¢ e {a, b) such that df(c) = 0

Proof. Assume that f(a) = J[b). Let () R — R by (fX) = x Then (is a
continuous linear functional such that ((ci)) = f{a) = f(b) = (fff{b)). By
corollary 3.4, there is C e (a,b) such that (ffdf(c){uyy = o for all & r Then

4df(c)(uy = df(c)(n) = o for all R, so df(c) = 0. n

In 1996, Yamsakulna [7] proved Rolle’s Theorem in Hilbert space. The
corollary 3.7 is Yamsakulna’s Rolle’s Theorem. It can be obtained immediatly

from theorem 3.2 as shown below.
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Corollary 3.0, Let H be a Hilbert space. Letf : D(x0, /) — H be continuons
on D{x0,/9) and differentiable on B(x0,r). Assume that there exists a vector

V £ 1l such that <v,/(x)> IS constant on (x0, /»). Then there exists a vector

¢ £ B(x0,r) such that (v,df(c)(ti)) = 0 for all u £ R".

Proof. Let V£ H be such that g (x) = <v,/(x)> fisconstant on  (x0.r).
Let (D\H — R by (D(x) = (v,x). Then G)is continuous linear functional and
w{f{X)) - (v,f(x)) is constant in (x0,r). By theorem 3.2, there exists

CE B(x, r) such that df(c)(u)) = 0 for all G R" Thus

(v,df(c)(u)) = (>{dj{c)ii)) =o for all G R" u

The next corollary is the Raolle” theorem of Furi and Martelli [4],

mentioned in the chapter 1

Corollary 3.71. Let f : D(x01r) -O RM be continuous on D(x>. r) and
differentiable on B{x,, r). Assume that there exists a vector vVt IC such
that . #ix) is constant on S{x0,r). Thus there exists a vector ¢ £ B(x0 /m)
such that

V-dji{c){u) =0 for every £ R"

As a consequence of theorem 3.2 we have a theorem analogous to

Sanderson’s Mean Value Theorem.



Theorem 3.8. Let a < b andf : [a b] B he k times Idéchet differentiable.
Assume that there exists a continuous linear functional ¢: B — R such that
(<fof)(a) = if)of)(b) = 0 and the first k-1 derivatives of f at a and

(jJodk'\f{a) are 0. Then for some ¢ G (a, b), (f)odkf(c) = 0.

Proof. By theorem 3.2, there exists O G (a, h) such that fodf (Cl) = 0. The
theorem 3.2 can be applied to df in the interval [a, C[, so there exists
¢2 G (a, Cl) such that djod(df)(c] = 0. ie <fodZ(cf) = 0. Again, we apply the
theorem 3.2 to d2f in the interval [cor, ¢Z, so there exists ¢3G (cr, @) such
that 9 odZ{ci) = 0. This procedure can be repeated k-1 times to obtain

¢c=c*G (3, ki) Z(a,b) such that ~ (Odkf (c) = 0. m

The next theorem is the Mean Value Theorem of Sanderson [6] We

show here that the theorem can be easily proved by using the theorem 3.8.

Theorem 3.9. ( Sanderson’s Mean Value theorem )

Suppose f :[a, /)) = R" is a k times differentiable n-dimensioncil
vector-valued function and f{a)} f{b) and the first k-1 derivatives of f at a
are orthogonal to a non-zero vector Vo. Then for some ¢ hbetween a and b,

\o is orthogonal to d kfc).



Proof. Let (: R* — R by 4(x) = X1V for each X G R Then () is

continuous linear functional and (f>(j(ci) ) f(ci)1Vo = 0 = /(b) - <I>([(>)).

By theorem 3.8., there exists ¢ e (a, h) such that (Podk(c) C. Thus
dkf(c)(u) 1Vo =(q) odK(c))(n) = 0, for all lle R

So o is orthogonal to dkK(c).
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