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Diabetes mellitus (DM) is a major contributing factor that leads to end stage renal disease
(ESRD) with unsuitable clinical management. Chornic kidney disease (CKD) prediction model could prevent
the progression of CKD to ESRD. However, current CKD prediction models in patients with type 2 DM
were developed to predict ESRD. This study aimed to develop prediction model for CKD stage 3 in patients
with type 2 DM in Thailand. This was a 10-year retrospective cohort study obtaining data of patients with
type 2 DM from electronic database of Taksin hospital during 1 January 2008 to 31 December 2017. The
outcome variable was the present of CKD stage 3 which was defined as estimated glomerular filtration rate
(eGFR) <60 mL/min/1.73m’. The total patients of 2,178 were randomly assigned into training dataset for
developing model (N=1,525) and validation dataset for model validation (N=653). The study used Cox
proportional hazard regression for model development. For model performance, while model discrimination
was conducted using Harrell’s C-statistic, model calibration was evaluated by Hosmer-Lemeshow chi-square
test and survival probability curve. The results showed that the median follow-up time was 1.29 years
(interquartile range, 0.5- 2.5 years) and 385 patients or 17.68% with CKD stage 3. Data analysis identified
five CKD stage 3 predictors including age, female, urinary albumin to creatinine ratio, baseline eGFR, and
Hemoglobin Alc. Based on these five CKD predictors, two CKD prediction models were developed, model
1 using laboratory testing data and model 2 using simplified or proxy data. Both models demonstrated good
discrimination with C-statistic of 0.890 and 0.812, respectively, and accurate prediction. These two CKD
prediction models are recommended for health providers to use as an input for decision making on clinical

management which could prevent diabetic kidney disease and for raising patients’ awareness on health

prevention.
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CHAPTER I

INTRODUCTION

BACKGROUND AND RATIONALE

Diabetes mellitus (DM) is a non-communication disease with an increasing rate

throughout the world. In 2015, the prevalence of DM is 415 million people in worldwide. It can

be predicted that 1 in 11 adults have diabetes (1, 2). International Diabetes Federation [IDF]

(2017) had showed prevalence of adult patients with DM (age of 20-79 years) that had risen to

8.8% (425 million people), and it will be estimated to be 9.9% (629 million people) in 2045.

Moreover, the prevalence diabetes by country found that China, India, and United State have the

highest diabetes adult in the world high with 114.4, 72.9, 30.2 million, respectively (3).

Similarly, a systematic review of Nanditha et al. (2016) about prevalence of DM in Asia and the

Pacific, showed that almost 60 % of diabetes patients in worldwide were in Asia with variation

in each country in ranged 3% to 47.3. Almost 50% of diabetes patients were from China, and

India% (4).

Thailand has increasing diabetes similar to other countries. Prevalence of adult diabetes

in Thailand was ranked in the top ten in Asia(5). The report issued by the Thai National Health

Examination Survey in Thai adult population with age of 20 years old or more exhibited that the

age-adjusted prevalence of DM increased from 7.7% to 9.9% within 10 years(6). In 2015,



prevalence of adult patient with DM (aged of 20-79) was 4.2 million. As result, Thailand was

ranked as a country with high and medium prevalence(3). And prevalence was estimated to be 5.3

million in the next 20 years (7).

DM can cause many complications. Diabetic nephropathy (DN) is also the one of the

major complications of DM. From the Thailand Diabetes Registry Project (2006), diabetes

nephropathy or DN is the highest prevalence than all complications of diabetes (e.g. diabetic

retinopathy, stroke, coronary artery disease) with 62.9% and 45.7% among both long-DM (>15

years) and short-DM (< 15 years) groups, respectively(8). Diabetic nephropathy, a progressive

kidney damage, can contribute to chronic kidney disease (CKD) leading to end stage renal disease

(ESRD) which requires renal replacement therapies (RRT).

CKD is one of increasing diabetic complication. Approximately 20 - 40 % of diabetes

patients can probably develop CKD and later develop ESRD(9). In Thailand, there are a few

researches studying prevalence of CKD in small groups of DM patients. A retrospective cohort

study from Siriraj Hospital Mahidol University (2006) showed the prevalence of CKD stage 3 to

5, among 722 patients with type 2 DM exhibited in 235 patients (48.2%). But prevalence of only

CKD stage 3 was 37.3% (10). A cross-sectional, multi-center study of Vejakama et al. (2015)

among 6 primary health care units in Udonthani, exhibited prevalence of CKD stage 3 to 5 were

25.38% and 27.09% using MDRD formula and Cockcroft-Gault formula, respectively (11). A

retrospective-cohort study of Kittipanyaworakun (2013) among 322 patients with type 2 DM from

Saraburi hospital showed the prevalence of CKD stage 3 measured by Thai eGFR formula was



27.33%(12). However, a large retrospective cohort study of Vejakama (2015) among 15,032

diabetic patients collected from 12 Ubon Ratchathani hospitals showed that prevalence of CKD

including stage G3a, G3b, and G4 were 46.6, 27.6, and 12.1, respectively(13). Regarding to the

mentioned Thai studies, prevalence of CKD (stage 3 to 5) among patients with DM are in range

of 12.10-48.20%. But the prevalence of CKD stage 3 in diabetic patients is in range of 25.38-

46.60%.

Uncontrolled DM patients with CKD can progress fast to ESRD and mortality leading

economic burden. There are high risk association between Diabetes with kidney failure and death

with high hazard ratio (HR), 1.49 (p< 0.001), and HR 1.06 (p=0.027), respectively (13).

Moreover, costs of care for patients with diabetic nephropathy were extraordinarily high when

reaching ESRD. Renal replacement therapies (RRT) which includes kidney transplantation and

kidney dialysis, are recommended management when ESRD are reached. These high costs of care

lead economic burden for Thai government. In 2015, Thailand Renal Replacement Therapy

Registry Report showed that 24,514 (38.57%) of ESRD patients were diabetes patients. Mean

cost of one hemodialysis patient for health provider’s perspective were around 1,865 baht per one

session (US dollar 61.69)(14). Annual estimated cost of hemodialysis per person is 179,040 baht

(US dollar 5,635.51). Moreover, the study performed by Chatterjee and colleagues (2008) showed

that the median cost of complication, including among diabetes patients was significantly

different ($479.93) comparing with non-complication ($115.12)(15).



For Thai healthcare system, most of diabetes patients are under treatment of

endocrinologist or general physicians which are not specialist to make decisions for individual

suitable clinical management in order to slow renal progression. Moreover, due to long waiting

times in hospitals, some patients elect to refill their medications in community pharmacies for

convenience. This leads CKD risk progression of lost-follow up DM patients cannot be

monitored or assessed. As results, numbers of CKD patients (including CKD stage 3, 4, and 5) are

still increasing. Therefore, individual risk CKD stage 3 detection should be required for DM

patients to prevent previously mentioned adverse events.

Prediction model is a developed tool to estimate for probability presences of a disease

prognostic. CKD prediction models have been developed. Results of systematic review of 26

articles during 1 January 1980 to 20 June 2012 showed that most of CKD prediction model were

developed for general population (16). Even history of diabetes was one of the key predictors in

these CKD predictions, some important diabetic biomarkers, i.e., hemoglobin Alc, might be not

analyzed as predictors. There are some CKD prediction models that had been developed for

diabetic patients, but outcome of prediction was ESRD(17-22). However, the study Low et al.

(2017) had developed the CKD prediction model for diabetics patients (23). Furthermore, the

study of Nelson et al. (2019) had developed a 5-year risk prediction model of an incident CKD

from 15 multinational cohorts’ studies among 781,6277 diabetes. Even these prediction model

was developed from the large Asian population of diabetes, recruited Asian diabetes which were

from Malaysia, Singapore, China, India and Philippines might have different socioeconomic



status and lifestyle from Thai population with type 2 DM (24). In Thailand, three CKD prediction

models were developed. The studies of Thakkinstian (2011) and Saranburut (2017) developed

CKD prediction models in Thai populations which have only 11.9% and 7.8% of DM patients,

respectively, so their studies may be less specific for predicting CKD in diabetic patients. There is

only one study of Kittipanyaworakun was developed CKD prediction model in 322 type DM

patients(12). However, limitations of this study were obtained in terms of small sample size,

lacking of validation method and eGFR calculation by using Thai eGFR formula which is not

used in practice. Furthermore, most CKD prediction models require some laboratory parameters

such as urinary albumin creatinine ratio that are only available in hospitals. Primary care settings

such as primary clinics, community pharmacies to which DM patients also visit may not access

these prediction models.

To establish prediction model of CKD stage 3 endpoint for diabetic patients which can be

used for every level of health care setting including tertiary, secondary and primary health care

settings. Therefore, this study was conducted to fulfill these gaps.

OBJECTIVES

1. To identify the risk predictors for chronic kidney disease stage 3 in type 2 diabetics.

2. To develop and validate the prediction model for chronic kidney disease stage 3 in

type 2 diabetics.



RESEARCH QUESTIONS
1. What are the association between chronic kidney disease stage 3 in type 2 diabetics
and the risk predictors?
2. Does the predictive model have good performances of validity for predicting chronic

kidney disease progression in type 2 diabetics?

HYPOTHESIS

1. The risk predictors have associations with chronic kidney disease stage 3 among type

2 diabetes patients in Thailand.

2. The developed prediction model for chronic kidney disease stage 3 in type 2

diabetics has a goodness of fit.

3. The predictive model has good performances of validity for predicting chronic

kidney disease stage 3 progression in type 2 diabetics.
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CONCEPTUAL FRAMEWORK

This framework (Figure 1) explains that the risk factors listed on the left (diabetes

patients’ risk factors) are associated CKD stage 3 in patients with type 2 DM. With the significant

associations, the prediction model can be developed.
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Figure 1: Conceptual framework
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Definitions of constructs and variables

Diabetes patients’ risk factors refer to factors that have association with CKD in

patients with type 2 DM.

These CKD risk factors are categorized into 7 groups; demographic factors, lifestyle,

biochemical factors, metabolic factors, cardiovascular functional abnormalities, special

clinical conditions, and medication.

Demographic factors refer to socioeconomic characteristics of a population including

increased age, sex.

Lifestyle refers to a way of life or style of living. Smoking is lifestyle that might affect

renal function.

O Smoking status refers to the history of smoking. Smoking is divided into 2

categories; currently smoking (the patients who are smoking) and never-smoker

(the patients who never smoke).

Biochemical factor includes body mass index (BMI). BMI is referred as body fatness.

BMI can be calculated from the ratio of a person's weight in kilogram and height in

squared meters.

Metabolic factors are factors that have associations to diabetes mellitus (DM) and

cardiovascular disease (CVD). These metabolic factors include lipid profile, blood sugar,

serum albumin, and albuminuria, estimated glomerular filtration rate (eGFR). Lipid
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profile includes triglyceride (TG), high-density lipoprotein (HDL) cholesterol, and low-

density lipoprotein (LDL) cholesterol. These metabolic factors can be obtained by 8 hour

fasting blood test. For urinary albumin to creatinine ratio (UACR) was estimated from

urine collecting.

Hemoglobin A1C (HbAlc) refers to a form of hemoglobin that is measured

primarily to identify the three-month average plasma glucose concentration.

Triglyceride (TG) refers to the most common type of fat in the body. TG is

from food and being produced by the body. Elevated TG is a risk factor for

atherosclerosis.

Low-density lipoprotein cholesterol (LDL) refers to the bad cholesterol that

contributes to fatty buildups in arteries. LDL cholesterol can be another indicator

for cardiovascular disease (CVD).

High-density lipoprotein cholesterol (HDL) refers to the good cholesterol that

carry LDL away from arteries and back to liver, where LDL will be broken

down. Higher level of HDL means to prevent the risk of heart disease.

Uric acid is a natural waste product from digestion of food that contain purines.

Hyperuricemia can lead to a gout disease that causes painful joint because of the

accumulation of urate crystals.


https://en.wikipedia.org/wiki/Hemoglobin
https://en.wikipedia.org/wiki/Blood_sugar
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Urinary albumin to creatinine ratio (UACR) referred to the amount of

albumin in urine which indicates to a sign of kidney disease. UACR of 30-300

mg/g is defined as microalbuminuria and UACR >300 mg/g is defined as

macroalbuminuria.

Serum albumin is a crystallizable albumin or mixture of albumins that

constitutes the protein in blood serum and serves to maintain the osmotic

pressure of the blood.

Estimated glomerular filtration rate (eGFR) indicates to level of kidney

function and stage of kidney disease. eGFR was calculated from Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) formula (Table 4).

Cardiovascular functional abnormality refers to the risk factor related to heart disease.

O Systolic blood pressure (SBP) refers to amount of arteries’ pressure during

heart contraction. SBP is the one of component of blood pressure that is an

indicator of the heart function. Blood pressure can be measured after resting at

least 5 minutes by a nurse using Omron HEM 7120 Automatic Blood pressure.

The special clinical condition which refers to the retinopathy and cardiovascular disease

O Diabetic retinopathy (DR) refers to a diabetic complication which damage the

retina of the eyes. Diabetic retinopathy can lead the vision impairment. Diabetic

retinopathy includes macular edema, background retinopathy, and proliferative
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diabetic retinopathy. The previous retinopathy is referred to the history of any

type of diabetes retinopathy in the diabetes patients.

O Cardiovascular disease (CVD) is a disease that involves blood vessels and
heart. Cardiovascular disease is stroke, angina pectoris, and myocardial

infarction.

Medication use refers to medicine that type 2 diabetes patients were prescribed during

time of study.

O Nonsteroidal anti-inflammatory drugs (NSAIDs) is a group of medicines with
anti-inflammatory, antipyretic effects and analgesic. Examples of NSAIDs
include ibuprofen, naproxen, aspirin, e.g. NSAIDs exposure is defined as total

prescription days of taking NSAIDs within one year.

CKD in type 2 DM refers to incident CKD in type 2 diabetics. Chronic kidney disease
stage 3 will be first diagnosed based on Kidney Disease Improving Global Outcome

(KDIGO) 2012 Clinical Practice Guideline with eGFR less than 60 mL/min/1.73m’.



CHAPTER 11

LITERATURE REVIEW

This chapter describes about the literature review that related this study. The topics are

included the risk factors for CKD in type 2 DM, the prediction model developing and validation,

the developed CKD prediction models in diabetic patients, and multiple imputation method.

The chapter is reviewed the related main topics in order to design the appropriated

methodology for this study.

L. Risk factors of chronic kidney disease in patients with type 2 DM

II. Development and validation of clinical prediction model

I11. The developed CKD prediction model in diabetes patients

IV. The developed CKD prediction model in Thailand

V. Multiple Imputation by Chain Equation (MICE)

I. RISK FACTORS OF CHRONIC KIDNEY DISEASE IN PATIENTS WITH TYPE 2 DM

Even many literature reviews mentioned about CKD risk factors, including albuminuria

and eGFR decline rate, or diabetic nephropathy among diabetic patients, these mentioned risk

factors also had associated to develop to chronic kidney disease.
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I.1 Age

In our knowledge, the eGFR gradually drops every year. The rate of eGFR decline is in
range of 0.75 to 1 mL per min per 1.73 mzper year among adult with age of 40 years or more (25).
And an eGFR decline will increase after the age 50—60 years. Cellular and organ senescence in
renal function lead to a low level of eGFR in the age more than 65 years (26). The study of
Cosmo et al. (2016) on 27,029 type 2 DM participants for 4 years revealed that age was the
significant variable associated to the onset of eGFR decline with the relative risk (RR), 1.37 (P<
0.001)(27). Furthermore, the study of Moriya et al. (2017) examined the risk factor of eGFR
decline in 2,033 DM patients. The results showed that advance age (+ 10 years) was associated
significantly to the rapid eGFR decline with odd ratio (OR), 1.46 (95%CI 1.12-1.91). It was
discussed that the older patients might have either vascular or tubular changes that contributed to

a rapid GFR decline (28).

1.2 Gender

The effect of gender on diabetic renal disease is controversy. Some studies exhibited that
male gender was a risk factor for diabetic kidney disease, some studies showed that women was a
higher risk of developing the kidney disorder. However, possible mechanisms for the protective
effect of female gender on chronic kidney disease, i.e., gender differences in kidney anatomy,

effects of sex hormones have been discussed.


http://ezproxy.car.chula.ac.th:2058/science/article/pii/S1056872716302240
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The study of Cosmo et al. (2016) showed that male sex had significant association with

the rapid eGFR decline and albuminuria with the relative risk ratio(RRR), 0.767(95%CI 0.68—

0.86), and 1.355 (95%CI 1.22-1.50) , respectively(27). Another study of Retnakaran et.al. (2006)

showed the same result that male sex had risk association of microalbuminuria and

macroalbuminuria with HR 1.52(95%CI 1.10-2.10), and 1.47 (95%CI1.06-2.02), respectively

(29).

1.3 Cigarette smoking

Cigarette smoking is associated to microalbuminuria, macroalbuminuria and renal failure

in both type 1 and type 2 DM.

In the U.K. Prospective Diabetes Study [UKPDS] (2006) on 5,102 patients with type 2

DM. The results showed that smoking had the risk association of microalbuminuria significantly

with hazard ratio (HR) 1.60 (95%CI 1.26-2.05). In multivariate model, HR of smoking to

microalbuminuria was 1.2 (95%CI 1.01-1.42) significantly (29). In the cross-sectional study of

Cosmo et al. (2006) on 158 currently smoking and 158 non-smokers with type 2 DM. The

adjusted OR of low eGFR was 2.20 (95%CI 1.14-4.26) significantly in currently smoking

comparing with the non-smoker (30). Moreover, results from the meta-analysis included 19

observation studies with type 1 and 2 DM showed significant risks of diabetic nephropathy (DN)

in both type 1 and 2 DM who were ex-smokers comparing non-smokers with summary relative

risk (SRR) of 1.31 (95%CI 1.06-1.62), and 1.44 (95%CI 1.24-1.67), respectively. Similarly, ex-

smokers had significantly associated to macroalbuminuria in both type 1 and 2 DM with SRR of
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1.27 (95%CI 1.10-1.48), and 1.72 (95%CI 1.04-2.84), respectively. Even mechanism of smoking
effect to renal dysfunction is still unknown, but possible explained pathway was
carboxyhemoglobin, prothrombotic factors, and platelet activation were increased from smoking.

These factors cause oxidative stress, glomerulosclerosis, and tubular atrophy (31).

1.4 Body mass index (BMI)

Obesity-related glomerular disease is related to high flow of renal plasma (32). The
eGFR declines in type 2 DM will be vary by BMI. The obese diabetic patients would have eGFR
decline higher than non-obese diabetic patients (normal weight or overweight) (33). The results of
Cosmo’s cohort study (2006) among 27,029 patients with type 2 DM, showed that BMI more
than 30 kg/m2 were associated to rapid eGFR and albuminuria with relative risk ratio (RRR) 1.33
(95%CI 1.09-1.63) comparing with BMI less than 27kg/m’. And BMI 27-30 kg/m’ were
associated with albuminuria with RRR 1.36 (95%CI 1.09—1.7) comparing with BMI less than 27

kg/m2(30).

1.5 Hemoglobin Alc (HbAlc)

Hemoglobin (HbA1C) is widely used to determine the long-term glycemic control.
Therefore, HbA1c has been widely adopted for the diagnoses of type 2 DM. Inadequate glycemic
controls are associated with poor complication in DM including microvascular and macrovascular
outcomes. Many studies show that glycemic controlling could slow renal function decline.

A study of Dodhia et al. (2016), 70 patients with type 2 DM were enrolled in the study

for 6 months. The diabetic patients were divided into 2 groups; group 1 was patients with serum
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creatinine (Scr) < 1.2 mg/dl, and group 2 was patients with Scr 1.2 mg/dl or more. The results
were found that the mean HbA1c of the first group was 7.97% which was lower than the mean of
the latter group by 9% (p<0.05). It concluded that uncontrolled glycemic could lead to
progression of DN(34).

The Action to Control Cardiovascular Risk in Diabetes (ACCORD) (35) study (2008)
conducted on random 10,251 diabetes patients that are classified into 2 groups: the group 1 was
the intensive therapy (HbAlc < 6%) and group 2 was the standard therapy (HbAlc 7-7.9%) with
3.5 year follow up. The results showed that macroalbuminuria was significantly decreased in the
intensive therapy group with HR, 0.69 (95%CI 0.55— 0.85)(36). The finding of Sheen et al.’s
study (2013) on 577 DM patients showed that the higher glycated hemoglobin (HbAlc) at
baseline 8.5+2.1% was significantly associated with rapid eGFR comparing the group with
HbAlc at baseline 7.9+1.8%. The association between higher HbAlc baseline and the rapid
¢GFR decline was significant with the adjusted odd ratio (OR) 1.014(95%CI 1.00-1.03)(37). The
results of Yokoyama et al.’s cohort study (2009) on 729 DM patients showed the multiple logistic
repression analysis that eGFR =>7% and 6.0 to 6.9% had significantly associated to rapid eGFR,
with the odd ratio (OR) 2.93 (95%CI 1.76 - 4.87), and 1.42 (95%CI 0.89 -2.27) comparing

baseline HbA 1¢ more than 6%, respectively(38).

1.6 Albuminuria
In general, levels of albuminuria can predict loss of renal function. The more albumin in

the urine, the larger the progressive renal function loss. Albuminuria is classified into 2 types;
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microalbuminuria (UACR 30-300 mg/g) and macroalbuminuria (UACR > 300 mg/g)(39).

Regarding the International Developing Education on Microalbuminuria for Awareness of renal

and cardiovascular risk in Diabetes (DEMAND) (40) study (2006), the prevalence of

microalbuminuria and macroalbuminuria are 39% and 10%, respectively (40). In Vigil et al.’s

study (2015), the prospective cohort study on the stage II CKD patients, the results showed that

high proteinuria was associated with the rapid kidney decline significantly with odd ratio (OR),

1.817(CI 95%, 1.21-2.72) (41). Moreover, the findings of prospective cohort study of Babazono

et al. (2009) among 5,449 Japanese type 1 and 2 DM patients showed that within the normal

range of UACR (<30 mg/g), UACR 10 mg/g or more in female, and 5 mg/g or more in male were

significantly related to the rate of eGFR decline comparing with UACR less than 5 mg/g (42).

1.7 Uric acid

Uric acid is a chemical end product from breaking down of purine compounds. Purine

compounds are from two pathways, including diets and body synthesis. Uric acid is mostly

production of liver. However, uric acid can be produced in intestine and kidney. Hyperuricemia

is defined as levels of uric acid higher than 6 mg/dl in female or 7 mg/dl in male. Chronic high

levels of uric acid cause uric acid depositing in part of joints and soft tissues which can lead to

inflammation of arthritis and tophi called gout. In Jalal’s study (2011) explain about relation

between uric acid and diabetic nephropathy that there was still consensus because of complicated

relationship about uric acid and renal function. Because uric acid level was rised in patients with


https://www.sciencedirect.com/topics/medicine-and-dentistry/uric-acid

21

diabetic nephropathy(43). Even complicated relationship was obtained, but there were many
studies showing uric acid predicting for diabetic nephropathy developing.

The cohort study among type 2 diabetics from the database of the Italian Association of
Clinical Diabetologists network (2016) was conducted. The study examined the correlation
between serum uric acid and the onset of CKD. The results showed the significant risk association
to CKD incident in the groups of patients with level of uric acid 4.4, 5.1 and 7.1 mg/dL
comparing with the group of patient with low uric acid of 3.5mg/dL(27). Similarly, a prospective
cohort study of Hovind et al (2009) investigated uric acid as a predictor of DN (defined as
persistent either microalbuminuria or macroalbuminuria) among 263 type 1 diabetics. The result
of multiple Cox-regression analysis showed that uric acid could predict microalbumin with a
hazard ratio of 2.37 (95%CI 1.04-5.37) (44).

Study of Jalal et at. (2010), a prospective cohort study recruiting 324 type 1 diabetics,
evaluated predicting of wuric acid for albuminuria, including microalbuminuria and
macroalbuminuria with six-year follow up. The results showed that baseline of uric acid level was
predictive of albuminuria; adjusted odd ratio for the development of albuminuria was 1.18
(95%CI 1.2-2.7) for every 1 mg/dL increase in uric acid level (P=0.005)(45). An observational
study of Spencer et al. (1986) among obese type 2 DM using the Treatment Options for Type 2
Diabetes in Adolescents and Youth (TODAY) Study to evaluate association between uric acid
and diabetic kidney disease (urinary albumin excretion 230 mg per gram). The average follow-up

times were 5.7 years. Multiple Cox proportional hazard regression model exhibited that
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increasing uric acid was predictive for diabetic kidney disease; hazard ratio for the development
of diabetic kidney disease was 1.24 (95%CI 1.03-1.48) (P=0.022) (46). The mechanism is to
cause renal dysfunction by placing intraluminal crystals in the collecting duct of the nephron in a

manner reminiscent of gouty arthropathy(47) .

1.8 Serum albumin

Serum albumin is an abundant protein in blood. Serum albumin has roles in maintaining
the oncotic pressure between blood vessels and body tissues. Low serum albumin or
hypoalbuminemia has associated to diabetic nephropathy (48). The mechanism of
hypoalbuminemia leading to kidney disease progression may be explained that the level of serum
albumin affects the degree of proteinuria. Another possibility is low serum albumin can reflect an
inflammation, which leads to the kidney disease progression (49). The result of Leehey’s
observational study (2005) that recruited 343 diabetes patients showed the strong association of
age-adjusted low initial serum albumin (<35 mg/dl) to eGFR decline with F ratio 14.5 (p < 0.001)
(50). Similarly, a retrospective cohort study of Zhang et al. (2019) conducted in 188 diabetes
patients to find out correlation between serum albumin and ESRD. Diabetes patients were divided
into 4 groups; 1) normal group (serum albumin=35 g/L), 2) mild group (serum albumin 30-
35 g/L), 3) moderate group (serum albumin 25-30 g/L), and 4) severe group (serum albumin
<25 g/L). The results showed that every severity group of albumin levels, including mild,

moderate and severe group, comparing the normal group had significant association of end stage


https://en.wikipedia.org/wiki/Oncotic_pressure

23

renal disease progression with hazard ratio of 2.09 (95%CI 0.67-6.56), 6.20 (95%CI 1.95-19.76),

and 7.37 (95%CI 1.24-43.83), respectively (51).

1.9 Hyperlipidemia

Diabetes patients were found that most of them had dyslipidemia, such as a rising in very
low-density lipoprotein (V-LDL) cholesterol and low-density lipoprotein (LDL) cholesterol and a
decreasing in high-density lipoprotein (HDL) cholesterol. Dyslipidemia is shown risk association
to development and progression of DN in many studies.

According to the studies in the Kidney Disease Outcomes Quality Initiative (KDOQI)
guideline 2012, there are some studies revealing the inclusive correlation the high levels of low
density lipoprotein (LDL) cholesterol , total cholesterol (TC), triglycerides (TG), and low levels
of high density lipoprotein (HDL) cholesterol and rate of kidney progression (39). However, the
results of Cosmo’s study (2016) showed that relative risk ratio (RRR) for TG with each 10 mg/dL
increasing by 1.02, (P<0.001) and LDL-c by 10 mg/dl (0.97, P=0.004) were related significantly
to the onset of eGFR reduction (27). Another prospective observational study of Retnakaran et al.
(2006) analyzed risk factors for renal dysfunction (defined as level of creatinine clearance less
than 60 mL/min/1.73m" or double of plasma creatinine) and albuminuria among 5,102 UKPDS
participants. Results were revealed that the level of LDL was a significant risk factor for
macroalbuminuria; hazard ratio (HR) for macroalbuminuria occurring was 1.17 (95%CI 1.02-
1.33) for every 1 mmol/L increase in LDL levels (P= 0.022). However, HDL had risk association

to double of plasma creatinine with HR of 2.78 (95%CI 1.01-7.68) (29). Moreover, a
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retrospective multi center cohort (2016) studied about triglycerides and the levels of HDL for
predicting diabetic kidney disease (DKD) in Italian 47,177 type 2 DM patients with baseline of
LDL <130 mg/dL. All patients were followed up 4 years. DKD was defined as presenting of
either low eGFR (less than 60 mL/min/ 1.73m2) or the reduction of eGFR more than 30% and/or
albuminuria. The investigators found that patients with TG = 150 mg/dL had 1.26 times for low
eGFR risk (95%CI 1.11-1.42), 1.29 times of an eGFR reduction <30% risk from baseline (95%CI
1.12-1.48), and 1.19 times of albuminuria risk (95%CI 1.09-1.31) comparing patient with TG
<150 mg/dL. For HDL cholesterol, it was found that patients with low HDL cholesterol (defined
as less than 40 mg/dL in male and less than 50 mg/dL in female) had 1.27 times for low eGFR
risk (95%CI 1.12-1.44), 1.28 times of an eGFR reduction <30% risk from baseline (95%CI 1.11-
1.47), and 1.24 times of albuminuria risk (95%CI 1.13-1.36) comparing patient without low HDL

cholesterol (52).

1.10 Systolic blood pressure

High blood pressure can contribute to CKD progression. Blood vessels in the kidneys
can be damaged by high blood pressure. This condition can lead to reduce the abilities of renal
function in term of removing fluids and waste products from the bold. As the result, it can lead to
kidney failure.

In Chiang’s observational study (2014) among 2,144 CKD patients to examine the

association between systolic blood pressure (SBP) and clinical outcomes in CKD patients. All
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were followed for 2 years (2009-2010), or death. It was found that SBP more than 140 mmHg
was significantly associated to the renal outcome and rapid decline of renal function in DKD
patients with the adjusted HR, 2.60 (95%CI 1.29-5.26) comparing with SBP range 111-120
mmHg (53).

In meta-analysis of 84 non-randomized and randomized trial (2013) in CKD patients. It
had shown that deceasing 10 mmHg of mean arterial pressure could improve the rate of eGFR
declining of 0.18 ml/min/ 1.73m’. In a multivariate analysis, the finding showed that 10-mmHg
reduction in SBP decreased proteinuria significantly with the regression coefficient -0.14 (95%CI
0.22 to -0.06)(54).

In Another study of Retnakaran et al. (2006) on diabetes patients showed the same result
that there were significantly association between SBP and microalbuminuria and
macroalbuminuria with HR 1.15 (95%CI 1.11-1.20), and 1.15 (95%CI 1.07-1.24), respectively

(29).

I.11 Diabetic retinopathy

Diabetic retinopathy (DR) is a microvascular complication of DM and leads blindness.
There are many studies showing prediction for diabetic kidney disease of DR.

The fifth Korea National Health and Nutrition Examination Survey (KNHANES) of Lee
et al. (2014) with an adjusted OR of 1.9 (95%CI 1.04-4.26) comparing patient without DR (55).

The Japan Diabetes Complications Study (JDCS) (2017), a prospective study of patients

with type 2 DM, examined the risk factors for rapid eGFR decline (defined as eGFR declines of
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>3 ml/min/1.73m’) in 1,470 DM patients with 8 years of follow-up. Patients were separated into
4 groups based on levels of eGFR: G1 (eGFR2120), G2 (90 < eGFR <120), G3 (60 < ¢GFR
<90), G4 (eGFR <60). The results of multiple logistic regression implied that DR was the
significant risk factor for the rapid eGFR decline with HR 2.24 (95%CI 1.54-3.26)(28). In Zhang
et al.’s study , a cross-sectional study among 250 patients with type 2 DM, evaluate the
relationship between DR and DN. Prediction models for renal outcome were generated into 3
models based on covariates, including model 1 (adjusted by age, cigarette smoking, hypertension,
gender, duration of diabetics), model 2 (model 1 + hemoglobin A1C, serum creatinine, and
hematuria), and model 3 (model 2 + other renal pathological finding). In an analysis of
multivariate Cox proportional hazard regression showed that diabetic retinopathy (DR) was an
independent risk factor for predicting of ESRD progression in model 1,2 and 3 with adjusted HR
of 1.93 (95%CI 1.08-3.45), 2.65(95%CI 1.27-5.53). The study concluded that DR may be
predictor for renal progression in type 2 diabetics (56). Similarly, a Taiwan multicenter cohort
study was conducted to identify risk factor of diabetic retinopathy to chronic kidney disease. Data
of 4,050 diabetes patients from the Epidemiology and Risk Factors Surveillance of the CKD
project (2008-2013) and the National Health Insurance Research Database (NHIRD) (2001-
2013) were observed. The results showed that type 2 diabetics with diabetic retinopathy had risk
association to develop for CKD stage 3a to 5 with an odd ratio of 1.66 (95%CI 1.36-2.02)

comparing with diabetes patients with diabetic retinopathy(57). Even the exact association
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between vasoconstriction of retinal arterioles and renal dysfunction was unclear, but retinopathy

might be correlated with more advanced glomerular lesions (57).

1.12 Cardiovascular disease

The UKPDS study (2006) had examined the risk factors for the renal dysfunction. This
study that recruited 5,102 type 2 DM patients with 15 —year follow up. The incidences of
microalbuminuria, macroalbuminuria, and the reduced creatinine clearance were the renal
outcomes. In the univariate analysis has shown that the previous cardiovascular disease (defined
as history of myocardial infarction, angina pectoris, or transient ischemic attack) has the
association with microalbuminuria, macroalbuminuria, and the reduced creatinine clearance with
HR, 1.58 (95%CI 1.31-1.90), 1.64 (95%CI 1.18-2.28), and 1.71 (95%CI 1.51-1.93), respectively
(29). Moreover, another prospective cohort study of Vigil et al. (2015) on the stage 11 CKD
patients, the results showed that previous cardiovascular disease (defined as history of heart
failure, stroke, or acute myocardial infarction) was associated with the rapid kidney decline

significantly with odd ratio (OR), 1.90 (CI 95% 1.03-3.52)(41).

1.13 Non-steroidal anti-inflammatory drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) are cyclooxygenase function inhibitor,

and NSAIDs have the ability of prostaglandin production reducing. NSAIDs can change

hemodynamics in the kidney function which leads to the acute renal failure. Taking NSAIDs is

associated significantly to chronic kidney disease among patients with type 2 DM. In short-term
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uses, NSAIDs also cause renal effects including sodium retention, the alteration of glomerular
filtration rate, and elevation of blood pressure (58, 59).

The finding of Tsai et al.’s large retrospective cohort study (2015) among Taiwanese
48,715 type 2 diabetes exhibited that taking NSAIDs for a period of 1-89 days were associated
risk of CKD with the adjusted HR, 1.28 (95%CI 1.20-1.35) comparing with not taking NSAIDs.
And also, taking NSAIDs more than 90 days were associated a higher risk of chronic kidney
disease with the adjusted HR 1.37 (95%CI 1.26-1.49) comparing with not taking NSAIDs. The
investigators recommended to evaluate risk and benefit of NSAIDs dispensing among diabetics
(60).

1.14 Duration of diabetics

The findings of many studies about the correlation between duration of diabetes and
eGFR decline is still controversy. In Rossing et al.’s prospective observational study (2004), 227
diabetes participants were observed Caucasian patients with type 2 DM until diabetic nephropathy
developed. Median of time follow-up was 6.5 (interquartile range [IQR] 3-17) years. The result
exhibited that duration of diabetics was not associated to eGFR decline(61). Cosmo et al.’s cohort
study (2016), the result also showed the same way. Five years of diabetes was not related to the
rapid eGFR decline(27).

In contrast, the results of Zoppini’s cohort study (2012) revealed that diabetic duration
215 years had the mean annual rapid eGFR -1.0+0.1. And duration of diabetes <15 years had the

mean annual rapid eGFR -0.7+0.1. As the result, it exhibited that longer duration of diabetes had
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associated with the rapid eGFR significantly (p<0.05) comparing with the duration of diabetes

less than 15 years(62). Similarly, a retrospective cohort study using The Australian Diabetes,

Obesity, and Lifestyle (AUSDiab) study (2004) evaluated risk factors for albuminuria (defined as

either microalbuminuria or macroalbuminuria) among 11,247 adult diabetes. The findings showed

that duration of diabetics was a predictor for microalbuminuria in newly diagnosed diabetics and

known diabetics with odd ratio of 1.34 (95%CI 1.06-1.70) by increasing every 10 years of

durations of diabetics. When analysis in only known diabetics, duration of diabetics also

predicted for albuminuria with odd ratio of 1.38 (95%CTI 1.05-1.81) by increasing every 10 years

of durations of diabetics(63).

1.15 Other risk factors

Other reviewed CKD risk factors for type 2 diabetics include oxidative stress, subclinical

inflammation, genetic background, ethnicity, and glomerular hyperfiltration.

For the oxidative stress, Hinokio et al.’s study (2002), a prospective longitudinal study,

showed that increased oxidative stress leads pathogenesis of DN. It was found that rising 8-oxo-

7,8-dihydro-2'-deoxyguanosine (8-o0xodG), a marker of oxidative stress tested by urinary, was

predictive for incident DN among type 2 diabetics(64).

Diabetes patients with proinflammatory cytokines and chemokines, including interleukin

(IL) 6, IL 18, high-sensitivity C-reactive protein, monocyte chemoattractant protein-1 or adhesion

molecules, are higher risk to contribute to nephropathy and severe kidney disease. The studies

exhibited the relationship between microalbuminuria and endothelial dysfunction and low-grade


https://www.ncbi.nlm.nih.gov/pubmed/?term=Hinokio%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=12107732
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inflammation in both type diabetes (type 1 and type 2 DM). An observational study (2002)

determining risk of endothelial dysfunction and chronic inflammation for microalbuminuria

among 328 type 2 diabetics. The univariate analysis showed that Von Willebrand factor, Tissue-

type plasminogen activator, soluble E-selectin, C-reactive protein showed relation to development

of urinary albumin excretion with coefficient of 0.08 (95%CI 0.03 - 0.13), 0.08 (95%CI 0.02 -

0.13), and 0.08 (95%CT 0.04 - 0.12), respectively. However, the investigators described that these

endothelial dysfunction markers had relationship with albuminuria, but the mechanism was

unclear (65). Similarly, a randomized-controlled trial of Persson et al. (2008) using the Irbesartan

in Patients with Type 2 diabetes and Microalbuminuria (IRMA 2) study to evaluate whether

biomarkers of endothelial dysfunction and inflammation can predict for progression of diabetic

nephropathy (defined as onset of persistent albuminuria). The finding indicated that endothelial

dysfunction (i.e., von Willebrand Factor (vWf), soluble vascular cell adhesion molecule-1

(sVCAM-1), soluble intercellular cell adhesion molecule-1 (SICAM-1), sE-selectin) was

predictive for the development for diabetic nephropathy in type 2 diabetics and microalbuminuria

with hazard ratio of 3.2 (95%CI 1.56-5.65)(66).

Genetic factors had association for development of DN. Type 1 and type 2 diabetics who

had a sibling having DN have higher risk of DN than those who have a sibling without diabetic

nephropathy(67-69). Angiotensin-converting enzyme (ACE) gene polymorphism which is a gene

component of the renin—angiotensin—aldosterone system (RAAS). RAAS is a system related in

the pathogenesis of progressive renal disease. ACE was showed risk association for diabetic
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nephropathy developing in some studies (70, 71). Some studies contributed contrast results(72,
73). However, a meta-analysis of Wang et al. (2012) was performed with 26,580 subjects
recruiting 63 published studies to evaluate the risk of ACE insertion/deletion (I/D) polymorphism
for diabetic nephropathy developing. The finding showed that all ACE I/D polymorphism were
associated as the risk of diabetic nephropathy in all genetic models. When subgroup analysis was
conducted, results were found that Asian with type 2 DM exhibited critical associations for all
genetic models. The investigators explained that ACE I/D polymorphism could contribute for the
development of diabetic nephropathy (74). African-American and Pima Indians were reported
with higher risk of diabetic nephropathy than Caucasians. The possible explaining was
socioeconomic and genetics factors in these ethnic group contributed different glycemic and
blood pressure controlling (75, 76).

Glomerular hyperfiltration showed relationship between glomerular hyperfiltration and
development of DN in both types of diabetics (77, 78). A cohort study (2015) using the coronary
artery calcification in type 1 diabetics evaluated whether renal hyperfiltration (defined as level of
¢GFR 120 mL/min/1.73m’) have associated to rapid eGFR decline. Finding showed that renal
hyperfiltration were predictive for rapid GFR decline with OR of 5.00 (95%CI 3.03-8.25)(78).
Similarly, A cohort study of Remuzzi et al. (2006) among 600 type 2 DM patients without
macroalbuminuria to determine the association between hyperfiltration and nephropathy (defined
as macroalbuminuria). The finding showed that patients with renal hyperfiltration had risk of

macroalbuminuria progression with HR of 2.16 (95%CI 1.13-4.14). The possible mechanisms of
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nephropathy from renal hyperfiltration was due to increased glomerular pressure contributing to

mesangial expansion and thicken glomerular basement membrane (79, 80).

II. DEVELOPMENT AND VALIDATION OF CLINICAL PREDICTION MODEL

Clinical prediction model is a developed tool to estimate probabilities of prognosis

outcome from multiple parameters. Clinical prediction model is applied for screening risk

individuals for a disease, predicting future of disease. Moreover, clinical prediction model can

assist health provider to make a decision for disease management and supplying health education

for patients(81). Even though many reports and books suggest methods for developing clinical

prediction models, there is no standard of guideline(82, 83). Finally, five summarized steps are

obtained.

I1.1 Preparing data for creating clinical prediction model

To obtain a good and accurate prediction model, multivariate variables using extensive

dataset are used. Components, including target outcome target patients, target user, should be

raised to clarify prediction model. If a researcher would liked to establish a prediction model for

general population, prediction model should be simple with categorical questions (e.g., yes/no

choices).
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I1.2 Dataset selection

Aim of study leads dataset selection. Cross-sectional study usually is used to develop
clinical prediction model for screening undiagnosed disease (i.e., diabetes mellitus, chronic
kidney disease). Example of clinical prediction model in cross-sectional study is Korean Diabetes
Scores(84). In contrast, longitudinal or cohort studies are used for predicting incidence of disease
(e.g., cardiovascular disease, cancer) to prevent these diseases. Example of clinical prediction
model in cohort study is the American College of Cardiology (ACC)/American Heart Association

(AHA) Arteriosclerotic Cardiovascular Disease (ASCVD) risk equation (85).

I1.3 Handling variables

Collected data are contained categorical or continuous variables. For continuous
variables, the skewed distributions can be provided. However, the skewness can violate of the
statistical assumption which leads to the statistical analysis yielding the invalid results (86). For
the Cox-proportional hazard regression, the proportionality assumption is the relative hazard of
groups of interest is constant over time.

Logarithm transformation or squared methods are used to solve the skewness problem
(86). However, logarithm transformation is usually applied to reduce the skewness of each
variable as possible in order to raise the validity of the statistical analyses. In this study, the
skewness of each variable was tested by using the skewness and kurtosis test for normality based
on D'Agostino’s X 2 test, the histogram and the distributional diagnostic plots (87). For the

skewness and kurtosis test, if the p-value of a variable is more than 0.05, the variable has no
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skewed. For histogram, the distribution should be normal distribution or bell-shape curve as

possible. For the distributions of the diagnostic plots, the distribution should be closed to a

straight line meaning to have closely normal distribution. Even a logarithm transformed variable

does not provide the good normal distribution, the less skewed distribution of data is more

suitable for statistical analysis.

Missing data is a common problem that can be occurred. There are many methods to

handle with missing data, i.e., deletion of uncompleted data, replacing with means, multiple

imputation, etc. Handling of missing data was described in part of “Multiple Imputation by

Chain Equation (MICE)”.

I1.4 Model development

II.4.1 Identifying risk predictors

The candidates of the risk predictors are reviewed from the literature reviews and the

expert’s experience. The database of these risk predictors should be from either cohort study or

nested case-controlled study. Univariate and multiple variate analysis are used to estimate the

association between the risk predictors and a chronic disease. For univariate analysis, predictor

variables with p-value < 0.1 were considered to be included in the multivariate analysis. For

multivariable analysis, predictor variables were estimated by backward elimination approach for

building model. Improved performances of model selections in multivariate Cox-proportional

hazard regression model were estimated by using goodness-of-fit of the Akaike Information
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Criterion (AIC). AIC is an indicator of model fitting to prevent over fitting of the model. Lower

AIC indicates better model(88).

I1.4.2 Generating risk equation

After model generation, risk equation of disease endpoint are generated. Absolute CKD
risk was generated based on the Cox model at three years, and subtracting the mean values each
CKD predictor (89). Applying Cox models in this way allows another group to recalibrate the
equation to their own cohort by replacing the mean values of the predictors in our cohort, and our
three-year survival estimate with those of their own cohort. Predicted CKD risks were calculated
from risk scores following this equation:

Risk score = (X, B; X X; — Bi X X;)

Predicted CKD risks = 1 — S (t)®XP (Risk score)

So is baseline survival function at time t, [5; is the regression coefficient for X;, and the

X is mean level of Xj.

I1.5 Model validation

When a prediction model is developed, the prediction model should be tested for the
validity of performance. There are three types of validation methods, including the apparent
validation (using own sample), the internal validation (using own population) and the external

validation (using other population). In this study, the internal validation method was applied.
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Internal validation can be divided into 3 types based on techniques, including split-

method, cross-validation and bootstrapping methods (90, 91).

Bootstrap method is randomly sampling with replacement from an original dataset for

use in obtaining statistical inference.

Split-method is randomly split into 2 datasets; a training data for developing model, and

a validation dataset to test model performance. Percentage ratio of splitting are mostly used of

70:30 or 80:20(92).

Cross-validation method is a performing of consecutively model test by randomly

drawn parts of original sample. Model is developed and estimated by 50% of original sample and

tested on the 50% of independent part and vice versa. Average performance of model is

calculated over 2 time repeating. Other fractions are used for cross-validation, i.e., 10% cross-

validation which was 10 times for repeating model testing. In this study, split-method with ratio

of 70:30 was applied for training and validation datasets (Figure 2), respectively.

All subjects

Training dataset Validation dataset

(70% of subiects) (30% of subiects)

Figure 2: Schematic representation of split method
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This step is to validate the performance of the developed prediction model. The

approaches of validation are following.

I1.5.1 Discrimination

Discrimination refers to ability of distinguishing patients with events out from those
without events. C-statistic or concordance index is applied to evaluate for discriminative
performance of Cox model.

The Harrell’s C-statistic is a rank parameter which is a comparison between predictions
with the ranks of actual event times, and not directly with the binary event status. The Harrell’s
C-statistic has a range of scale from 0.5 to 1.0. If C-statistic is 0.5 meaning no discriminative

ability, and closed to 1 meaning perfect discriminative ability (93, 94).

I1.5.2 Calibration

Calibration refers to another measurement of the predictive accuracy of the prediction
model. Calibration is a measure of degree of consistency between predicted probability produced
by prediction model and actual observed probability (95). There are several measures for
calibration performance, such as calibration plot, calibration slope, calibration-in-the-Large(96).
However, we will explain calibration measures that are applied in this study, including Hosmer-
Lemeshow X 2 test, and survival probability curve for risk groups.

Hosmer-Lemeshow X? test is a goodness of fit test which is usually applied for binary

outcomes(97). However, Hosmer-Lemeshow X 2 test is also modified to use in survival studies
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(98). However, Hosmer-Lemeshow X2 test is a comparison between predicted probabilities by
prediction model and observed events divided by decile of predicted probabilities(82). A X2 or
Chi-square statistic is an estimator for goodness of fit. For the good prediction model, X ?statistic
is usually non-significant (p-value >0.05) which means to the similarity between the probabilities
of predicted events and observed events. In the other hands, if the probabilities of predicted
events are not similar to observed events or significance is obtained in X? statistic, the accuracy
of prediction for prediction model is poor. Hosmer-Lemeshow X2 test can be displayed in term
of either calibration graph or table. Hosmer-Lemeshow X? test has a easy concept, however, a
difficult interpretation is obtained in small sample size (low power)(82).

Calibration of survival probabilities from Kaplan-Meier method or population-
average survival curve is a calibration method by comparing predicted survival probabilities with
observed curve (Kaplan-Meier curve) in risk groups. Risk groups are divided based on
categorized prognostic index (PT) which are linear predictors from a cox model. Risk groups are
usually divided into three to five groups. The result of this calibration is showed in term of a
graph comparison (96). This calibration method is easy to understand and interpret. This method
is an alternative choice on current practice. However, there are two limitations of this method
(99): 1) Results of calibration is depended on risk group dividing. Even equally selection of risk
groups is possible but a sensitivity analysis should be required. 2) According graphical display,

there is no statistical value to determine whether calibration has significantly worse.
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I11I. THE DEVELOPED CKD PREDICTION MODEL IN DIABETIC PATIENTS

We searched a journal from Embase and PubMed MEDLINE databases. For PubMed

MEDILNE database, mesh terms were applied with "Renal Insufficiency, Chronic "AND

"Decision Support Techniques”. In addition, we searched manually from the reference of each

recruited studies. The studies related CKD prediction models were divided into 2 groups,

including CKD prediction model for CKD progression and CKD developing.

The studies which developed prediction model for renal outcome among diabetics are

summaries in Table 1.
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From 11 studies (Table 1), most of CKD prediction models are developed to predict
ESRD among patients with type 2 DM. Only two established prediction model from Low’s and
Nelson’s studies were developed for CKD. Every study was cohort studies with years follow-up
of studies were in range of 2.9-8.3 years. UACR, age and HbA 1c are the risk predictors appearing
in most prediction models. External and internal validation were applied for validation methods.
Internal validations, i.e., bootstrapping and split method, were approaches to evaluate model
performances. For discrimination performance, the C-statistics which were discrimination
measures were in ranges of 0.68-0.9 which has moderate to high power of predictions. In
addition, calibration measures, i.e., Hosmer-Lemeshow X 2 test, calibration slope, calibration-in-

large, were applied to evaluate accuracy of prediction models.

IV. THE DEVELOPED CKD PREDICTION MODEL IN THAILAND

There are three Thai studies that developed for CKD prediction model showed in Table
2. Both Thai studies were conducted in Thai population studies, including the population-based
Thai Screening and Early Evaluation of Kidney Disease (SEEK) study and employees of the
Electric Generating Authoring of Thailand (EGAT), for developing CKD model. Population of
Thai SEEK study which were randomly sampling from four regions of Thailand, including
Northern, Northeastern, Central and Southern) and Bangkok (metropolitan), were diabetes

patients of 11.92% (434 from 3,459). Similarly, Employees of EGAT which were volunteers for
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health survey were diabetes patients of 7.8% (244 from 3,186). Population were general
population not to be specifically diabetes patients. Both CKD models were developed to predict
CKD outcome (defined as eGFR <60 mL/min/ 1.73m2). In the study of Thankkintian et al. CKD
model was established to predict CKD occurring in present, but CKD model of Saranburat et al.’s
study was developed to predict CKD occurring in next 10 years. Both studies had moderate to
high of discriminations in range of 0.72-0.79, and good calibration were obtained. Even two CKD
prediction models have good performance of CKD stage 3 prediction, their models might not be

specific to patient with type 2 DM regarding small proportion of patients with type 2 DM.

Moreover, the study of Kittipanyaworakun had developed CKD prediction model in 322
type 2 diabetes from Saraburi Hospital. Even the CKD prediction model has sensitivity,
specificity and overall accuracy of 72.72, 92.31 and 86.96%, respectively. However, validation
method for this study was not obtained, and eGFR calculation by using Thai eGFR equation as

~0364 x 0.712 (if female), where Crgn, is serum

follows:375.5 x Crgn, 0% x age
creatinine which is measured by using enzymatic method. Even Thai eGFR equation for
calculating eGFR stage 3 in Thai population has higher sensitivity (85.1%) and specificity
(82.8%) than CKD-EPI equation (sensitivity of 59.8% and specificity of 87.6%), Thai eGFR

equation is not used for calculating eGFR in practice. Furthermore, 322 patients with type 2 DM

was quite small sample sizes that might be questionable for generalization.
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According to previous mentions, most prediction models in diabetes patients are for
ESRD. Only two study from Singapore was related for CKD developing among type 2 diabetes
(Table 2). Even one Thai prediction models are predictive for CKD developing, there are some
limitations in this study in terms of small sample size, lacking of validation method and eGFR
calculation by using Thai eGFR formula which is not used in practice. Therefore, there is no

suitable CKD prediction model for Thai diabetes patients.

V. MULTIPLE IMPUTATIONS BY CHAIN EQUATION (MICE)
This subsection was described about types of the missing data, multiple imputations by

chained equation (MICE) method and how to check the imputed model.

Missing data is a problem that can occur in research study. The problem of missing data
lead to the reduction of statistic power, the biased estimation of parameters, reduced
representativeness of samples, and invalid of conclusion (105). To understand further about the

imputation method, understanding about types of the missing data is required.

V.1 Types of missing data

Types of missing data are categorized based on mechanisms of missing data: missing
data at random (MAR), missing not at random (MNAR) and missing completely at random
(MCAR). MAR is the condition that missing is related to the observed response not the missing

values. For example, collecting HbAlc from DM patients depends on the requirements of each
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physician. In this case, the observed responses are the physicians’ requirements not the DM

patients’ willingness because the authority of laboratory test is under a physician’s

recommendation. Therefore, most research studies with missing of laboratory results including

our study were assumed as MAR. MCAR is the probability of missing not depending neither the

observed response or the missing values, so the pattern of data missing is completely random. For

example, the weight equipment is broken, so in that day nurse cannot record the weight in each

patient. The last one is MNAR which is referred to the probabilities of data missing is related to

the missing values itself. For example, if the present weight recording is depended on the ex-

weight recording. So, if the ex-weight is not recorded, it will lead to the present weight

unrecorded (105, 106).

V.2 Multiple Imputations by Chain Equation (MICE)

There are many methods for handling missing data, such as the listwise deletion (LD),

the pairwise deletion (PD), mean substitution. The LD method is an approach in handling missing

data by omitting cases with missing data and analyze only complete cases. The PD method is an

approach to missing data by eliminating missing data when the variables having missing values

for analysis. If these is no missing data to concern in analyzing variables, the existing values can

be used for statistic testing. So, PD preserved information than LD. However, these techniques

lead the bias estimations, underestimated errors and inefficient estimations(105-107). Mean

substitution is an approach of the single imputation to missing data by substituting the missing
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values with the mean of remaining values. However, mean substitution leads true values rather

than the imputed values which causes overly precise results and leads to incorrect conclusion.

Multiple imputation (MI) is another method to handle the missing data. MI especially

multiple imputation by chained equation or MICE, a flexible technique, can be applied for

continuous and binary variables. MICE is a method under MAR condition. MICE is a technique

to missing data by imputing missing values many times with establishing many imputed datasets.

The imputed values are based on two parts: the individually observed values and the relations

between the observed variables and variables with missing data in other subjects. The imputed

values of each variable with missing data are generated into m dataset. And the estimates of m

datasets are pooled to be the single estimate based on the Rubin’s rule(107). To understand more

about MICE method, we give the example for the missing values for HbAlc and UACR. Other

variables for analysis are eGFR and age. The steps of MICE are these followings (Figure 3)(108):

Step 1: Replacing the missing values in each variable by the mean of each variable called

“place holder” in the dataset. For example, the means of HbAlc and UACR variables are 7 kg

and 300 meters, respectively. So, the missing values of “HbAlc” and “UACR” variables (place

holders) are replaced with the value of 7 and 300, respectively.

Step 2: The “place holder” of HbAlc is set back to be missing value again. But the

“place holder” of UACR is still replaced with the mean of height by 300.



54

Step 3: The observed values of HbAlc which are non-missing values are regressed with

other variables, including eGFR, age, gender and UACR to find out the missing values of HbAlc

in the imputed model. The variables of the imputed model may not include all variables in the

datasets. The observed variables are the analytical variables for generating a prediction model. In

this case we give eGFR and age to be the observed variables. In this example, “HbA1c” variable

performs as the dependent variable, and other variables perform as the independent variables.

Step 4: The missing values of HbAlc are replaced with by the linear regression model.

When the “HbAlc” variable is used as the independent variable for the “UACR” variable in the

linear regression model, the imputed values of HbAlc will be used. If the missing values is from

the categorical variable, the logistic regression will be conducted. In case of the logarithm

transformed variables, the imputation should be conducted by using the logarithm transformation.

Step 5: For the missing values of “UACR” variable, step 2 to 4 are repeated. When the

missing values of the “UACR” variable are completely imputed, it has been finished as one

imputed dataset. The numbers of the imputed datasets are depended on the most percentage of the

missing data(109). For example, if the missing of HbAlc and UACR are 20 and 10, respectively.

The 20 imputed datasets should be generated. For the survival analysis, time to event should be

concerned to be the observed variable.
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Figure 3: The multiple imputation by chained equation (MICE) in one imputed dataset.

V.3 How to check the imputed model

After imputing the missing values of each variable in m imputed datasets, the validity of

the imputed values should be evaluated. The comparisons of the distribution between the

observed and the imputed data are evaluated in several method, such as distributions of estimates,

kernel density plots, scatter plots of linear prediction. Even there are several methods, there is no

the gold standard (110).The simplest method is comparing the distributions of means and standard

deviation (SD) between the observed and imputed data.




CHAPTER III

METHODOLOGY

This chapter describes details of the study methodology which includes a research

design, the population and sample group, steps and instruments used in intervention, and data

analysis.

I. Research design

I1. Population and sample

III. Data description

IV. Experimental procedure

V. Statistical analysis

VI. Software

VII. Ethical consideration

L. RESEARCH DESIGN

A retrospective cohort study was conducted by using DM patients’ data from the

Diabetes Centre Clinic, Taksin hospital. The data were collected data from 1 January 2008 to 31

December 2017.
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II. POPULATION AND SAMPLE

II.1 Study population and samples
The data of 2,178 patients with type 2 DM were recruited from the E-Phis program,

Taksin hospital.

I1.1.1 Area selection

The data of type 2 diabetes patients who were diagnosed by physician from the Diabetes
Centre Clinic, Taksin hospital were applied in this study.

I1.1.2 Patient selections

The eligible patients were selected based on profiles of patients. The criteria are these
followings.

The inclusion criteria:

1) Adult type 2 diabetes patients with age = 18 years old, and

2) Type 2 DM patients with the preserved eGFR (= 60 mL/min/1.73m’).

The exclusion criteria:
1) Patients who had pregnancy because these factors could confound the level of the
interested laboratory. Pregnancy was collected by the International Classification of

Diseases, 10th Revision (ICD-10) code 0240-0249, or

2) Patients who had either the history of cancer or autoimmune diseases (including

systemic lupus erythematosus, rheumatoid arthritis) because these diseases could



58

confound patients’ kidney functions. Cancer were collected by ICD-20 code of
C000-C97 and D000-D09. ICD-10 codes of systemic lupus erythematosus and
rheumatoid arthritis are M320-M329 and M050-M069, respectively, or

3) Patients who had the history of other renal diseases or previous renal function
disorders, including glomerular diseases (ICD-10 code: N00-NO08), renal tubulo-
interstitial disease (ICD-10 code: N10-N16), renal failure (ICD-10 code: N17-N19),
urolithiasis (ICD-10 code: N20-N23), other disorders of kidney and ureter (ICD-10
code: N25-N29), polycystic kidney (Q610-Q619), and hematuria (R31). Because

these conditions could confound patients’ kidney functions.

4) Patients who had eGFR measurements less than 2 times, or

5) Patients who had follow-up time <i year.

Figure 4 showed the process of sample selection
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Adult patients with type 2 DM with eGFR =60 mL/min/1.73m’
between 1 January 2008 and 31 December 2017

(n=8,530)

Excluded

L » - Have only 1 GFR measurement (n= 3,125)

- Have of other renal disease or previous renal
function disorders, cancer, pregnant, SLE,
RA (n=1,755)

= Follow-up periods 1 year or less (n=1,472)

v

Eligible patients with type 2 DM with eGFR =60 mL/min/1.73m’ were

recruited in study(n=2,178)

Figure 4: The flow chart of sample selection

I1.2 Sample size

A rule of thumb is applied for sample size estimate to reduce the bias estimates of

regression coefficient from the developed risk prediction model (111). The formula for sample

size calculation is this following:

N = (n x 10)/I
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Where N is referred to the required sample size, n is referred to the numbers of variables
to be analyzed and I is referred to the incidences of the combined adverse events. For this study,
we assumed the prevalence of CKD among patients with type 2 DM equal to 20 % based on Thai
published reports (10, 11). We assumed to use I equal to 0.20 to calculate sample sizes in this
study. Candidate predictors in this study were 16. Therefore, the required sample sizes were

calculated from this following:
N = (10 x 16)/0.2

N =800
According to a large cohort study, some researchers suggest to use the entire dataset for
high power and generalization(112). Therefore, sample sizes for developing model in this study
are at least 800. However, eligible subjects in this study are 1,525 (sample sizes for developing

model) which are enough for conducting the study.

I1.3 Split method

Split method was applied as the internal validation, 2,178 eligible subjects were
randomly split into 2 datasets, including the training and validation datasets. For the training
dataset, we used 70% of sample sizes to develop the prediction model. For validation dataset, we
used 30% of sample sizes to validate the prediction model. As a result, 1,525 subjects were in the

training dataset and 653 subjects were in the validation dataset (Figure 5).



2,178 subjects

Randomly split

1,525 subjects

Training dataset (70%)

(For developing model)

653 subjects

Validation dataset (30%)

(For validating model performance)

Figure 5: The training and validation datasets in the split method
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The data of 2,178 patients with type 2 DM were consisted of hospital number (HN),

socio-demographic factors, physical examination, diabetes related factors and biomarkers,

comorbidities, medication therapies. To protect tracking personal data, patients’” HN were blinded

by using continuous number (i.e., 1, 2, 3).

This subsection was described about data preparation before model developing. These

subsections were related to handle candidate predictors in terms of coding, candidate predictors’

correlation, logarithm transformation and missing data.
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II1.1 Coding
The steps of handling variables were data collecting which were based on socio-
demographic, physical examinations, diabetic related factors, comorbidities, medication therapy

and outcome.

II1.1.1 Socio-demographic factors are included age, gender, smoking status.

Age was calculated from 365-divided difference between the index date and birthdate.

Smoking status was categorized only into 2 groups, including currently smoking and
non-smoker. Because smoking status were recorded only in 2017, so we cannot exactly know
who were the ex-smoker. Currently smoking which was coded as 1, was defined as history of at
least one time of smoking. Non-smoker was coded as 0.

Sex was categorized into 2 groups: male (coded as 1) and female (coded as 0).

II1.1.2 Physical examinations were weight and height measurement. BMI was

calculated by weight (kilogram) divided by squared height (meter’).

I11.1.3 Diabetic related factors and biomarkers

Blood pressure was measured by a nurse using Omron HEM 7120 Automatic Blood
pressure after resting at least 5 minutes. Blood tests (i.e., hemoglobin Alc (HbAlc), triglyceride
(TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), estimated glomerular
filtration rate (eGFR)) were collected from blood sample after 8 hours overnight fasting. Urine

tests (i.e., urinary albumin-to creatinine ratio (UACR)) were collected).
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I11.1.4 Comorbidities

Cardiovascular disease is defined as stroke, myocardial infarction (MI), and angina
pectoris using ICD-10 codes 1259, 1600-1698, 1200-1209, and 1210-1219. Subjects who had the
history of cardiovascular disease were coded as 1, and subjects without history of cardiovascular
disease were coded as 0.

Diabetic retinopathy (DR) is retrieved from ICD-10 codes of E113 and H360. Subjects

who had history of DR were coded as 1. Subjects who had no history of DR were coded as 0.

II1.1.5 Medication therapy

History of non-steroid anti-inflammatory drugs (NSAIDs) taking were collected from the
medication data. Usages of NSAIDs included oral and injectable NSAIDs. Generic names of
NSAIDs were etoricoxib, celecoxib, meloxicam, piroxicam, ibuprofen, naproxen, indomethacin,
diclofenac sodium, mefenamic acid, diclofenac sodium (injection), and parecoxib sodium
(injection). Patients who were prescribed with NSAIDs medication were assumed with taking or
using all of NSAIDs. NSAIDs exposures were calculated from the sum of prescription days of
any NSAIDs within 1 year. Prescription days were the date of NSAIDs prescription plus the
duration of NSAIDs supply(60). NSAIDs exposure was categorized into 3 groups; no taking
NSAIDs (coded as 0), taking NSAIDs for 1-89 days (coded as 1) and taking NSAIDs =90 days

(coded as 2)(60).
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III.1.6 Outcome was presenting of CKD stage 3 with eGFR with less than 60
mL/min/1.73m". Censor is defined as lost-follow up of eGFR measurements more than 2 years.
Serum creatinine and age were adopted to calculate for eGFR following the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equations (113) (Table 3). CKD presenting is

code by 1, and non-CKD is coded by 0.

Table 3: The CKD-EPI formula

Sex Creatinine Formula for estimating GFR
concentration

Male < 0.9 mg/dL 141x(5(;%)_°'411x (0.993)49¢

> 0.9 mg/dL 141x( ) ~1.209x (0,993)49¢

< 0.7 mg/dL 144x( ) —0.329x (0.993)49¢

Female > 0.7 mg/dL 144x( ) —1209y (0.993)49¢

Therefore, the patient’s first eGFR record within the study period (1 January 2008) was

defined as the index date. Baseline characteristics including socio-demographics, diabetes related

factors and biomarkers, comorbidities, and medications were collected by using mean of each

variable within 1 year after the index date. Follow-up ended when a patient developed CKD stage

3, and remaining patients were censored if they were lost to follow-up > 24 months or on 31

December 2017. Table 4 showed the characteristic of sixteen CKD candidate predictors.



Table 4: The characteristic of sixteen potential CKD candidate predictors and outcome

Candidate Range Types of Descriptions
predictors data

Age, years 18-90 continuous | Age at recruiting study

Sex 0,1 categorical 1= male, 0 = female

Smoking status 0,1 categorical 1= currently smoke,
0 = non-smoker

BMI, kg/m2 13.7-53 continuous | Mean of body mass index within 1
year

SBP, mmHg 85-229 continuous | Mean systolic blood pressure of a
patient in 1 year

HbAlc, % 4-16.3 continuous | Mean HbAlc of a patient within 1
year

TG, mg/dL 31-3605.4 continuous | Mean TG of a patient within 1 year

LDL, mg/dL 32.3-409 continuous | Mean LDL of a patient within 1
year

HDL, mg/dL 21.8-133.5 continuous | Mean HDL of a patient within 1
year

Uric acid, md/dL 1.5-10.8 continuous | Mean uric acid of a patient within 1
year

Serum albumin, 1.8-5.8 continuous | Mean serum albumin of a patient

mg/dL within 1 year

UACR, mg/g 1.3-6469.5 continuous | Mean UACR of a patient within 1
year

eGFR, 60-179 continuous | Mean eGFR of a patient within 1

mL/min/1.73m’

year

65
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Candidate Range Types of Descriptions
predictors data
CVD 0,1 categorical 1=CVD, 0 =non-CVD
Diabetic retinopathy 0,1 categorical 1 = retinopathy,

0 = non-retinopathy

NSAIDs exposure 0,1,2 categorical | 2 =NSAIDs taking for = 90 days,
1 = NSAIDs taking for 1-89 days,

0 = no NSAIDs taking

CKD stage 3 event 0,1 categorical 1=eGFR <60 mL/min/1.73m’,

0 =eGFR =60 mL/min/1.73m’

Year follow-up, 0.003-7.4 continuous | Years follow up until patients were
years lost follow-up =2 years, CKD
occurring.

BMI, body mass index; SBP, systolic blood pressure; HbAlc, hemoglobin Alc; TC; LDL,
low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; TG,
triglyceride; UACR, urinary albumin to creatinine ratio; eGFR, estimated glomerular
filtration rate; CVD, cardiovascular disease; NSAIDs, nonsteroidal anti-inflammatory drugs;

CKD, chronic kidney disease.

II1.2 Candidate predictors’ correlation

According to using several variables for analysis, correlation matrix should be examined

to see whether there was highly correlation between sixteen variables. Generally, if the

correlation between two variables was high equal to 0.75, those variables should be removed.

Nevertheless, the findings were showed that the correlation between eGFR and age was 0.703.

This could be explained because age existed partially of eGFR (Table 5).


http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html

o>
O

‘Joxasafoyd urajoxdodiy A)Isuop-mof “JT ‘ONeI SUIUNEAIDd 0) Urunge AIeuLn YIy O]V uIqo[Soway O] yqy 9)el uonen|y Jejniotwols pajewnsd Yo dinssoxd poojq o1joisAs ‘ggs xopur ssewr Apoq ‘TING

‘QuIlIopuUN YHIM solfel ut odA) oI /(- UBY) IO[[EWS 1O /() ULY) 10)EdIS JUSIOIFO0D UONL[OLI0)

I LOT°0-  0T0°0- L¥I'0- 80I'0 8610 SLO0- ¥00°0 1¥0°0- 811°0- €€0°0 I¥0°0  SLOO- 900 161°0- 1100 w%mcooND?\mZ
I €60°0- LTI'0-  LI0OO- CIOO 090°0- 081°0- 020°0- LY1'0 10 €L1°0-  0TT0-  8S0°0- cero- - ¥00°0- qa
I 681°0- 980°0- L¥CTO- 810°0- 6€0°0 €L0°0- SYTo- I18C°0- €0T°0- 881'0-  8200- LLTO ¥6C°0 aad
I 00C°0-  ¥60°0- €01°0 80C°0 40X 1600 €EI'0 - 960°0 0€0°0 081°0- 8T0 091°0- DL
I 86C°0 1S1°0- 09C°0- C¢LO0- €200 ¥10°0-  I¥0°0  100°0-  TSO'0- 1vC0- 1€0°0 TdH
I 0100 VLT O- L60°0 LETO IZro 6810 £€0°0 901°0-  6L1°0-  6100- 1a71
I 96T0 981°0- 8€C0- S0I'0  10T0- 2900 60C°0- °LE0 y$T0- urngre wniog
1 SLO0- VLY 0- LY0'0  STI'0-  0CE0 £v10- 1$¥°0 6€C°0- ploe oLy
I sTo ¢80°0- III'0  1ITT0- 960°0 YL1°0- §S0°0 Jovnn
I 60€0  991'0  €C00- ¥IIO- 61T0- 7910~ S1VAH
I 91T°0 00C°0 ¥01°0- 1L0°0-  £0.0% q4H°
I YLT'0 100°0 8¥0°0- 8O- dds
I 190°0 $50°0-  ¢9¢°0- INd
I 12e0-  810°0- Sunjowg
I 180°0 1opua
1 vy
SAIVSN q4a dad DL TdH 1a71 wnieg - pReOdNN  YIVAN  OIVAH  YdD° dgs [Ng  Subjows Iopudn a3y

SI[ELIBA UII)XIS JO XLIJEW UOHE[ILIOD UOSIBIJ:S J[qRL



68

I11.3 Logarithm transformation

Generally, continuous data with skewed distribution can produce errors and violate to
model assumption. Logarithmic transformation is applied to transform a highly skewed variable
to be a less skewed variable as possible in order to increase validity of the associated statistical
analyses(86).

In this study, the skewness and kurtosis test for normality based on D'Agostino’s X 2
test, the histogram and the distributional diagnostic plots were applied for the skewness testing
(87). Eleven continuous variables, including age, BMI, SBP, HbAlc, TG, LDL, HDL, uric acid,
serum albumin, eGFR and UACR.

The skewness and kurtosis test showed that age had no skewness and normal distribution
(p-value = 0.395) (Figure 6). Ten continuous candidate predictors, including BMI, SBP, HbAlc,
TG, LDL, HDL, uric acid, serum albumin, eGFR and UACR, had skewed distribution. Only age
had normal distribution. All ten skewed continuous candidate predictors were transformed by
logarithm. We checked the distributions of each logarithm transformed candidate predictor by
histogram and the distributional diagnosis plot again.

However, it was found that the distribution of logarithm transformed eGFR had more
skewed than eGFR without logarithm transformation (Figure 7 and 8) (other distributional
diagnostic plots of other variables were omitted). Therefore, eGFR and age were not transformed

by logarithm.



joint
Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Probrchi2
age_int 2,178 @.1727 @.9962 1.86 @.3948
BMI 2,127 @. 6000 @. 6000 . @. 6000
SBP 2,174 9. Do 9. Do . 9. Do
HbAlc 1,973 @.0000 @.0000 . @.0000
TG 2,858 @.0000 @.0000 . -
LDL 2,011 @. 6000 @. 6000 . @. 6000
HOL 1,953 9. Do 9. Do . 9. Do
uric_acid B78 @.0001 @.3173 15.87 @.0005
serumAlb 665 @.0000 @.0000 . @.0000
base_eGFR 2,178 @.8755 @.ee01 17.97 @.ee01
UrineAlbumin 1,486 @. P00 @.p00a . -

Figure 6: Skewness-Kurtosis tests for normaliy of CKD candidate predictors
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Figure 7: The histograms of eGFR (left) and logarithm transformation of eGFR (right)
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Figure 8: The distributional diagnosis plots of eGFR (left) and logarithm transformed

eGFR (right)
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I11.4 Missing data

Missing data is a common problem in data collecting. In this study, percentage of
smoking status, log transformed (log) serum albumin and log uric acid were 76.72, 69.47 and
59.69, respectively. Candidate predictors with missing data more than 50% might lead bias in
model developing. Therefore, these three candidate predictors are excluded. Finally, thirteen
candidate predictors (including age, sex, eGFR, log BMI, log SBP, log Hbalc, log TG, log LDL,
log HDL, log UACR, history of DR, history of CVD and days of NSAIDs exposure) were left to
develop for a CKD prediction model. Eight eligible variables (% missing data) include log UACR
(30.89%), log HDL (9.64%), log HbAlc (8.52%), log LDL (7.28%), log TG (5.25%), days of
NSAIDs exposure (3.02%), log BMI (2.69%) and log SBP (0.26%) (Table 6). Because the
highest percentage of missing data was 30.89%, so we imputed the missing data by mean of
Multiple Imputation by Chain Equation (MICE) with 30 imputations(109). Linear regression
model was obtained for continuous variables. The independent variables were CKD event, time of
follow-up, age, sex, eGFR, history of diabetic retinopathy, history of cardiovascular disease.
Moreover, we used history of hypertension, serum creatinine as auxiliary variables. Auxiliary
variable is a variable that has relationship to a missing variable but auxiliary variable is not the
interested variable for developing model. According to categorized NSAIDs exposure, we
imputed the days of NSAIDs taking which was continuous variable, then we categorized into 3

groups; NSAIDs taking = 90 days, NSAIDs taking <90 days and non-NSAIDs exposure.
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In this study, split method was applied for internal validation. Eligible subjects were

randomly split into 2 datasets; training and validation datasets. Therefore, MICE must be

conducted in both datasets separately. Split method was mentioned in detail again in section of

EXPERIMENTAL PROCEDURE.

Table 6: Percent of missing data of CKD candidate predictors in the training and validation

datasets
Training dataset Validation dataset

Candidate (N=1,525) (N=653)

predictors Missing (n) Percent Missing (n) Percent
Smoking status 1,191 78.10 480 73.51
Log serum albumin 1,066 69.90 447 68.45
Log uric acid 881 57.77 419 64.17
Log UACR 471 30.89 221 33.84
Log HDL 147 9.64 78 11.94
Log HbAlc 130 8.52 75 11.49
Log LDL 111 7.28 56 8.58
Log TG 80 5.25 40 6.13
Days of NSAIDs 46 3.02 25 3.83
taking
Log BMI 41 2.69 10 1.53
Log SBP 4 0.26 0 0

UACR, albumin to creatine ratio; HDL, high-density lipoprotein cholesterol; HbAlc, hemoglobin Alc; LDL,
low density lipoprotein cholesterol; TG, triglyceride; NSAIDs, nonsteroidal anti-inflammatory drugs; BMI,

body mass index; SBP, systolic blood pressure; log, logarithm transformation.
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The imputed values distribution and patterns were obtained to check for the imputation

integrity. The results showed similar distributions in terms of mean and standard deviation (SD)

between the observed and imputed data in the training and validation datasets (Table 7 and 8). It

indicates that model the unbiased imputed data of each dataset can be applied to generate for a

robust model.

Table 7: The summary statistics of the imupted and observed data for seven imcomplete

candidate predictors in the training dataset

Candidate predictors Observed data Imputed data

N mean SD N mean SD
Log BMI 1,484 3.26 0.19 41 3.23 0.2
Log SBP 1,521 4.91 0.15 4 4.88 0.13
Log HbAlc 1,395 1.96 0.19 130 1.95 1.95
Log HDL 1,378 2.93 0.22 147 3.94 0.21
Log TG 1,445 4.95 0.47 80 4.89 0.49
Log LDL 1,414 4.69 0.28 111 4.69 0.28
Log UACR 1,054 131.63 532.2 471 112.37 | 541.22
Days of NSAIDs taking | 1,479 5.19 14.6 46 4.20 14.6

N, number; SD, standard deviation; min, minimum; max, maximum; BMI, body mass index; SBP,
systolic blood pressure; HbAlc, hemoglobin Alc, HDL, high-density lipoprotein cholesterol, TG,
triglyceride; LDL, low-density lipoprotein cholesterol, UACR, urinary albumin to creatinine ratio;

NSAIDs, nonsteroidal anti-inflammatory drugs; log, logarithm transformation
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Table 8: The summary statistics of the imupted and observed data for seven imcomplete

candidate predictors in the validation dataset

Candidate predictors Observed data Imputed data

N mean SD N mean SD
Log BMI 642 3.26 0.19 10 3.21 0.19
Log HbAlc 578 1.96 0.20 75 1.96 0.2
Log HDL 575 3.94 0.21 78 3.93 0.22
Log TG 613 4.94 0.48 40 4.85 0.49
Log LDL 597 4.69 0.27 56 4.71 0.27
Log UACR 432 3.02 0.69 221 2.95 1.59
Days of NSAIDs taking 628 5.56 16.01 30 5.61 16.6

N, number; SD, standard deviation; min, minimum; max, maximum; BMI, body mass index; SBP,
systolic blood pressure; HbAlc, hemoglobin Alc, HDL, high-density lipoprotein cholesterol, TG,
triglyceride; LDL, low-density lipoprotein cholesterol, UACR, urinary albumin to creatinine ratio;

NSAIDs, nonsteroidal anti-inflammatory drugs; log, logarithm transformation

IV. EXPERIMENTAL PROCEDURE

This experimental procedure was set up to develop and validate for CKD prediction

model in type 2 diabetes. The processes of model development included univariate analysis,

multivariate analysis, model simplifying and creating CKD risk equation. Model development

was operated in the training dataset (70% of sample sizes). Model validation evaluated by using

the validation dataset (30% of sample sizes) was consisted of discrimination and calibration
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estimations. Figure 9 showed flow chart of the process of CKD prediction model development

and validation with the training and validation datasets.

Univariate analysis

Muttivariate analysis Model development
(training dataset)

Final cox model simplified model

CKD risk equation 1 CKD risk equation 2
T S Model validation
Discrimination /calibration performance (validation dataset)

Figure 9: The summary of CKD prediction model development and validation

IV.1. Model development

This part is related with univariate analysis, multivariate analysis, model refining and

CKD risk equation generating. This step used 1,525 subjects in the training dataset. Figure 10

summarized processing of model development.
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13 predictive candidates in univariate analysis

(age, sex, eGFR, Log HbAlc, Log SBP, Log TG, Log
LDL, Log HDL, Log BMI, Log UACR, retinopathy, CVD,

NSAIDs exposure)

Excluded:

=P | 5 variables (Log LDL, Log HDL, log TG,
diabetic retinopathy, and NSAIDs
exposure) with p-value >0.1

8 predictive candidates in multivariate analysis

(age, sex, eGFR, Log HbA1c, Log SBP, Log BMI,
Loz UACR. CVD)

Excluded:
— 3 variables (Log BMI, CVD, log SBP)

because of higher AIC

Cox model with 5 predictors (Model 1) Cox model with 5 predictors (Model 2)
e, e, G, s A [l | (>a3goeé)sex, eGFR 290, HbAlc 27.5, UACR

Model refining
by categorizing
continuous
variables

Three-year CKD risk equation l Three-year CKD risk equation
(Model 1) (Model 2)

Figure 10: Summarized processing of model developing.

VI.1.1 Univariate analysis

Thirteen predictor candidates, including age, sex, eGFR, logarithm transformed (log)

HbAlc, log SBP, log TG, log LDL, log HDL, log BMI, log UACR, history of DR, history of
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CVD, NSAIDs exposure, were recruited for the univariate analysis by using Cox-proportional
hazard regression. Predictors candidates with p-value less than 0.1 were considered to be included

in the multivariate analysis.

VI.1.2 Multivariate analysis

For the multivariable analysis, eligible predictor candidates (including age, sex, eGFR,

log HbAlc, log UACR, log BMI, log SPB and history of CVD) were estimated by backward

elimination approach for building a model. For improved performances of model selections in

multivariate Cox-proportional hazard regression, models were estimated by using the goodness-

of-fit of the Akaike Information Criterion (AIC)(88). A model which had lowest of AIC values

was chosen to be a CKD prediction model.

Final cox model which had final predictors was defined as model 1 (laboratory model);

Model 1 was further refined to a simpler model as model 2 (simplified model) which could

facilitate it’s use in routine heath practice. The proportion hazard assumption was assessed by

testing whether the log hazard ratio function of our Cox model was constant over the time (114).

The steps of multivariate analysis and assumption of CKD model were presented in Appendix A.
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VI.1.3 CKD risk equation generating

After obtaining the cox model, CKD risk models were generated to estimate 3-year risk
of CKD based on final Cox model(89). The individual CKD risk is estimates as follow:

Predicted CKD risks = 1 — S (¢)¢*P CAiXi=E BiX)

So(t) is baseline survival function at time t (e.g. ¢ =3 years), X; is the individual’s
values of the predictors obtained from the Cox model, f5; is the regression coefficient foX;r, and
the X; is the mean of X;.

The advantage of using this method for generating CKD risk equation is that this
method can be easily recalibrated to other cohorts. A second cohort can recalibrate our three-year
risk CKD equation by replacing mean values of our predictors in the equation with their own
mean values, and replacing our three-year CKD-free survival probability with an estimate from
follow-up of their cohort.

In this study, we used three-years CKD-free survival probability of 0.7307. Finally, the
three-year CKD risk models are generated for model 1 (laboratory model) and model 2
(simplified model) in these followings:

Model 1 (laboratory model):

Predicted 3-year CKD risks

exp [(B1Age+Bo,Male+ B3GFR+ B4 log(HbA1c)+B5 log(ACR)]—[B1mean(Age)+
= 1 — 0.7307Bzproportion(Male)+pzmean(GFR)+p4(log(mean(HbA1c))+pPs(log (mean(ACR))
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Model 2 (simplified model):

Predicted 3-year CKD risks

exp [(Be(if age=50)+B;Male+ Bg(if GFR=90)+Bo(if HbA1c>7.5)+L10(if ACR>300)]
—[Beproportion(if age=50)+p,proportion(Male)+Bgproportion(if GFR=90)
=1—-—0.7307 +Lgoproportion(if HbA1c=7.5)+Boproportion(if ACR>300)

Appendix B showed the three -year risk of CKD equation for model 1 and model 2.

V1.2 Model validation
The developed three-year risk of CKD equation (model 1 and model 2) were evaluated
for the performances by means of discrimination and calibration. The validation dataset was used

to estimate both models’ performances.

VI.2.1 Discrimination

Discrimination is ability of distinguish CKD risk patients from non-CKD risk patients.
The C-statistic has ranges from 0.5 (poor predictive ability) to 1 (perfect predictive ability) (115).
In this step, the estimation of discrimination with 3-year CKD risk model had to calculate for
Harrell’s C by using Somers’ D method(116) (Appendix C).

VI.2.2 Calibration

The modified Hosmer-Lemeshow X ? test and survival probability curves were applied to
evaluate for the performance of two 3-year risk of CKD equations. The modified Hosmer-

Lemeshow X? test was applied with decile of prognosis risks. Non-significance should be
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obtained (115, 117). Moreover, The survival probability curves were comparing between the
predicted survival probabilitics and the observed survival probabilities (Kaplan-Meier curves)
based on three risk groups (low, moderate and high risks of CKD) (96).

VIL.2.2.1 The modified Hosmer-Lemeshow X test is comparing between the predicted
CKD probabilities and the observed events of CKD. The comparisons were classified into deciles
based on the predicted CKD risk in decile risk groups. The observed events of CKD were
obtained from the Kaplan-Meier estimators. In contrast, the predicted CKD probabilities were

obtained from the cox model. (118). The calculations were presented in Appendix D.

VI1.2.2.2 Calibration of survival probabilities by Kaplan-Meier method

The principle of this calibration method was adapted from the Kaplan-Meier survival
estimations during the time of following-up. Graphs were the comparisons between the observed
and the predicted survival probability curves. The curves of observed (Kaplan-Meier) and
predicted probabilities (predicted from the fitted Cox model) were estimated individually at time
0, 1, 2, ..., t years of the following-up (in this study used three-year follow-up) by CKD risk
groups. The CKD risk groups estimated by prognostic indexes (PI) were divided into 3 groups;
low, moderate and high CKD risks.

Assessing calibration of the survival probabilities by Cox model is following this

formula:

S(t; x) = So (£)&¥P xB)
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Where Sy(t) is baseline survival function, xp is cumulative of multiplying between
predictors and coefficient (X181 + X382 + - + X Bx) or prognostic index (PI). Sy(t) is

calculated from baseline hazard function following this formula:

So(t) = exp{—H,(t)}

Where H(t) is baseline cumulative hazard function from time 0 — 7. Hy(t) can be
retrieved from the fitted Cox model.
And according to specificity of Cox model in both training and validation datasets,

similar baseline survival functions in both datasets should be obtained (99).

Steps of predicting survival probabilities using example of prediction model 1

The CKD prediction model (model 1) contained predictors, including age, gender, eGFR,
log UACR and log HbAlc. The outcome was time to CKD presenting. The examples were
presented in the training and validation datasets(99).

Step 1: Calculate prognostic index (x[3) from the prediction model.

Calculate prognostic index (PI) from the prediction equation in the training dataset. After
results of PI, individual predicted survival function is obtained.

PI = B, Age + f;Male + B3eGFR+f,(log UACR) +f5(log HbAlc)

Where f3; is a pooled coefficient of each predictor from 30 imputed prediction equations.
However, 3-year risk of CKD were generated, so we had calculated PI based on risk score of each

model.
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PI = ((1.180327*log(HbA1c)) + (0.2435595*log(UACR)) + (-0.1027086*(eGFR)) + (-
0.2942762*(if male)) + (0.0221663*age) - ((1.180327* log(7.214512)) +
(0.2435595* log(123.7432)) + (-0.1027086%90.46844) + (-

0.2942762*0.4255738) + (0.0221663*55.87869))

Center the calculated PI on the training dataset mean.

PI are divided by tercile into 3 risk groups (low, moderate and high CKD risk groups).

PI are divided by tercile into 3 risk groups (low, moderate and high CKD risk groups).

Step 2: Calculated individual predicted survival probabilities

Calculate individual predicted survival probabilities at the censoring time or observed

events (3-yeat follow-up) with this following formula:

S(t; x) = Sp (£)exP PD

After getting individual predicted survival probabilities, average of predicted survival

function was calculated for each risk group. As result, predicted survival curves of 3 CKD risk

groups were obtained.

Step 3: The observed survival probabilities was estimated from actual results at the

censor time or observed events (3-year follow-up). As a result, the observed survival probability

curves (or Kaplan-Meier curves) were obtained.

Step 4: The predicted survival probability curves and the observed survival probability

curves were plotted to compare the trends. Moreover, 95% confidence interval can be presented

for the observed probabilities survival to clarify how well the predicted survival curve is closed to
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observed probabilities survival. If the predicted survival probabilities curve is closed to the

observed survival probabilities curve, it was indicated that the prediction model had a good

accuracy of CKD prediction or good calibration.

The predicted survival probability curves and the observed survival probability curves

were plotted to compare the trends. Moreover, 95% confidence interval can be presented for the

observed probabilities survival to clarify how well the predicted survival curve is closed to

observed probabilities survival. If the predicted survival probabilities curve is closed to the

observed survival probabilities curve, it was indicated that the prediction model had a good

accuracy of CKD prediction or good calibration.

V. STATISTICAL ANALYSIS

The statistical analysis was used in many steps of the study’s methodology, including

baseline characteristic and prediction model developing.

The baseline characteristic comparing the training dataset and validation dataset were

shown in RESULT section. In comparisons of baseline characteristics between training and

validation datasets we presented continuous data as means (SD) or median (IQR), and formal

comparisons were made with student-t test or Mann-Whitney Wilcoxon test as appropriate;

categorical data were presented as n (%) and formal comparisons made using a chi-square test.
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For model development, Cox-proportional hazard regression was applied in both

univariate and multivariate analysis. P-value less than 0.05 was determined as statistically

significance.

VI. SOFTWARE

All data pre-processings, including handling predictors-coding, logarithm transformation,

missing data, model developing, and model validation were conducted using STATA version 16

(Statacorp, College Station, TX, USA).

VII. ETHICAL CONSIDERATION

This study had been approved by two Institutional Review Boards (IRB), including The

Research Ethics Review Committee for Research Involving Human Research Participants, Health

Sciences Group, Chulalongkorn University, and the IRB of the Medical Service Department,

Bangkok.



CHAPTER IV

RESULTS

This section provides the results of the study, including baseline characteristic, prediction
model developing and model validation. In part of the prediction model development have three

parts, including univariate analysis, multivariate analysis and CKD risk equation generating. The

topics are these followings:
L. Baseline characteristics
1L Model development
1. Univariate analysis
2. Multivariate analysis
3. Three-year CKD risk equation generating
I11. Model performance
It starts with the results of the baseline characteristic comparing between the training

dataset and the validation dataset.
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I. BASELINE CHARACTERISTICS

Of the remaining eligible 2,178 patients with type 2 DM, the mean (SD) age was 55.74
(11.19). 1,525 and 653 patients were assigned to the training and validation datasets, respectively.
The characteristics of CKD risk covariates of DM patients comparing between the training and
validation datasets were shown in Table 9. The median of the follow-up time in the training and
validation dataset were 1.29 (interquartile range, [IQR] 0.50-2.50) years and 1.20 (IQR, 0.49-
2.41) years. The mean age was 55.74 years (range 18-90 years), 56.70% were female, 17.91% had
cardiovascular disease, 3.08% had diabetic retinopathy. Mean BMI were 26.45 kg/mz, mean
HbAlc were, 7.2%. Moreover, patients had mean eGFR and urinary ACR of 90.38% and 16.15
mg/g, respectively. Most of patients (75.57%) had no NSAIDs taking from the hospital. The
proportion of CKD events in the training and validation datasets were 18.16% and 16.54%,

respectively. The similarities of characteristics of risk covariates were obtained in both datasets.
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Table 9: Baseline characteristics of CKD risk covariate in the training and the validation

datasets

Overall Training Validation P-value
Variables (n=2,178) dataset dataset
(n =1,525) (n=653)

Socio-demographic factors
Age (Mean, SD), years 55.74(11.19) 55.88(11.30) 55.42(10.92) 0.81
Age group, n (%) 0.31
<40 159 (7.30) 117 (7.67) 42 (6.43)
40-59 1,212 (55.65) 838 (54.95) 374 (57.27)
60-69 560 (25.71) 387 (25.38) 173 (26.49)
=70 247 (11.34) 183 (12.00) 64 (9.30)
Sex, n (%) 0.29
- Male 943 (43.30) 649(42.56) 294(45.02)
- Female 1,235(56.70) 876(57.44) 359(54.98)
BMI (Mean, SD), kg/m2 26.45(5.20) 26.45 (5.18) 26.46 (5.24) 0.79
BMI level, n (%) 0.60
<23 548 (25.16) 374(24.52) 174(26.65)
23.0-24.9 396 (18.18) 282 (18.49) 114(17.46)
25.0-29.9 779 (35.77) 555(36.39) 224 (34.30)
230 455 (20.89) 314(20.59) 141 (21.59)
Diabetes-related factor and biomarkers
SBP (Mean, SD), mmHg 136.23 (20.27)  136.50(20.39)  135.59(19.99) 0.46
Uncontrolled SBP *, n (%) 827 (37.97) 577 (37.84) 250 (38.28) 0.84
HbAlc (Mean, SD), % 7.20 (1.57) 7.21 (1.53) 7.19 (1.65) 0.34
HbAlc level, n (%) 0.60
<7 1,145 (52.57) 801 (52.52) 344 (52.68)
7.0-8.0 520 (23.88) 357 (23.41) 163 (24.96)
>8 513 (23.55) 367 (24.07) 146 (22.36)
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Overall Training Validation P-value
Variables (n=2,178) dataset dataset
(n =1,525) (n=653)
LDL (Mean, SD), mg/dL 113.20 (31.64)  113.43 (32.57) 112.65(29.38) 0.99
Uncontrolled LDL b, n (%) 1,352 (62.08) 977 (64.07) 375 (57.43) 0.003
HDL (Mean, SD), mg/dL 52.32(11.58) 52.24(11.65) 52.50(11.43) 0.53
Uncontrolled HDL', n (%) 567 (26.03) 415 (27.21) 152 (23.28) 0.06
TG (Mean, SD), mg/dL 158.59(117.35)  159.28(91.69)  157.01(162.26) 0.19
Uncontrolled TG, n (%) 928 (43.41) 669 (43.87) 259 (42.25) 0.50
UACR [Median, IQR], mg/g 16.15 16 16.8 0.45
[5.7-119] [5.6-113.4] [5.95-139.2]
Albuminuria level, n (%) 0.39
<30 1,350 (62.03) 946 (62.03) 405 (62.02)
30-300 460 (21.12) 331 (21.70) 129 (19.75)
>300 367 (16.85) 248 (16.26) 119 (18.22)
eGFR (mean, SD), mL/min per
1.73m’ 90.38 (16.18) 90.47 (16.22) 90.17 (16.08) 0.66
Kidney stage, n (%) 0.98
=90 (stage 1) 1,018 (46.74) 713 (46.75) 305 (46.71)
<90 (stage 2) 1,160 (53.26) 812(53.25) 348 (53.29)
Comorbidities
CVD °, n (%) 390 (17.91) 276(18.10) 114(17.46) 0.72
DR, n (%) 67(3.08) 45(2.95) 22(3.37) 0.61
Medication
NSAIDs taking, n (%) 0.60
No NSAIDs taking 1,671 (76.72) 1,179 (77.31) 492 (75.34)
-1-89 days 492 (22.59) 336 (22.03) 156 (23.89)
-290 days 15 (0.69) 10 (0.66) 5(0.77)
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Overall Training Validation P-value
Variables (n=2,178) dataset dataset
(n =1,525) (n=653)
Follow-up time [median, IQR], 1.25 1.29 1.20
years [0.49-2.47] [0.50-2.50] [0.49-2.41] 0.43
CKD events, n (%) 385(17.68) 277(18.16) 108(16.54) 0.36

BMI, body mass index; SBP, systolic blood pressure; HbAlc, hemoglobin Alc; LDL, low-density lipoprotein

cholesterol; HDL, high-density lipoprotein cholesterol; TG, triglyceride; UACR, urinary albumin to creatinine

ratio; eGFR, estimated glomerular filtration rate; CVD, cardiovascular disease; DR, diabetic retinopathy;

NSAIDs, nonsteroidal anti-inflammatory drugs; CKD, chronic kidney disease; SD, standard deviation; IQR,

interquartile range.

*SBP 140 mmHg

°LDL cholesterol < 100 mg/dL

“HDL cholesterol = 40 mg/dL if male, and HDL = 50 mg/dL if female

‘TG < 150 mg/dL

¢ Cardiovascular disease was defined as myocardial infraction, stroke, and angina pectoris

II. MODEL DEVELOPMENT

In this subsection, the results of the training datasets were separated into 3 parts:

univariate analysis, multivariate analysis, and CKD risk equation generating.

IL.1. Univariate analysis

The training dataset was obtained to develop CKD model. Thirteen potential prognostic

variables (including age, sex, ¢GFR, log HbAlc, log LDL, log TG, log HDL, log UACR, log

SBP, log BMI, history of CVD, history of DR and NSAIDs exposure) were assessed in univariate

analysis. Log LDL, log HDL, log TG, DR and NSAIDs taking did not meet criteria for inclusion


http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
http://www.kidneyfund.org/prevention/tests-for-kidney-health/egfr-test.html
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in multivariate analysis. Table 10 shows the hazard ratio (HR) of each candidate predictor in

univariate analysis.

Table 10: Univariate Cox regression for candidate predictors

Candidate predictors HR (95%CI) p-value ﬁ

Sex (male vs. female) 0.69 0.54,0.89) 0.004 -0.36

Age (years) 1.07 (1.06, 1.08) <0.001 0.07

eGFR (mL/min/1.73m2) 0.90 (0.89,0.91) <0.001 -0.10

Log UACR (mg/g) 1.28 (1.19, 1.38) <0.001 0.25

Log HbAlc (%) 1.89 (1.02, 3.50) 0.04 0.64

Log TG (mg/dl) 0.82 (0.63, 1.06) 0.12 -0.20

Log LDL (mg/dl) 0.82 (0.53, 1.26) 0.36 -0.20

Log HDL (mg/dl) 1.33 (0.75, 0.36) 0.32 0.29

Log BMI (kg/m’) 0.45 (0.24, 0.87) 0.02 -0.79

Log SBP (mmHg) 3.24 (1.48,7.12) 0.003 1.18

Diabetic retinopathy (0.86, 2.72) 0.42
1.53 0.15

(yes vs.no)

CVD (yes vs. no) 1.66 (1.27,2.18) <0.001 0.51

NSAIDs taking

- 290 days (0.67,1.21) -0.10
0.90 0.49

(yes vs. non-NSAIDs)

- 1-89 days (0.20, 3.33) -0.19
0.83 0.79

(yes vs. non-NSAIDs)

HR, hazard ratio; CI, confidence interval; ﬁ In(HR); HbAlc, hemoglobin Alc; eGFR, estimated
glomerular filtration rate; UACR, urinary albumin to creatinine ratio; LDL, low density lipoprotein
cholesterol; HDL, high density lipoprotein cholesterol; TG, triglyceride; BMI, body mass index; SBP,
systolic blood pressure; CVD, cardiovascular disease NSAIDs, nonsteroidal anti-inflammatory drugs; log,

logarithm transformation.
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I1.2 Multivariate analysis

In multivariate analysis history of CVD, history of DR and log SBP were excluded

regarding greater AIC. As a result, five final predictors were selected by backward elimination:

age, sex, log HbAlc, log UACR, and eGFR. The steps of multivariate analysis were presented in

Appendix A. The final multivariate cox model was defined as model 1. We further refined

model 1 to be a simpler version (model 2) which used clinically relevant dichotomous groupings

for the continuous covariates in model 1. HR (95%CI) from these multivariate models are

presented in Table 11. The proportional hazard assumption was met for both models.

We established three-CKD risk equations based on each final cox model (model 1 and

model 2) by using coefficients of each predictor. Three-year risk of CKD equation is preferable

for our final CKD prediction equations shown in Appendix B.
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Table 11: Multivariate Cox regression results for models 1 and 2

CKD models in the training dataset (n= 1,525)

Predictors Model 1 Model 2
(laboratory model) (simplified model)
HR p-value ﬂ HR p-value ﬁ
(95%CI) (95%CTI)
Age (year) 1.02 0.001 0.02
(1.01, 1.04)
Male sex vs female 0.75 0.70
(0.58, 0.96) 0.025 -0.29 (0.54,0.90) 0.005 -0.36
eGFR 0.90 <0.001 -0.10
(mL/min/1.73m’ (0.89, 0.91)
increase)
Log HbAlc (%) 3.25 0.001 1.18
(1.65, 6.40)
Log UACR (mg/g) 1.27 <0.001 0.24
(1.18,1.38)

Age =50 years
eGFR = 90
(mL/min/1.73m’)
HbAlc>7.5%
UACR >300 mg/g

2.13(1.38,3.31)  0.001 0.76
0.09 (0.06,0.13)  <0.001 -2.42

1.38 (1.05,1.80) 0.018 0.32
2.25(1.58,3.19)  <0.001  0.81

HR, hazard ratio; CI, confidence interval; ﬁ In(HR); HbA ¢, hemoglobin Alc; eGFR, estimated

glomerular filtration rate; UACR, urinary

transformation’

albumin to creatinine ratio; log, logarithm
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I11. MODEL PERFORMANCE

In this part both CKD prediction models (model 1 and model 2) were evaluated for the
discrimination and calibration performances in the validation dataset. C-statistic were applied for
discrimination estimating. And the modified Hosmer-Lemeshow X2 test and survival

probabilities curve were methods for calibration.

II1.1 Discrimination

Both model 1 and model 2 showed good discriminative performance in the training
dataset, with C-statistics of 0.873 (95%CI 0.856-0.892) and 0.798 (95%CI 0.774-0.823),
respectively. The C-statistics of model 1 and model 2 in the validation dataset showed similarly
high values of 0.890 (95%CI 0.870-0.911) and 0.812 (95%CI 0.781-0.842), respectively,
indicating good performance of both models in distinguishing patients with type 2 DM who

developed CKD from those who did not

I11.2 Calibration performance

I11.2.1 The modified Hosmer-Lemeshow X test

Both model 1 and model 2 showed adequate calibration in the training and validation
datasets comparing the observed versus events by decile of risk, with no significant difference in
the Hosmer and Lemeshow X2 P — values. Expected and observed events, and goodness of fit
statistics from model 1 and model 2 in the training and validation dataset are presented in Table

12 and 13. Model 1 and model 2 and summaries are shown in Table 14.
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Table 12: Hosmer-Lemeshow X table with decile of risk groups in training and validation

datasets (Model 1)

Training dataset

Validation dataset

Risk group N Predicted Observed N Predicted Observed
event event event event
1 152 1.56 0 65 0.64 2
2 153 4.11 7 65 1.79 0
3 152 7.11 4 65 3.35 0
4 153 12.35 8 66 5.72 4
5 152 20.05 15 65 8.59 5
6 153 33.12 21 65 14.01 1
7 152 55.12 20 66 22.99 25
8 153 88.55 66 65 35.92 28
9 152 123.43 97 65 51.99 39
10 153 149.50 139 66 64.50 58
total 1525 49491 378 653 209.50 163
X 15.15 15.82
p-value 0.09 0.11
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Table 13: Hosmer-Lemeshow X table with decile of risk groups in training and validation

datasets (model 2)

Risk group Training dataset* Validation dataset
N Predicted Observed N Predicted Observed
event event event event
1 147 6.19 1 61 2.58 2
2 149 8.93 4 62 3.65 0
3 151 12.82 11 60 5.05 5
4 307 37.28 18 73 7.95 0
5 127 43.06 27 66 9.49 2
6 161 96.20 57 59 20.07 19
7 61 43.54 28 74 44.14 39
8 217 158.01 112 35 24.39 19
9 205 183.31 152 85 61.89 37
10 78 69.58 50
total 1525 589.34 410 653 248.78 174
X’ 8.43 13.87
p-value 0.39 0.13

*Eight degree of freedom
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Table 14: Model 1 and model 2 performances summaries

Training dataset Validation dataset
Method Model 1 Model 2 Model 1 Model 2
Discrimination
C-statistic (95%CI) 0.873 0.798 0.890 0.812
(0.856-0.892) (0.774-0.823) (0.870-0.911) (0.781-0.842)
Calibration
Hosmer-Lemeshow 15.15 8.43 15.82 13.87
x* (0.09) (0.39) (0.11) (0.13)
(p-value)

I11.2.2 Survival probability curves by Kaplan-Meier method

We also estimated the performance of calibration with Kaplan-Meier method. Survival

probability curves of 3-year CKD risk based on three CKD risk groups (low, moderate and high

risk), were compared by plotting the predicted CKD survival probabilities and observed CKD

events. The predicted CKD probabilities curves fell within the 95% CI for observed CKD

probabilities in both model 1 and model 2 (Figure 11 and 12).
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Figure 11:The observed CKD survival probabilities vs. predicted CKD probabilities for the Cox model
in the training and the validation datasets for model 1.

Predicted survival probabilities are smooth lines, and the observed CKD survival probabilities from the
Kaplan-Meier method with 95% confidence intervals are represented by vertical capped lines. Three
prognosis groups plotted represent low risk (blue lines), moderate risk (red lines), and high risk (black

lines) groups.
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Figure 12: The observed CKD survival probabilities vs. predicted CKD probabilities for the Cox model
in the training and the validation datasets for model 2.

Predicted survival probabilities are smooth lines, and the observed CKD survival probabilities from the
Kaplan-Meier method with 95% confidence intervals are represented by vertical capped lines. Three
prognosis groups plotted represent low risk (blue lines), moderate risk (red lines), and high risk (black

lines) groups.



CHAPTER V

DISUSSION

This section discusses about the findings of this study. The topics are these following:

L. Study population

1L CKD prediction model development and performance

I1I. CKD predictors

Iv. Comparing model performance with other CKD prediction models
V. Two model establishing
VL Using the prediction models in practice

VIL Strengths and limitations

I. STUDY POPULATION

The prevalence of CKD stage 3 among patients with type 2 DM in this retrospective

cohort study was 17.68% which was not in range comparing the previous Thai’s studies (25.38-

48%). According to the exclusion criteria of this study for developing model, all patients with

type 2 DM from Taksin hospital were not recruited leading less CKD prevalence than other

studies(10-13).
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According to baseline characteristic of our cohort, the median of follow-up time was 1.29
year which is very short time. Because of Thailand’s problematic health referral system, primary
health care unit usually refer DM patients to tertiary hospital (such as Taksin hospital) with severe
stage of CKD so most of referred DM patients to Taksin hospital have level of eGFR closed to 60
mL/min/1.73m’. The evidence was confirmed that most patients (53.26%) had baseline of eGFR
less than 90 mL/min/1.73m>.  Most patients had controlled HbAlc (52.57%), non-
microalbuminuria (62.03%) and controlled SBP (62.03%) but DM patients also had high
proportion of obesity (35.77%), uncontrolled LDL (62.08%) and uncontrolled TG (43.41%). In
our knowledge, these uncontrolled LDL, TG and obesity have association to rapid eGFR decline

leading CKD stage 3 incident quickly.

II. CKD PREDICTION MODEL DEVELOPMENT AND PERFORMANCE

In our cohort of patients with type 2 DM, we created a CKD prediction equation (model
1) for three-year risk of CKD endpoints from the training datasets. The performances of model 1
had good discrimination and calibration in both training and validation datasets. Moreover, we
also created a simplified three-year risk CKD equation (model 2) by categorizing predictors in
dichotomous characteristic from model 1. The simplified model (model 2) also had good
discrimination and calibration. As a result, these showings indicated that model 1 (laboratory
model) and model 2 (simplified model) had accurate predictions and high power of prediction

for patients with type 2 DM.



99

According to categorized predictors in model 2, this leads predictive performance of
model 1 better than one of model 2. Confirmed results showed in survival probabilities by
Kaplan-Meier method (Figure 11 and 12). The difference of predicted survival probabilities at 3

years between model 1 and model 2 are 0.25 or 25%.

II1. CKD PREDICTORS

Our findings showed that older age, male sex, lower eGFR, higher UACR, and higher
hemoglobin alc (HbAlc) are associated to CKD stage 3 developing in patients with type 2 DM.
Our finding was quite similar to a previous study interesting CKD progression on patients with
type 2 DM. According to Kittipanyaworakun’ retrospective cohort study among 322 patients with
type 2 DM from Saraburi hospital, increased age, diabetes duration, eGFR, increased urinary
albumin excretion, and increased SBP. Increased age, €GFR, and urinary albumin excretion were
similar to our predictors. A prospective cohort study on 1,582 Singaporean type 2 DM patients,
the prediction model for CKD progression (the reduction of = 25% below the eGFR baseline)
included higher age, higher SBP, lower eGFR, higher UACR, higher LDL and higher HbAlc
(23). Three of those predictors, including lower eGFR, higher UACR and higher HbAlc were
similar to our study’s results. According to the study of Nelson et al. (2019), 15 multinational
cohort studies among 781,627 diabetes, a 5-year CKD prediction model that included age, sex,

black race, history of CVD, hypertension, lower eGFR values, higher UACR, elevate HbAlc,
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types of diabetic medication presenting as risk factors showed some overlap with the parameters
that were significant in our study(24).

According to the rare prediction model of CKD progression in DM patients, we
compared obtained predictors with other studies with different CKD outcomes (i.e., end stage
renal disease (ESRD), major kidney related events, or onset of albuminuria). We found that our
predictors (including eGFR, UACR, age and HbA1c) partially overlapped in these studies.

The Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled
Evaluation (ADVANCE) (2012) study indicated predictors for risks of major kidney related
events (defined as double serum creatinine, renal replacement, or renal death) and onset of
albuminuria. For major kidney related events, history of diabetic retinopathy, male gender, eGFR,
UACR and HbAlc and age at the educational attainment were used as predictors(20). However,
male gender showed as risk predictors in the ADVANCE study, but male gender was prevention
effect in our study. For onset of albuminuria, ethnicity of Asian, SBP, BP-lowering agents, eGFR,
UACR and HbAlc were predictors. Another study of Dunkler (2015) using Ongoing Telmisartan
Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) and Outcome
Reduction with Initial Glargine Intervention (ORIGIN) as the developing and validating model
showed that baseline albuminuria, eGFR, female gender, age as predictors for alive DM patients
with CKD outcome (defined as among new microalbuminuria, or macroalbuminuria, or double
Scr or ESRD). Those four predictors were quite similar to our study. Furthermore, our predictors

have similarities to Thai case-control study (2017) which conducted in 470 diabetic and
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hypertension patients in the primary care and secondary care units, Nakhonratchasima, a
province in northeastern Thailand, with the predictors of uncontrolled HbA lc =7 %, old age with
70-79 years and female gender(119).

According to different demographic, ethnicity, medication, and time of following-up, our
predictors were partially similar compared to other studies. However, UACR, eGFR and HbAlc
were mainly predictive for CKD outcome among patients with type 2 DM(19, 22, 23, 101, 102).
These findings were strongly emphasized that the good controlled blood glucose and controlled
albuminuria could prevent diabetic kidney disease.

To explain how each predictor could lead to developing CKD, the explanation was
obtained in the following:

Increased age is the well-known risk leading loss of renal function. Aging leads to a
decrease in glomerular filtration rate (GFR) and renal blood flow (120). Thus, elderly patients
with type 2 DM will have reserved capacity of renal less than younger patients with type 2 DM.

For gender, estrogen has renoprotective effect by reducing albuminuria.(121, 122).
Conversely, our results showed CKD prevention in male gender comparing female gender. After
subgroup analysis, we found that the number of female patients with the age of 50 or more
(76.37%) is significantly greater than that of male patients with age of 50 or more (65.02%) (X’=
23.57, p<0.001). It meant that most female patients might be postmenopausal which might have

low estrogen leading to decreased renoprotective effect.
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Glomerular filtration rate (GFR) is a critical predictor for CKD developing in patients

with type 2 DM. Higher GFR levels indicates to a better kidney function. Similarly, low initial

GFR level increased risk of clinical renal outcome(123). Many cohort studies among

DM patients showed similar results in an effective prevention on higher eGFR level to end stage

renal disease (ESRD), onset of albuminuria and death(17-22, 100-102).

For HbAlc, the mechanisms that cause kidney damage are the following: 1)

Tubulointerstitial injury by activating protein kinase C, 2) increasing of the renin-angiotensin-

aldosterone system (RAS) leads to glomerular damage, and 3) generating advanced glycation end

products (AGEs) leads to overproduction of mesangial cell matrix. The three mechanisms lead to

nephron loss and proteinuria(124). Elevated HbAlc exhibited inducing to rapid eGFR decline,

and progression of albuminuria (28, 29).

The level of albuminuria predicts renal function loss. Albumin creatinine ratio level more

than 300 mg/dL or proteinuria induced tubular chemokine expression and complement activation.

This leads to inflammatory cell infiltration in the interstitium and sustained fibrogenesis. Rapid

eGFR decline can exhibit by extension of proteinuria(125). Theoretically, the eGFR and UACR

are well-known as independent predictors of CKD progression and ESRD (126). The eGFR

reflects to renal function, and UACR reflects to renal damage (18). Recognizing the independence

between UACR and eGFR leads to the reclassification CKD stage by consolidating UACR and

levels of eGFR(127). Even UACR can predict the onset of albuminuria among DM patients, we

tried to add more CKD predictors to increase abilities of CKD prediction(20).
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These predictors excepting age and sex reflect to metabolic profile on CKD progression.
Moreover, UACR and HbAlc are modified factors. Thus, controlled blood sugar, controlled
albuminuria, or slowly GFR decline should be emphasized to health provider for clinical

management and patient education.

IV. COMPARING MODEL PERFORMANCE WITH OTHER CKD PREDICTION

MODELS

We tried to compare performance with other CKD model (including 10-year risk of

decreased eGFR of Saranburat’s study and 5-year risk of incident CKD of Nelson’s study) using

their developed CKD perdiction models with our own cohort. The Thai CKD prediction model of

Saranburat et al’s study (2017) which studies among of amongs 3,186 employess of the

Electronic Generating to evaluate 10 year risk of decreased eGFR. The first model (clinical only)

which had good performance of C-statistic of 0.72 consisted of age, sex, SBP, history of DM, and

waist circumference. The second model (clinical + limited laboratory tests) which had better C-

statistic of 0.79. included age, sex, SBP, histdory of DM and eGFR. However, we could not

evaluate the performance of this equation in our own population as one of the predictors was

waist circumference which was not available in our study(104). Moreover, long time follwing up

with 10 years was not able to be obatined in our cohort.

Another study is Nelson’ study which developed five-year risk CKD incident equation

among 781,627 DM patients from 15 cohort studies. Nelson’s model has good discrimination
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with C-statistic of 0.801. However, we were unable to use Nelson’s eqaution to compare

performance to our study because smoking status was missing in 78% of our cohort

participants(24)(Appendix E). As a result, we could not conclude whether our CKD model is

better than either Nelson’s model or Saranburat’s model.

V. TWO MODEL ESTABLISHING

In Thailand, we have three levels of medical care, including primary care, secondary care

and tertiary care, based on performances in medical care services. Most diagnosed DM patients

were treated under health care units with high abilities of DM monitoring and management, i.e.,

tertiary medical care units and some secondary medical care units (general hospitals, regional

hospitals, or ). These medical care units can monitor DM patients especially DM complications

by routine laboratories test, i.e., FBS, HbAlc, eGFR, urinary ACR and so on). However, some

DM patients were also treated under primary health care units (i.e., primary clinic, community

pharmacy) with limitation of some laboratory test, i.e., urinary ACR. And some patients prefer to

refill medicine in community pharmacy which is a primary care unit with limitation of laboratory

test, i.e., HbAlc, urinary ACR. In this study we wanted to develop two CKD prediction models to

assist every level heath care units to screen or early detect patients with type 2 DM.

Therefore, our first CKD prediction model (model 1) which contained continuous

laboratory is suitable for patients with type 2 DM who had complete laboratory testing in health

care units such as secondary or tertiary hospitals. Model 2 can be used friendly to estimate CKD
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risk for patients with type 2 DM in primary health care settings with limitation facilities for

laboratory test especially UACR test such as primary care clinics or community pharmacies.

VI. USING 3-YEAR RISK OF CKD EQUATIONS IN PRACTICE

This subsection was separated into 2 parts; accessibility of laboratory in health care

settings and application of three-year risk of CKD stage 3 equations in patients with type 2 DM.

Accessibility of laboratory in health care settings

Regarding to our predictors, age and sex can be easily obtained. HbAlc, eGFR and

UACR must be obtained from blood or urine test. In these days these three laboratory tests were

more available for DM patients in health care units, i.e., hospital.

The 2019 Standards of Medical Care in Diabetes of the American Diabetes Association

recommend all DM patients should be monitored for diabetic nephropathy by eGFR and urinary

albumin (i.e., spot urinary albumin-to creatinine ratio) at least once a year, and blood glucose

level should be primarily monitored by HbAlc(128). In Thailand, the Thai Clinical Practice

Guideline for Diabetes 2017 suggests testing HbAlc and UACR for every DM patient to monitor

a glucose level at least once a year (129). In health policy, a HbA lc and microalbuminuria test are

supported by National Health Security Office (NHSO) for health care units under the operations

of NHSO, (130).
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As a result, most patients with type 2 DM have trended to access these three-laboratory
tests. Supporting with data of the MedResNet (2019), a survey of assessment for Diabetic and
Hypertension Care of hospitals under the Ministry of Public Health and hospitals under the
Bangkok Metropolitan Administration in 2018, exhibited that the average percentages of HbAlc
test and microalbuminuria at least once a year were 86.5 and 61.7, respectively. A HbAlc test had
a high prevalence especially among public hospitals, including regional hospitals (93.4%),
hospitals under the Jurisdiction of the Ministry of Defense/Ministry of Interior (91.7%), sub-
district health promotion hospitals (88.1%), general hospitals (87.8%), and community hospitals
(85.4%). In contrast, private hospitals had a lower percentage of HbAlc test (69.6%). Even the
average percentage of microalbuminuria or UACR test was fair, its trend was increasing every

year from 36.2% (in 2010) to 61.7% (in 2018)(131).

Application of three-year risk of CKD stage 3 equations in patients with type 2 DM
Individual predicted CKD risk could be calculated from a formula in Appendix B. As
previously mentioned, model 1 can be applied for predicting individual 3-year CKD risks for
patients with type 2 DM with laboratory test, including eGFR, UACR, and HbAlc. This model
can strongly predict CKD risk at 3 years. Eligible range of each predictors for age, eGFR,
UACR, and HbAlc are 18-90 years old, 179-60 mL/min/1.73 mz, 1.3-6469.5 mg/g, and 4-16.3%,

respectively.
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The calculated percent of three-year risk of CKD stage 3 were divided into 5 risk groups,

including very low (<5%), low to moderate (5-15%), moderate to high (16-25), very high (26-40),

and extremely high (>40%). The reason for dividing five groups are we would like to provide

specific recommendations for specialists not only general physicians who may take care patients

with type 2 DM very high or extremely high CKD stage 3 risk in order to prevent DM

complications, i.e., cardiovascular disease. @~ We used Hosmer-Lemeshow chi-square test to

calibrate the five-CKD risk groups with non-significant results in both training and validation

datasets (Appendix F). The result of Hosmer-Lemeshow chi-square indicated that using CKD

risk equation dividing into the 5 risk groups have accuracy of prediction. Supporting with results

of survival probability curves of 3-year CKD risk based on five CKD risk groups (very low, low

to moderate, moderate to high, vary high and extremely high), were compared by plotting the

predicted CKD survival probabilities and observed CKD events. The predicted CKD probabilities

curves fell within the 95% CI for observed CKD probabilities in both model 1 and model 2.

Recommendations in each risk group are provided in each CKD risk group based on

clinical guideline (Appendix H)(39, 128, 132), for example, if DM patient has UACR >30 mg/g,

blood pressure controlling <130/80 mmHg, avoiding nephrotoxicity agents and ACEI/ARB agent

should be provided for this patient. Moreover, we provided additional recommendations for

health care provider to make decisions for clinical management in each risk group. For example,

if DM patient has got a very low risk (<5%), lifestyle, herb and dietary supplement education will

be provided with CKD risk monitoring once a year. For DM patients with low to moderate risk
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(5-15%), additional recommendation for closely monitoring in drug nephrotoxicity, i.e., NSAIDs,
herb and dietary supplement monitoring, controlling for low salt and protein intaking will be
provided. If DM patients have moderate to high risks (16-25%) in community pharmacist or
primary health care setting, referral to specialists, i.e., nephrologist, will be provided. Regrading
to high prevalence of proteinuria (20%) from our training dataset, a risk of AKI incident, in this
moderate to high risk group, self-monitoring of acute kidney injury (AKI) episode, i.e.,
proteinuria, nocturia, oliguria, should be provided for these patients, and CKD risk evaluation
should be estimated twice a year. For DM patients with high risk (26-40%), additional
recommendations are avoiding drug nephrotoxicity and diabetic retinopathy should be provided.
For DM patients with extremely high risk (>40%), additional recommendations are screening for
metabolic complications and comorbidity due to CKD progression, i.e., electrolyte abnormalities,

metabolic acidosis, anemia.

Model 1 (laboratory model)

Our first CKD prediction model (model 1) which contained continuous laboratory is
suitable for patients with type 2 DM who had comeplete laboratory test in health care units such
as secondary or tertiary hospitals, or patients with type 2 DM who can regognized their exact
eGFR, HbA1lc and UACR results.

If a male type 2 DM patient with 55 years old have eGFR of 95 mL/min/ 1.73m’°, HbAlc

of 7.8% and urinary albumin creatinine ratio (UACR) of 31 mg/g, the three-year risk of CKD
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stage 3 endpoint at 3 year will be calculated equal to be 13.64% which is in low to moderate risk
group. According to microalbuminuria, BP controlling <130/80 mmHg, and ACEI/ARB should
be provided following clinical guideline. Moreover, additional recommendation for monitoring of
drug nephrotoxicity, herb and dietary supplement monitoring, low salt controlling, lifestyle
education should be provided, and the patient should be monitored CKD risk by three-year risk of
CKD equation once a year.

Model 2 (simplified model)

For model 2 or simplified model can be used in this mentioned DM patient with less
discriminative performance than model 1 (0.890 vs. 0.812). We recommend health care providers
to use model 2 when they have limitation of laboratory test, i.e., lacking for urinary albumin
creatinine ratio test, or have limitation of laboratory information.

When model 1 was refined to attain model 2, we had categorized continuous variables,
including eGFR, UACR and HbAlc, based on the clinical practice guideline. We categorized
eGFR levels into 2 groups based on stage of CKD; eGFR =90 mL/min/1.73 m’ (CKD stage 1)
and eGFR <90 mL/min/1.73 m’ (CKD stage 2)(82). For UACR, we categorized into 2 groups
based on the definition of proteinuria: UACR >300 mg/g (proteinuria or macroalbuminuria) and
UACR < 300 mg/g(82). At first, we used a HbAlc level of 7 as a cut point, but the significant
result was not found. Therefore, uncontrolled DM was categorized using HbAlc levels of 7.5 as a
cut point instead; HbAlc >7.5% (uncontrolled DM) and HbAlc <7.5% (controlled DM) (129).

According to the mean age of 55, we categorized age group by 50 years older more.
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Therefore, codes of each categorized predictor are these followings; eGFR =90
mL/min/1.73 m’ (code 1) and eGFR <90 mL/min/1.73 m’ (code 0), UACR >300 mg/g
(proteinuria or macroalbuminuria) given in code 1 and UACR < 300 mg/g (code 0), HbAlc
>7.5% (code 1) and HbAlc < 7.5% (code 0), age >50 years old (code 1) and age < 50 years old
(code 2), male (code 1) and female (code 0).

If model 2 or simplified model is used for the previous case: a male (code 1) type 2 DM
patient with 55 years old (code 1) have eGFR of 95 mL/min/ 1.73m’ (code 1), HbAlc of 7.8%
(code 1) and urinary albumin creatinine ratio (UACR) of 31 mg/g (code 0), the three-year risk of
CKD stage 3 endpoint at 3 year will be calculated equal to be 10.49% which is in low to moderate
risk group. As a result, the previous recommendations should be provided.

According to categorized UACR >300 mg/g, UACR can be estimated by using urine
dipstick when UACR is not available based on the KDIGO 2012 guideline suggestion(133).
Therefore, UACR >300 mg/g or proteinuria, one predictor in model 2, can be estimated by using
an urine dipstick test which is possible to be available in every healthcare units instead of UACR
estimation. If an urine dipstick test has 3+, it means that albumin in urine is more than 300
mg/g(134).

A HbAlc test can be calculated form an equation of Mekvanich’s study (2014) which
were generated among 1,440 DM patients (age =35 years old) with 8 hour fasting blood at
Prananklao hospital (135). The equation of Mekvanich’s was generated from HbAlc and FBS

association by using linear regression (Appendix G). Even the aim of Mekvanich’s study was to
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generate equation for average plasma glucose for DM patient by estimating correlations between
HbA1c and fasting plasma glucose level, we can use this equation to estimate for HbAlc in our
cohort. First, the range of FBS test and HbA 1c used to generate the equation in the study were 42-
795 mg/dL and 4-17%, respectively, which are usual available range in most DM patients.
Second, the 8 hour fasting blood tests at one time visiting hospital in cross-sectional study is a
simple and standard technique in most healthcare settings, including community pharmacies.
Third, the study conducting with Thai large DM patients which might have similar demographic
data and lifestyle to other Thai DM patients. As a result, the calculated HbAlc from Mekvanich’s
equation can be applied for Thai patients with type 2 DM including DM patients who visit in
community pharmacy. In practice, if an estimated HbAlc level from Mekvanich’s equation is 8%,
the HbAlc level will be defined as 1 (HbAlc >7.5%) in model 2 (simplified model). But if a
calculated HbA 1c level is 6%, it will be defined as 0 (HbAlc <7.5%) instead.

For primary clinic or primary health care units with limitation some laboratory tests,
patients might obtain eGFR and HbAlc level except urinary ACR. Therefore, primary clinic can
used model 2 by using protein dipstick instead of urinary ACR. For community pharmacy, a
community pharmacist can use model 1 if a patient with type 2 DM can remember his or her
eGFR, HbAlc and urinary ACR level tested from other health care units. If the patient might
remember roughly about eGFR levels, urinary ACR and HbAlc level, model 2 will be a good

choice. If the patient remembers only eGFR level, model 2 might be used by using protein
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dipstick test and HbAlc calculation for Urinary ACR and HbAlc levels. However, the last

condition validity tests should be conducted. Without laboratory, neither models can be used.

VII. STREGHTS AND LIMITATIONS

Our study has a number of limitations. First, follow-up period was quite low with the

median of 1.29 (interquartile range 0.5-2.5 years) years. Lost follow up can lead to this problem

(i.e., forgetting their appointments, changing their living places, or working in other provinces).

As a result of the limited follow-up, we were only able to develop 3-year CKD risk models.

Second, as we did not conduct external validation, our CKD prediction models might not be

generalizable to all Thai patients with type 2 DM. However, the Medical Research Network of the

Consortium of the Thai Medical schools (MedResNet) which is a Thai survey of Assessment for

Diabetic and Hypertension Care of 906 hospitals among 36,793 DM patients in 2018 (Appendix

I), shows patients have similar mean values of HbAle, SBP, LDL, BMI, proportions of controlled

HbA 1c and hypertension to those observed in our cohort. This lends some support that our CKD

prediction models can be applied to Thai patients with type 2 DM.

Despite these limitations, our study has several strengths. First, although many studies

have assessed the progression of CKD in the general population including in Thailand, our model

is the first to assess 3-year risk of CKD stage 3 specifically in Thai patients with type 2 DM.

Second, the predictors in both CKD risk models are laboratory results used in routine clinical

practice. Moreover, the simplified model can be used in clinical practice by using dipstick
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screening for proteinuria and glucose strip test for HbAlc estimating. These are simple and

instantaneous laboratory test that can be easily performed in healthcare settings with limitation

laboratory test. Third, for eGFR calculation we used the CKD-EPI equation which performed

better with less bias than the original Modification of Diet in Renal Disease (MDRD) Study

equation (113). Forth, Cox regression including time to CKD event, an essential factor for

predicting event prognosis, was used to develop for a better model prediction than a model using

logistic regression including only event and covariate.


https://www.niddk.nih.gov/health-information/communication-programs/nkdep/laboratory-evaluation/glomerular-filtration-rate/estimating#the-ckd-epi-equation

CHAPTER VI

CONCLUSION AND RECOMMENDATIONS

CONCLUSIONS

This study found that age, sex, eGFR, UACR and HbAlc are the significant predictors

for developing chronic kidney disease. Increased age, HbAlc and UACR had the risk effects on

developing CKD. In contrast, male sex and increased eGFR had a protective effect on CKD

developing. These findings showed that good blood glucose and albuminuria controls can

preserve type 2 DM patients’ renal function.

Two CKD risk prediction models are developed for Thai patients with type 2 DM in

this study. The two models which were consisted of the laboratory and the socio-demographic

data had shown good and accurate predictions. They could predict the 3-year probabilities of

CKD in patients with type 2 DM. Model 1 (laboratory model) is suitable for the health care

settings with complete laboratory test, and model 2 (simplified model) is suitable for some

primary health care settings or community pharmacies that have limited laboratory test.

These CKD risk prediction models can assist health care providers to early detect for

CKD developing and promote health care providers to prevent diabetic nephropathy. Moreover,

these CKD risk models are tools for supporting patients’ education about diabetic nephropathy by

emphasizing them to control blood glucose and albuminuria.
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CKD PREDICTION MODELS AND HEALTH CARE SERVICE

CKD prediction model can support health care service in term of improved CKD

screening, clinical management and patient education.

CKD is one of non-communication disease (NCD) increasing in Thailand. These days,

NHSO has the health policy of the health prevention and promotion such as chronic disease

screening, health education, smoking cessation, for preventing non-communication disease

(NCD) in every level of health care setting. For tertiary and secondary health care setting,

including hospital, using CKD prediction models not only improve clinical management but it

also emphasizes health care providers to monitor CKD-related laboratories or signs of CKD

progression. This leads to improve CKD screening. Based on the results of this study, the CKD

prediction model with the classified recommendations for patients with type 2 DM should be

included in a part of DM clinical management guideline to provide the suitable clinical

management: lifestyle, medication, with specific healthcare provided for patients with type 2 DM.

CKD prediction model can be a decision support for health care providers, including general

physician, nephrologists, pharmacist, and nurses to decide effective clinical management for

patients with type 2 DM for improve DM outcomes. For primary care setting, i.e., primary clinic,

community pharmacies, where have only general physician or community pharmacists, the CKD

prediction model also can support in making decision in health prevention among patients with

type 2 DM. When a patient with type 2 DM has a high risk of CKD, health care providers can

make a decision immediately to refer the patients with type 2 DM to suitable healthcare units (i.e.,
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hospitals) for potential treatment. As a result, the incidents of CKD the hospital admission with

CKD are possibly decreased and lead to decrease the health expenditure of CKD management.

Moreover, the CKD prediction model can recruit the losing follow-up type 2 DM patients with

high CKD risk to health care unit for suitable DM management.

With clinical predictors, the CKD prediction model can be a patient education tool to

raise awareness of controlling blood glucose, proteinuria, or controlling blood pressure. As

result, CKD prediction model may increase awareness of CKD among patients which is very low

(1.9%) (136).

THE RECOMMENDATIONS ON IMPLEMENTATION OF USING THREE-YEAR RISK

OF CKD STAGE 3 EQUATIONS FOR FURTHER RESEARCH

For further study, multi-center analysis and external validation should be conducted.

Herbal and dietary supplements should be a predictor candidate. Moreover, validity test of HbAlc

calculation from Mekvanich’s study should be obtained (Appendix G).

According to recommendations or clinical interventions based on five CKD risk groups

for both models (model 1 and model 2), including very low, low to moderate, moderate to high,

very high, and extremely high (Appendix H), prospective cohort study should be conducted to

evaluate effectiveness of each clinical intervention in each CKD risked DM patient.

Moreover, regarding the required laboratory parameters for predicting CKD risks in our

developed models (model 1 and model 2), DM patients who do not possess the laboratory test in
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terms of eGFR, UACR and HbAlc, cannot be used to assess CKD risks with our developed

models. Therefore, a questionnaire of CKD risk assessment without laboratory parameters should

be established based on our developed models, and the reliability test and the validity test should

be performed. Examples of CKD questionnaires with simple questions are presented in Appendix
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APPENDIX A

MULTIVARIATE ANALYSIS



Table 15: Multivariable hazard ratio for the selection of CKD prediction model

Model A Model B Model C
Candidate predictors HR HR HR

Age, year 1.02% 1.02% 1.02%
¢GFR, mL/min/1.73m’ 0.90%* 0.90 0.90*
Log UACR, mg/dL 1.27* 1.27* 1.27*
Log HbAlc, % 3.32% 3.31* 3.25%
Log BMI, kg/m2 0.83
CVD, n (yes vs. no) 1.09
Log SBP, mmHg 1.85 1.78
Sex, n (male vs. female) 0.74% 0.75% 0.75%
C-statistic 0.874 0.874 0.874
AIC (range) 3102.72 3099.42 3099.22

HR, hazard ratio; HbAlc, hemoglobin Alc; eGFR, estimated glomerular filtration rate;
UACR, urinary albumin to creatinine ratio; SBP, systolic blood pressure; CVD,

cardiovascular disease; log, logarithm transformation; AIC, akaike information criterion.

*variable have significance with p-value less than 0.05.

132



rho chiz df Prob»chi2
InHbAlc B.00267 .00 1 B.9636
InurinAlb B.11582 4.41 1 B.8358
base_eGFR 0.10454 3.42 1 G.0644
gender -9.83911 B.44 1 @.50889
age_int 0.08446 1.91 1 @.1670
global test 9.54 5 0.0894

Figure 13: Test of proportional hazard assumption for model 1

rho chiz df Prob>chi2
high_HbAlc75 @.82558 a.18 1 @.6726
proteinuria 8.13227 5.04 1 8.8247
eGFRstage @.18680 3.13 1 @.8769
gender @.0a865 @.e2 1 @.8861
ages@ @.04674 @.60 1 @.4387
global test 8.51 5 2.1304

Figure 14: Test of proportional hazard assumption for model 2
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THREE-YEAR RISK OF CKD EQUATIONS
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Table 16: Prediction equations to apply to individual patients for the 3-year risk of CKD

1- 0.7307"exp((1.180327*log(HbA 1c)) +
Model 1
(0.2435595*10g(UACR)) + (-0.1027086*(eGFR)) + (-

0.2942762*(if male)) + (0.0221663*age) - ((1.180327*
(laboratory model)
log(7.214512)) + (0.2435595* log(123.7432)) + (-

0.1027086*90.46844) + (-0.2942762*0.4255738) +

(0.0221663*55.87869))

1-0.7307%exp((0.3207118*(if HbAlc >7.5)) + (0.8099867*(if
Model 2
UACR >300 mg/g)) + (-2.423474*(if eGFR 290)) +

(simplified model)
(-0.3603594*(if male)) + (0.7576155*(if age =50)) -

((0.3207118*0.3325027) + (0.8099867*0.160612) +
(-2.423474*0.532459) + (-0.3603594*0.4255738) +
(0.7576155*0.7154098))

HbA1c, Hemoglobin Alc; eGFR, estimated Glomerular Filtration Rate; UACR, Urinary albumin
to creatinine ratio; log, logarithm transformation.

Where 0.7307 is the 3-year CKD-free survival probability in our cohort.
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RISK OF CKD EQUATIONS



137

Model 1 (laboratory model)

1. Calculate predicted CKD risk from 3-year risk of CKD equation (model 1), we use the

commands

gen score = ((1.180327*log(HbA 1¢)) + (0.2435595*log(UACR)) + (-0.1027086*(eGFR)) +
(-0.2942762*(if male)) + (0.0221663*age) - ((1.180327* log(7.214512)) +
(0.2435595* log(123.7432)) + (-0.1027086*90.46844) + (-
0.2942762*0.4255738) + (0.0221663*55.87869))

gen predictive_risk = 1-0.7307"exp(score)

2. Replace value of predicted risk to be negative value.

replace predictive_risk = -predictive_risk

3. Generate censorship indicator variable to a somersd censorship indicators variable

gen censind = 1- dif st==

where, _st is created by stset command; 1 in observations with right-censored lifetimes (where _d

[event of CKD] is 0); and 0 in observation with uncensored lifetimes (where dis 1).

4. Calculate C-statistic for the training dataset.

somersd _t predictive_risk if st ==1 & sample==1, tr(c) tdist cenind(censind)

The C-statistics of three-year risk CKD model were 0.873 and 0.890 in the training and validation

dataset, respectively (Figure 15 and 16).
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Symmetric 95% CI for Harrell's c

Jackknife
t Coef.  Std. Err. t Px|t| [95% Conf. Interval]
predictive_risk .B731701 .Be9416 92.73 @.000 . 8547804 .8916398

Figure 15: C-statistic with 95%CI of three-year risk CKD model (model 1) in the training

dataset

Symmetric 95% CI for Harrell's c

Jackknife
_t Coef. 5Std. Err. t Pt [95% Conf. Interwval]
predictive_risk .8984952 .91685918 24.67 0.000 . 8696971 .9112933

Figure 16: C-statistic with 95%CI of three-year risk CKD model (model 1) in the training

dataset
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Model 2 (simplified model)
1. Calculate predicted CKD risk from 3-year risk of CKD equation (model 1), we use the

commands

gen score_2 = ((0.3207118*(if HbAlc >7.5)) + (0.8099867*(if UACR >300)) + (-

2.423474%(if eGFR =90)) + (-0.3603594*(if male)) + (0.7576155* (if age
250)) - ((0.3207118*0.3325027) + (0.8099867*0.160612) + (-
2.423474%0.532459) + (-0.3603594*0.4255738) + (0.7576155*0.7154098))

gen predictive_risk = 1-0.7307"exp(score_2)

2. Replace value of predicted risk to be negative value.

replace predictive_risk = -predictive_risk

3. Generate censorship indicator variable to a somersd censorship indicators variable

gen censind = 1- dif st==

where, st is created by stsef command; 1 in observations with right-censored lifetimes (where d

[event of CKD] is 0); and 0 in observation with uncensored lifetimes (where dis 1).

4. Calculate C-statistic for the training dataset.

somersd _t predictive_risk if st ==1 & sample==1, tr(c) tdist cenind(censind)

The C-statistics of three-year risk CKD model were 0.798 and 0.812 in the training and validation

dataset, respectively (Figure 17 and 18).
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Symmetric 95% CI for Harrell's c

Jackknife
t Coef. 5td. Err. t P>|t] [95% Conf. Interval]
predictive risk .7984826  .08123536 64.64 0.000 .7742508 -8227144

Figure 17: C-statistic with 95%CI of three-year risk CKD model (model 2) in the training

dataset

Symmetric 95% CI for Harrell's ¢

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Interval]
predictive_risk .8118328 .8152945 53.88 0.000 . 7815604 . 8418552

Figure 18: C-statistic with 95%CI of three-year risk CKD model (model 2) in the validation

dataset
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Model 1 (laboratory model) in the training dataset

1. Calculate predicted CKD risk from 3-year risk of CKD equation (model 1), we use the

commands

gen score = ((1.180327*%InHbAlIc) + (0.2435595*InurinAlb) + (-0.1027086*base_eGFR) + (-

0.2942762*gender) + (0.0221663 *age_int)) - ((1.180327*log(7.214512)) +

(0.2435595*l0og(123.7432)) + (-0.1027086*90.46844) + (-0.2942762*%0.4255738) +

(0.0221663*55.87869))

gen predictive_risk = 1-0.7307"exp(score)

2. Risk group (full10) were divided into decile based on the calculated predicted risk from 1.

egen fulll 0=cut(predictive_risk), group(10)

sort fulll0

by fulll10: egen mean_fullrisk = mean(predictive_risk)

3. Calculate mean of predicted hazard function in each risk group.

table fulll0, c(mean predictive_risk n predictive_risk)

4. Predicted CKD events were calculated by multiplying between number of patients of each risk

group and the predicted hazard function in each decile of risk group (Table 17).
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Table 17: Calculation of the predicted CKD risk

Risk group Predicted hazard N Predicted CKD events
function

1 0.0098969 65 0.64

2 0.0275004 65 1.79
3 0.0515167 65 3.35

4 0.0866657 66 5.72
5 0.1320810 65 8.59
6 0.2154872 65 14.01
7 0.3482845 66 22.99
8 0.5526576 65 35.92
9 0.7998934 65 51.99
10 0.9773067 66 64.50

5. Calculate observed 3-year hazard function by using the command

sts list, fail at(0 2 3) by(full10)

6. Calculate observed CKD events by multiply between N in each risk group and the observed

hazard functions (Table 18).



Table 18: The calculation of the predicted and observed CKD events in the validation

dataset (model 1)

Risk Predicted N Predicted Observed hazard Observed
group | hazard function CKD events functions CKD events

1 0.0098969 65 0.64 0.0303 2

2 0.0275004 65 1.79 0 0

3 0.0515167 65 3.35 0 0

4 0.0866657 66 5.72 0.0625 4

5 0.1320810 65 8.59 0.0795 5

6 0.2154872 65 14.01 0.0222 1

7 0.3482845 66 22.99 0.3797 25

8 0.5526576 65 35.92 0.4299 28

9 0.7998934 65 51.99 0.5950 39

10 0.9773067 66 64.50 0.8842 58
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7. Calculate chi-square (X 2)Values between the predicted CKD events and the observed CKD

events in each risk group following this formula;

X2= Z (0;—E)?
E;

_ (2—0.64)2+ (0-1.79)2 . (0—3.35)2+ (4-5.72)2
T 064 1.79 3.35 5.72

XZ

(5-8.59)2 (1-14.01)2 (25-22.99)2
+ +
8.59 14.01 22.99

(28-35.52)%2 (39-51.99)2 (58-64.5)2
+ +
35.52 51.99 64.5

After this step, X2 and p-value were obtained for model 1.

The calculation of chi-square for model 1 in the training dataset and for model 2 in both

the training and validation datasets were performed similarly from step 1-7. Table 19-21 showed
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the predicted and observed hazard function of model 1 and model 2 in the training and validation

datasets base on the decile of risk groups.

Table 19: The calculation of the and predicted and observed CKD events in the training

dataset (model 1)

Risk Predicted hazard | N Predicted Observed hazard Observed
group function CKD events functions CKD events

1 0.01 152 1.56 0.00 0

2 0.03 153 4.11 0.05 7

3 0.05 152 7.11 0.03 4

4 0.08 153 12.35 0.05 8

5 0.13 152 20.05 0.10 15

6 0.22 153 33.12 0.14 21

7 0.36 152 55.12 0.13 20

8 0.58 153 88.55 0.43 66

9 0.81 152 123.43 0.64 97

10 0.98 153 149.50 0.91 139
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Table 20: The calculation of the and predicted and observed CKD events in the training

dataset (model 2)*

Risk Predicted N Predicted Observed hazard Observed
group | hazard function CKD events functions CKD events

1 0.042103 147 6.19 0.0095 1

2 0.059961 149 8.93 0.0246 4

3 0.084894 151 12.82 0.0717 11

4 0.121428 307 37.28 0.0602 18

5 0.33908 127 43.06 0.2122 27

6 0.597493 161 96.20 0.3513 57

7 0.713745 61 43.54 0.462 28

8 0.728162 217 158.01 0.5181 112

9 0.894209 205 183.31 0.7399 152

*Eight degree of freedom
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Table 21: The calculation of the and predicted and observed CKD events in the validation

dataset (model 2)

Risk Predicted N Predicted Observed hazard Observed
group | hazard function) CKD events functions CKD events

1 0.042366 61 2.58 0.0333 2

2 0.058811 62 3.65 0 0

3 0.08413 60 5.05 0.0833 5

4 0.108925 73 7.95 0 0

5 0.143727 66 9.49 0.0345 2

6 0.340093 59 20.07 0.3207 19

7 0.596538 74 44.14 0.5297 39

8 0.696946 35 24.39 0.5565 19

9 0.728082 85 61.89 0.4342 37

10 0.9773067 78 69.58 0.6425 50
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APPENDIX E

FIVE-YEAR RISK OF INCIDENT CHRNIC KIDNEY DISEASE FOR

DM PATIENTS (THE STUDY OF NELSON ET AL.)
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Table 22: Prediction equation for the 5-year absolute risk of incident CKD (eGFR <60

ml/min/mz)

1 —exp (-500.9766551 x exp [-2.647004 + 0.1351572 x (age/5 —11) +
0.1381975 x (if female) + 0.0920208 x (if black) + 0.3546697 x (15 —
min(eGFR, 90)/5) — 0.1525133 x max(0, eGFR-90)/5 + 0.1870637 x (if
has history of CVD) + 0.0619679 x (HbAlc —7) + 0.1078296 x (if
insulin use) — 0.150944 x (if no DM medication use) + 0.023959 x
Incident CKD (HbAlc —7) x (if insulin use) +0.0398424 x (HbAlc —7) x (if no DM
medication use) — 0.00084 x (if ever smoking) + 0.3653268 x (if

hypertensive) + 0.050306 x (BMI/5-5.4) + 0.3737905 x (logl10ACR —

DD

CKD, chronic kidney disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate;
CVD, cardiovascular disease; HbAlc, hemoglobin Alc; BMI, body mass index; ACR, urine

albumin to creatinine ratio
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APPENDIX F

CALIBRATION RESULTS FOR FIVE-CKD RISK GROUPS IN

TRAINING AND VALIDATION DATASETS
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Table 23 Result of Hosmer-Lemeshow chi-square test based on five CKD risk groups in the

training and validation datasets (model 1)

Training dataset Validation dataset
Risk group N N
Predicted Observed Predicted Observed
event event event event
Very low 407 9.99 12 158 2.67 2
Low to moderate 327 30.71 22 160 15.19 9
Moderate to high 148 28.78 17 61 12.06 1
Very high 140 44.62 23 65 20.70 18
Extremely high 503 380.80 325 209 157.88 135
Total 1,525 49491 398 653 209.5 166
X’ 5.76 8.25

p-value 0.22 0.08
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Table 24 Result of Hosmer-Lemeshow chi-square test based on five CKD risk groups in the

training and validation datasets (model 2)

Training dataset

Validation dataset

Risk group N N
Predicted Observed Predicted Observed
event event event event
Very low 92 3.40 0 37 1.37 2
Low to moderate 649 59.81 29 268 24.61 6
Moderate to high 52 10.08 14 35 6.80 5
Very high 49 16.10 12 23 7.60 3
Extremely high 683 499.94 354 290 208.39 155
Total 1,525 589.34 409 653 248.78 171
X 7.95 7.39
p-value 0.09 0.12
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Training dataset (Model 1) Validation dataset (Model 2)
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Figure 19: The observed CKD survival probabilities vs. predicted CKD probabilities for the Cox model
in the training and the validation datasets for model 1.

Predicted survival probabilities are smooth lines, and the observed CKD survival probabilities from the
Kaplan-Meier method with 95% confidence intervals are represented by vertical capped lines. Three
prognosis groups plotted represent very low risk (blue lines), low to moderate risk (red lines), moderate

to high risk (black lines), very high risk (purple lines), and extremely high risk (green line) groups.
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Figure 20: The observed CKD survival probabilities vs. predicted CKD probabilities for the Cox model
in the training and the validation datasets for model 2.

Predicted survival probabilities are smooth lines, and the observed CKD survival probabilities from the
Kaplan-Meier method with 95% confidence intervals are represented by vertical capped lines. Three
prognosis groups plotted represent very low risk (blue lines), low to moderate risk (red lines), moderate

to high risk (black lines), very high risk (purple lines), and extremely high risk (green line) groups.
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APPENDIX G

EQUATION TO ESTIMATE THE EXPECTED HbAlc

(MEKVANICH’S STUDY)
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Table 25: Equation to estimate the expected HbAlc

FBG + 26.68

Expected values of
24.119

HbAIlc*

HbAlc, hemoglobin Alc; FBS, fasting blood glucose

*age >35 years old and range of FBG is 42-795 mg/dL
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APPENDIX H

APPLICATIONS AND RECOMMENDATIONS OF THREE-YEAR

RISK OF CKD EQUATIONS
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Gender (1=male, 0=female)
Age (18-90 years)

eGFR (CKD-EPI fornula), 1.73mL,
urinary ACR, mg/g (>=1)

HbAlc, %

_

[

302
1.6

blood pressure target, mmHg*

result
3-year CKD risk (%) 82.12
severity extremely high
CKD staging* G2
Need for specialist refer? refer
frequency of evaluation twice per year
Recommendation

<130/80

Anithypertensive agent®

consider the use of ACEIfARB if albuminuria occuring

Glycermic control target

Alc target is typically 7% but may not be apropriate for all DM type 2 patients

lipid target is considered to follow relevant guideline , i.e., KDIGO guideline.

LnmEEr Check lipids once to establish as baseline and once after therapy initiated.
Smoking Encorage smoking cessation
lifestyle give lifestyle education, i.e., food , exercise
emphazige healthy food controlling and exercise
Low salt, low protein intaking
drug education of the use of nephrotoxic drug, dietary supplement and herb.

avoid of the use of nephrotoxic drug (i.e., NSAIDs), dietary supplement and herb, and
maonitor closely

other recommendation

diabetic retinopathy monitoring

Self monitoring of acute kidney injury (AKI) episode (proteinuria, noctuaries, oliguria)

prevention of metabolic complication and comorbidity due to CKD progression(i.e., BP,
volumn overload, electrolyte abnormalities, metabolic acidosis,anemia, metabolic bone
disease - Clinical laboratories should be monitored as baseline.

Figure 21: Application program for 3-year CKD risk estimation (model 1)



Gender (1=male, 0= female)

Age (1=age>=50, 0 =age <50 )

eGFR (CKD-EPI fornula) (1=GFR>=90, 0= GFR <90)

urinary ACR, mg/g (1=ACR »300, 0 = ACR <=300)
HbA1c, % (1=HbA1c >=7.5%, 0= HbA1c <7.5%)

oRr|e|o (=

result
3-year CKD risk (%) 61.58
severity extremely high
CKD staging*® G2
Need for specialist refer? refer

frequency of evaluation

twice per year

blood pressure target, mmHg*

Recommendation
<130/80

Anithypertensive agent®

consider the use of ACEI/ARB if albuminuria occuring

Glycermic control target

Alc target is typically 7% but may not be apropriate for all DM type 2 patients

lipid target is considered to follow relevant guideline , i.e., KDIGO guideline.

EriErEE Check lipids once to establish as baseline and once after therapy initiated.
Smoking Encorage smoking cessation
lifestyle give lifestyle education, i.e., food , exercise
Low salt, low protein intaking
drug education of the use of nephrotoxic drug, dietary supplement and herb.

avoid of the use of nephrotoxic drug (i.e., NSAIDs), dietary supplement and herb, and
monitor closely

other recommendation

diabetic retinopathy monitoring

self monitoring of acute kidney injury (AKI) episode (proteinuria, noctuaries, oliguria)

volumn overload, electrolyte abnormalities, metabolic acidosis,anemia, metabolic bone
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Figure 22: Application program for 3-year CKD risk estimation (model 2)
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Table 26: Classified recommendations in 5 risk groups of CKD

Risk group 3-year predicted Recommendations
CKD risk (%)
Very Low <5 -Monitor risk of CKD stage 3 once a year

- Lifestyle education

- Education for drug nephrotoxicity, i.e., NSAIDs.

Low to 5-15 - Monitor risk of CKD stage 3 once a year
moderate - Lifestyle education
- Closed monitor NSAIDs, herb, or dietary
supplement use

- Low salt, low protein intaking

Moderate to 16-25 - Refer to specialist to follow up renal function
high - Monitor risk of CKD stage 3 twice a year

- Lifestyle education

- Closed monitor NSAIDs, herb, or dietary

supplement use

- Low salt, low protein intaking

- self monitoring of AKI episode (proteinuria,

noctuaries, oliguria)

Very high 26-40 - Refer to specialist to follow up renal function

- Monitor risk of CKD stage 3 twice a year

- Lifestyle education

- Avoid NSAIDs, herb, or dietary supplement use
- Low salt, low protein intaking

- self monitoring of AKI episode (proteinuria,

noctuaries, oliguria)

Extremely >40 - Refer to specialist to follow up renal function

high - Monitor risk of CKD stage 3 twice a year

- Lifestyle education
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Risk group

3-year predicted

CKD risk (%)

Recommendations

- Avoid NSAIDs, herb, or dietary supplement use

- Low salt, low protein intaking

- self monitoring of AKI episode (proteinuria,
noctuaries, oliguria)

- Screening for metabolic complications and
comorbidity due to CKD progression, i.e., electrolyte

abnormalities, metabolic acidosis, anemia
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Patients with type 2 DM

(age 18-90 years old)

STEP 1: CKD risk estimating

v

3-year CKD risk prediction model

(model 1 or model 2)

L L i
e

STEP 2: Healthcare provider-patient discussion considering risk factors of CKD in

patients with type 2 DM

STEP 3: Lifestyle modification, monitor drug/herb that related to CKD risk and clinical

management following the recommendations

STEP 4: Refer to health care unit to follow up
renal function (For pharmacist and nurse in

healthcare unit with limited laboratory testing)

Review CKD risk in 6-12 months

Figure 23: Flow chart of CKD risk estimating process



162

APPENDIX I

MedRestNet REPORT 2018



Table 27: Comparison of characteristics of patients with type 2 DM between the

MedResNet report 2018 and this study

Laboratories Our study MedResNet report
(n=2,178) 2018 (n=36,793)

Mean of SBP, mmHg 136.23+20.27 133.1£15.3
Mean of DBP, mmHg 75.77+£12.13 74.6 £10.2
Mean of LDL, mg/dL 132.9+31.26 104.9+37.9
Mean of HbAlc, % 7.23 7.92
BMI, kg/m’ 26.45 24.7-26.5
Percentage of controlled FPG 34.81% 37.1%
(70-130 mg/dL)
Percentage of controlled HbAlc 54.64% 36.5%
(HbAlc <7%) (26.2-50.8%)
Percentage of uncontrolled HbAlc 12.16% 22.8%
(HbAlc 29%)
Percentage of controlled LDL 36.7% 49.2%
(LDL <100 mg/dL)
Percentage of comorbidity  with 80.53% 78.5%
hypertension
Percentage of comorbidity with Diabetes 3.08% 5.2%
retinopathy (DR)
Diabetes nephropathy 4.73% 7.4%
Percentage of microalbuminuria test at 68.23% 61.7%
least once a year
Percentage of HbA 1c monitoring at least 90.57% 86.5%

once a year

(65.6%-93.9%)

NR, no report; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body

mass index; FPG, fasting plasma glucose; HbAlc, hemoglobin Alc; LDL, low-density

lipoprotein cholesterol
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APPENDIX J

DRAFTED QUESTIONNAIRE FOR CKD RISK ESTIMATION

(MODEL 2)



NAME. .o Age.........years old

Gender I:lmalelj female

Underlining diseases I:l Hypertension I:l Diabetes Mellitus I:l DLPI:l other......

Duration of diabetics............ years
Smoking status I:l Never I:l Currently smoking....... /day
I:l Stop smoking......... years
Alcohol drinking status I:l Never I:l Current drinking ....mL/day

I:lStop drinking....years

How many days did you take NSAIDs within 1 ear?..........ccccc.c... days
Do you have history of diabetes nephropathy in family? I:lNo
Do you take dietary supplement/ herbs? I:l No I:l Yes ......
Blood pressure............... mmHg Pulse rate...... bpm

Level of eGFR.........cc.coveirnnin. mL/1.73min/m’

Questionnaires for CKD risk assessment

Abnormal urine assessment

(1) Do you have foamy urine?

Assessment of uncontrolled DM

(1) Increasing anti-diabetic medicine (injection or oral)

(2) Weight losing

(3) Thirsty

(4) Infected event such as UIT, infected wound, TB

(5) Polyurea

(Yes)

(Yes)

(Yes)

(Yes)

(Yes)

(Yes)

(No)

(No)

(No)

(No)

(No)

(No)

Figure 24: The draft of questionnaire for CKD risk estimating (Model 2)
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VITA
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2016 The scholarships of SAKURA Exchange Program in Science
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