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Intrinsic motivation is one of the potential candidates to help improve 

performance of reinforcement learning algorithm in complex environments. The method 
enhances exploration capability without explicitly told by the creator and works on any 
environment. This is suitable in the case of multi-agent reinforcement learning where 
the environment complexity is more than usual. The research presents an exploration 
model using intrinsic motivation built from the random network distillation algorithm to 
improve the performance of multi-agent reinforcement learning and compare with the 
benchmark in different scenarios. The concept of clipping ratio is introduced to enforces 
the limit on optimization magnitude. Based on the extrinsic reward, the limit in the form 
of clipping ratio helps truncate the excessive magnitude that may cause instability to the 
optimization. The experiments were carried out on two different multi-agent 
architectures: 1) Individual Intrinsic Motivation Architecture, and 2) Centralized Intrinsic 
Motivation Architecture. The experimental results showed that in case of very complex 
environments, Centralized Intrinsic Motivation Architecture accompanied with a small 
clipping ratio could gain an increase in performance. The result reported the 
achievement of up to 70% win-rate in both architectures which is higher than those of 
the benchmark at the best of 43% in 2s3z environment.  
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Chapter 1  

Introduction 

1.1 Statement of the Problems 

Reinforcement learning (RL) is a subfield of machine learning where the 

learner entities are in the form of software agents in which learn from reward signals 

sampled through interactions with simulation or environment. RL is becoming more 

and more popular and presents high potentials for many applications in different 

domains as the RL can be used to learn and solve a sequential decision-making 

problem [1]. Combined with Deep Learning to learn state representations, deep 

reinforcement learning (DRL) is a general framework to learn on any complex 

challenging problem. This allows the DRL framework to be one of the best 

candidates to solve any general problems. However, there are many benefits and 

challenges regarding the issue. 

RL in general requires a large amount of interaction through simulations at 

the benefit of requiring no data labels. In addition, RL could introduce creativity and 

uncertainty based on the design, the algorithm has potential to achieve alternative 

solutions that achieve the goal but also introduce misbehavior that could also 

achieve the same goal. The potential for a wide-open sequential solution comes at 

the cost of optimization complexity in terms of difference objective function. On top 

of that, the data used from training is sampled through simulation interaction. 

Therefore, it is required a good sequential simulated interaction to be able to 

achieve optimal solutions. 

One of the areas of research in RL is in exploration which is about how to 

seek for better data for optimization. In detail, the sampled data come from 

interacting with simulation where it is represented using elements in the Markov 

Decision Process framework which are state action and immediate reward. The 

exploration algorithm must enhance agent capability to obtain more quality sampled 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

data in different states. As the main objective of RL is to maximize the expected sum 

of reward [2] of the episode, the quality of sampled reward is essential for the 

learning process of RL. In this case, there are two problems regarding quality of the 

reward, sparse [3] and too complex. In case of complex rewards, it is probable that 

agents would get stuck in the loop of suboptimal rewards as they thought that the 

current path is optimal which is not the case. 

There is a lot of literature researching the topics of exploration. Intrinsic 

motivation is one of the alternative solutions that enhance exploration capability on 

any tasks without manually customizing it by the creator [2]. Therefore, it can scale 

better and show a better potential for use in the case of more complex challenges 

of Multi-Agent Reinforcement Learning (MARL). The idea of self-generated curiosity of 

humans can be applied to create intrinsic reward to help improve optimization. It 

encourages a software agent to explore new states by adding intrinsic signals when 

agents explore the unknown state and have no effect on the known states. 

In many real-world applications, the problems are multi-agent in nature. The 

business challenges are very complex, and in order to utilize RL effectively, the 

effective exploration algorithm for MARL needs to be explored. In the research, we 

explored different methods and architecture of Intrinsic Motivation in both Single 

Agent Reinforcement Learning and Multi-Agent Reinforcement Learning. In addition, 

we also explore the methodology of applying intrinsic motivation on MARL for 

robustness of applying intrinsic motivation. The preliminary experiments were 

conducted on many simulations such as OpenAI for single agent RL and The StarCraft 

Multi Agent Challenge (SMAC) environment for MARL. 

1.2 Objective 

To explore and improve efficiency on applying random network distillation on 

multi agent reinforcement learning to achieve the best outcome in terms of sample 

efficiency and the maximum long-term score. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

1.3 Scope of Study 

1. This work will be tested on The StarCraft Multi-Agent Challenge (SMAC) 
environment 

2. This work will be using Counterfactual Multi-Agent (COMA) as a baseline 
algorithm 

3. The experiment results are measured in term of win rate over episode used 
in different architectures and parameters and in different aspects of 
environment such as symmetry, asymmetry and micro-trick 

1.4 Research Methodology 

1. Research on methodology/theory/study on related topics 
2. Design Develop Experiment and Analyze on the results of using random 

network distillation on single agent reinforcement learning 
3. Design Develop Experiment and Analyze on the results of using random 

network distillation on multi agent reinforcement learning 
4. Evaluate and Conclude on contribution of the research 
5. Summarize and compile the thesis 

1.5 Outcomes 

1. Empirical results contributed to Random network distillation as a method to 
improve path exploration on RL in both single and multi-agent setups 

2. More alternative choices of exploration models that could improve 
performance for MARL 

1.6 Thesis Publication 

Parts of the thesis had been published in one academic conference and one 

international journal as following: 
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Chapter 2  

Literature Review 

2.1 Markov Decision Process 

The RL algorithm is usually modeled following a Markov Decision Process 

(MDP) framework which is a mathematical framework for decision making in discrete 

and stochastic control process [4]. 

 
Figure  1: Markov Decision Process Example with three states (green circles), two actions (orange 

circles) and rewards (orange arrows) 

The MDP framework is an abstraction of the goal-oriented learning problem 
that learn from interaction with the environment. Any kind of problems can be 
represented to only three signals passing back and forth between an agent and its 
environment: one signal to represent the action, one signal to represent the basis on 
which the choices are made (the states), and one signal to define the goal which is 
the rewards [5]. This framework may not be able to represent all decision-learning 
problems, but it has proved to be widely useful and applicable. 

Figure 1 depicts the MDP elements which consists of four elements, state, 

action, state transition probability given state and action and immediate reward after 

state transitions. The State is represented in large green circles while a red circle is 
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the representation of an action. Transition probability is displayed next to the black 

transition line which represent the probability of taking that path. Nevertheless, curvy 

pink arrow represents immediate rewards. 

When state transition probability and reward is known, the MDP can be 

solved by many algorithms such as dynamic programming. To find the optimal policy 

of finite state and action MDP, the algorithm requires two steps, value update and 

policy update. Equations (1) and (2) are the iterative equations for value update and 

policy update, respectively. 
 

𝑉(𝑠) ∶=  ∑ 𝑃𝜋(𝑠)(𝑠, 𝑠′)(𝑅𝜋(𝑠)(𝑠, 𝑠′)𝑠′ + 𝛾𝑉(𝑠′))                        (1) 
 

𝜋(𝑠) ∶=  𝑎𝑟𝑔𝑚𝑎𝑥𝑎{∑ 𝑃(𝑠′|𝑠  , 𝑎) (𝑅(𝑠′|𝑠, 𝑎)𝑠′ + 𝛾𝑉(𝑠′))}              (2) 
 

There are many variants in optimizing the MDP using the two steps, value 

iteration and policy interaction. The former approximate the value of the state and 

predict the policy using the state value while the latter perform step one only once 

for many iterations of step two. 

However, when probability or reward are unknown, the MDP can be 

optimized using reinforcement learning which can solve MDP without knowing 

transition probability [6]. To be specific, the transition probability is needed in 

optimization through value and policy iterations, however, the state transition 

information is accessed through the interactions with simulation. The RL can be 

combined with general function approximators such as Deep Neural Network (DNN) 

to approximate more complex functions [7, 8]. 

There are many other models to represent dynamic system such as 

predictive state representation (PSRs) where it is introduced class of models for 

discrete-time dynamical systems by represent the state as a set of predictions of 

observable outcomes of experiments one can do in the system [9]. Evolution 

Strategies (ES) is also capability to be an alternative to MDP-based RL techniques 
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[10]. Nevertheless, we only focus on solving problem based on simple MDP 

framework in this case. 

2.2 Reinforcement Learning 

The RL algorithms are also known as approximate dynamic programming, or 

neuro-dynamic programming [2] because most of it utilizes the dynamic programming 

technique as it assumes no knowledge of simulation MDP. Therefore, most basic RL 

are modeled in the MDP framework. 

 
Figure  2: Basic framework of reinforcement learning: an agent takes an action based on 

observed state and value approximated from reward at a given discrete time 
 

Figure 2 depicts the standard Reinforcement Learning interaction diagram 

where the agent interacts with simulation in the discrete time steps. In each step the 

agent observes the simulation and decides about the observation by choosing an 

action on the action space. The simulation then moves to the next state to 

complete the on step of sampled experience. The basic sample experiences are 

records with states, action, next states and immediate reward which is used in the 

learning process and the main optimization objective of RL is always to maximize the 

expected sum of rewards. 

There are many concepts related to how to use past experiences to find out 

the optimal reward or to select the best actions such as value function and direct 
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policy search. But first we need to introduce the criterion of optimality and basic 

terminology in the optimization process. 

The policy refers to the function that maps state to action of the agent which 

can be probabilistic or non-probabilistic selection. While state value function refers 

to the expected return of the state which is the expected sum of future discount of 

reward from the current state to the end as shown in Equation (3). 

𝑉𝜋(𝑠)  = 𝐸[𝑅]  = 𝐸[∑ 𝛾𝑡∞
𝑡=0 𝑟𝑡 |𝑠0 = 𝑠]                               (3) 

2.2.1 Valued-based method 

There are two main approaches to find optimal policy in MDP, namely, value-

based, and policy-based reinforcement learning. The value-based or value function 

approach attempts to achieve the maximum expected sum of reward by estimating 

a set of expected return or value function given the situation. In this case, the action 

value function or Q-value is used to represent the estimated value of all given state 

action pairs. Hence, Q-value is a function of the expected sum of reward given state, 

action, and policy as shown in Equation (4). 

𝑄𝜋
 
(𝑠, 𝑎)  = 𝐸[𝑅 |𝑠, 𝑎, 𝜋]                                        (4) 

To find an optimal policy in the value-based approach, it can simply choose 

the action with the highest state value function given the state and action 

coordination. 

Monte Carlo method is one of the methods to approximate action value 

function. The method approximates the value of the given state and action pair by 

average the sampled return from the state to the end. On the other hand, as shown 

in the right side of Figure 3, there is another method that is called “temporal 

difference learning” which learns the action value function by bootstrap from the 

current estimate of action value. In general, bootstrapping methods are faster to 

learn but it is not instances of true gradient decent, since the target depends on the 

weights to be estimated [6]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 
Figure  3: Comparison between Monte Carlo method (left) and temporal difference learning 

(right) [11] 
 

The Monte Carlo method updates each prediction to the actual outcome 

which must wait to see the actual outcome first. While the temporal difference 

learning update at each state transition by using the sum of recorded value of the 

next state value and the discounted immediate reward as an update target. The 

Temporal Different Update is calculated as Equation (5). 

𝑉(𝑠)  ← 𝑉(𝑠) + 𝛼(𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠))                              (5) 

2.2.1 Policy-based method 

Policy-based learning is another alternative method to optimize the MDP 

framework which is a subset of Direct policy search method. In direct policy search 

methods, there are two approaches which are gradient-based and gradient-free 

methods, the former utilize gradient to optimization while the latter search 

parameters by other methods such as random search. 

The basic algorithm for this category is REINFORCE as shown in Equation (6) 

which uses the value of the state as a direction to optimization. There are many 

more algorithms built on top of this foundation. For example, Actor-Critic, as 

Equation (7), uses the standard maximum log likelihood multiplied with the 

estimated action-value of the state or Q-function to optimize the policy of neural 

networks. In addition, there are other variants such as Advantage Actor-Critic (A2C) 
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which is very popular and universally used as shown in Equation (8). More is TD 

Actor-Critic as Equation (9). 

∇𝜃𝐽(𝜃) = 𝐸𝜋𝜃
 [∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝑉𝑡]                                    (6) 

∇𝜃𝐽(𝜃) = 𝐸𝜋𝜃
 [∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝑄𝑤(𝑠, 𝑎)]                               (7) 

∇𝜃𝐽(𝜃) = 𝐸𝜋𝜃
 [∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝐴𝑤(𝑠, 𝑎)]                               (8) 

∇𝜃𝐽(𝜃) = 𝐸𝜋𝜃
 [∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝛿]                                     (9) 

2.2 Exploration Problem 

In sample-based learning or reinforcement learning, the trade-off between 

exploration and exploitation of algorithms is well-known and always a challenge to 

any practitioners, especially in a very sparse reward.  

The main objective of reinforcement learning algorithm is to find the best 

solution as soon as possible. However, it is not clear whether to find or optimize for 

best solution first. Although there are many modern reinforcement learning 

algorithms that can-do good exploitation efficiently, exploration issues are still an 

open topic.  

Some have overcome this with other techniques such as demonstration 

method [12], hindsight experience [13] and Information seeking [14-16]. Back to the 

most basic case, the topic had been observed since the very basic multi-arm bandit 

problem [17] in which there is a limited resource which must be allocated to 

maximize the expected gain. The basic analogy can be displayed as in Figure 4, 

where the there are many slot machines and the octopus need to spend limit 

energy to roll an arm. 

The problem outlines the decision of software agents to choose either 

explore new things to obtain new information or choose the best action based on 

known knowledge which is also known as exploitation. However, there is still a lack 
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of universally accepted exploration models that scale well with the large number of 

states. 
 

 

Figure  4: Intuitive picture of multi-arm bandit problem [6] 
 

2.3 Environment 

The environment implemented in the research consists of both single agent 

and multi agent environment or simulation. The former is used for quickly 

implementing and testing new ideas to make sure that it would work in standard 

setup. In this case, it is used for testing single agent RL. For the multi-agent 

environment, it is the main stage for conducting experiments and optimizing for 

performance improvement based on different architectures and parameters. 

2.3.1 OpenAI Gym 

OpenAI Gym is open source environments developed for RL research 

purposes [18]. It is well-known as widely used as a benchmark for testing and 

developing RL algorithms. The gym focuses on simple and standard game 

environments such as atari and often breaks down into episodic tasks. The 
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performance of the software agent is displayed in the in-game score where this is 

used to calculate objective function for optimization. 

The gym is basically a single agent environment where the state transition 

happens when a single agent interacts with the environment. In some environments, 

the agent only perceives some part of it. Hence, this makes it a partially observable 

Markov decision process (POMDP). This is a perfect testing ground to try out the 

standard exploration tactic before moving on to the more complex multi-agent 

environment. 

2.3.2 The StarCraft Multi Agent Challenge (SMAC) 

The SMAC is a customized environment made of StarCraft 2 game engine for 

multi-agent research purposes which is built based on the SC2LE (StarCraft II Learning 

Environment), a reinforcement learning environment based on the game StarCraft II 

[19]. It provides an open source Python-based interface for communicating with the 

game engine. In the case of the SMAC, the environment is very complex, and it 

supports multi control to different individual units at the same time. Therefore, it 

supports many aspects of experiments and evaluation such as cooperative and 

competitive experiments as shown in Figure 5 where there are multiply units fighting 

together to win another group of units. Nevertheless, the goal of the SMAC is to 

achieve the highest team rewards which require agents to cooperate in complex 

strategy. 

In SMAC, multi-agent algorithms control the red units while the in-game rule-

based AI controls blue units as the opponent. The actions in the game is about 

skirmishing between two sides of units but there are some tactics the agent must 

master to be able to consistently win the fight. 
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Figure  5: Preview of the SMAC environments 

 

2.4 Intrinsic Motivation 

There are many researches contributed to the areas of exploration especially 

in complex and sparse reward environments. As mentioned earlier that there are no 

well-known standard solutions for exploration that would work at the scale of large 

state space real-world applications especially in the multi-agent setup yet. However, 

there are interesting fields of research on Intrinsic Motivation that might be the 

answer for the problems. 

Intrinsic Motivation creates information-seeking behavior by using curiosity-

driven characteristics which are different from task-dependent goal-directed 

behaviors [20]. This can be done by introducing internal reward functions that are 

based on maximizing other novel information such as curiosity. By combining with 

standard goal-directed behavior, the algorithm could potentially enhance exploration 

capability to encourage software agents to explore the unexplored states in the 

environment, and thus, achieving better results [21]. 
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The basic concept of the curiosity-based intrinsic motivation algorithm simply 

creates the high intrinsic reward for unknown states of the environment while 

generating low intrinsic reward for the known state. This mimic the characteristic of 

curiosity in humans. 

In general, there are two main methods: count-based and prediction-based 

intrinsic motivation. The count-based method refers to the algorithm that counts 

how many times that the agent visited the state and thus creates the intrinsic reward 

from the visited amount. However, for the prediction-based method such as in the 

case of the Random Network Distillation (RND), the algorithm creates intrinsic reward 

by implementing the scalable low overhead intrinsic motivation by using the 

prediction error of the two neural networks. This demonstrates an astonishing 

performance on Montezuma Revenge beating the average human performance [22]. 

The prediction-based Intrinsic Motivation is also applied in the work of Burda et al. 

[23] for large-scale study of curiosity-driven learning. The research experimented on 

OpenAI Atari games with no extrinsic rewards or extrinsic motivation at all. 
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Chapter 3  

Methodology 

 In this chapter, we will drive deep into the technical details of each 

component that contributed to the final outcomes of the research. We will also 

show the baseline algorithms that are built in the previous published research papers 

that are strategically developed to build foundation toward the main research paper 

and the thesis. 

3.1 Previous Research Methodology 

The research aims to explore on the different types of Intrinsic reward of 

single agent reinforcement learning which is used as foundation to adapt to MARL in 

the main paper and this thesis. The title is named “Curiosity-Driven Exploration 

Effectiveness on Various Environments” because it’s evaluated the performance of 

different intrinsic motivation on a many single agent environment from OpenAI. The 

following are foundation concepts building toward the main experiments. 

3.1.1 Random Network Distillation 

As we briefly mentioned, the random network distillation (RND) is categorized 

under prediction-based curiosity driven method because it uses the error value 

between the two neural networks to represent the Intrinsic reward. Both networks 

are randomly initialized but one of them has fixed parameters [24, 25]. To find the 

intrinsic value, the state is fed forward to both networks to find the error between 

their outputs [24]. The objective function is the error between the two networks, and 

it can only minimize the error by adjusting parameters on the adjustable network. 

Figure 6 summarizes all the steps into a basic diagram of RND with single-agent 

environment. 

The error is then used as an intrinsic motivation following the curiosity 

concept where the unknown state gives out more curiosity than the known one. 
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Therefore, the agent prefers to try actions in an unexplored state until they are 

familiar with the state. The benefit of applying this technique is that it incurs low 

overhead cost which is easy to scale on multi-agent setup. 

 
Figure  6:  The first architecture of RND for single agent environment [24] 

 

For the first architecture as shown in Figure 6, the observation states are fed 

through both neural network, feature and predictor networks. The predictive error 

between the two networks are quantified using Sum Square Error. The error is then 

back propagated to the Predictor Network parameters. In this case, the predictive 

error is used as an intrinsic motivation. 
 

 
Figure  7: alternative architecture of RND for single agent environment [24] 
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For the other architecture as shown in Figure 7, the difference is that the 

predictor state uses the combination of previous observation and action instead of 

recent observation. 

3.1.2 Reward Prediction Network 

 
Figure  8: Reward Prediction Network 

 

Figure 8 illustrates the model modified from the Reward Prediction Network 

shown in the work of Jaderberg et al. [26]. The concept is similar to the previous 

model but using previous state and observation to predict the immediate reward 

instead. The error of the prediction is used as intrinsic motivation. For the objective 

function, the prediction difference is used as an objective function to be minimized 

which can be done by adjusting the predictor network 

3.1.3 Handcrafted Intrinsic Reward Noise 

The Idea of the model is to improve the characteristics of exploration by 

introducing small noise which attenuated over time. The method is constructed as 

shown in Equation (10). For the Equation (11), it is the hard limit on the reward to 

ensure that it would never fall below zero which makes the logarithm term to be a 

negative number. Therefore, the intrinsic reward always equals or larger than zero. 
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𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑁(0,0.1) ∗ 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑙𝑜𝑔(𝑟𝑒𝑤𝑎𝑟𝑑)         (10) 

where 

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑚𝑎𝑥(𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑟𝑒𝑤𝑎𝑟𝑑, 1)                                (11) 

The method is a kind of random walk exploration as It did not use related 

environment information to guide the exploration. This is referred to as undirected 

exploration [27]. 

3.1.4 Count-based Exploration 

This is another curiosity driven exploration which can generate intrinsic 

motivation based on the count of unique states which is called “Count-based 

exploration algorithms”. This is known to perform near-optimally when used in 

conjunction with tabular reinforcement learning (RL) such as Q-table. However, There 

is a surprising finding that a simple generalization of the count-based method could 

achieve near state-of-the-art performance on various high-dimensional RL 

benchmarks [22]. 

 In this case, the experiments apply the algorithm presented in [28]. The 

states are divided into 16 bins for each dimension of the state space and are 

assigned the unique string as a label name to count. The equation is shown below as 

Equation (12) where N(S) denotes the count of the unique states. 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑅𝑒𝑤𝑎𝑟𝑑 =
0.1

√𝑁(𝑆)
                                         (12) 

3.1.5 OpenAI Environment 

This section briefly describes all the environments related to the experiments 

necessary for the interpretation of the results of the paper. 
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Figure  9: 8x8 FrozenLake Environment [29] 

 

The first environment in Figure 9 is a 8x8 grid world which is called 

“FrozenLake8x8-v0”. The main objective is to move from the starting point “S” to 

the finishing point “G” without falling to the Hole “H”. A successful episode will be 

rewarded with +1 reward while the failure episode receives no reward. There are 64 

possible state spaces on the 8x8 grid as it is 8x8 and only 1 combination of agent-

based on the state. For the frozen lake, there are only 4 action spaces, move up, 

down, left, and right. 

 
Figure  10: Taxi Game Environment [30] 

 

The second environment is called “taxi” which is 5x5 grid world as shown in 

Figure 10. Still, there are many possible combination of elements such as position of 

the taxi (5x5), position of passenger (5 R, G,Y, B and on Taxi) and position of 

destination (R,G,Y,B). Hence, there are a total of 500 state spaces. For the action 

space, there are six in totals, left, right, up, down, pickup, drop off. The four specific 
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locations: R, G, Y, and B can be spawning points for passengers or a drop off 

destination. The objective is to pick up a passenger at a spawning location then drop 

them off at the destination to earn the reward which is +20 for a successful delivery. 

For the third environment which is shown in Figure 11, it is called 

“MsPacman”. This is an arcade game in OpenAI environments and the gameplay is 

about controlling Pac-Man to eat all dots while escaping 4 colored ghosts. The large 

dot at the corner is a power bullet which turns ghosts into blue weak ghosts which 

allows Pac-Man to eat them for extra points. The array of 128-array integers which 

range from 0-255 is a state space and there are 4 action spaces which are up, down, 

left and right. 

 
Figure  11: Taxi Game Environment [29] 

3.1.6 Finding of Methodology 

In literature, the Intrinsic Motivation is implemented with the single agent RL 

as shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 

Figure  12: Single Agent Reinforcement Learning with Intrinsic Motivation 
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The performance of the experiments executed in different settings and 

environments is assessed with two dimensions measures: 1) sample efficiency 

(reward per episode run), and 2) average maximum reward. The sample efficiency is 

how many samples required to train the algorithm to reach optimal solution, while 

the average maximum reward shows the long-term potential which is how good of 

the algorithm to find optimal policy in the long term. 

The visualization shows the reward or performance on the Y-axis and number 

of episodes on the X-axis. The sample efficiency can be observed by comparing 

average rewards on Y-axis with the same number of episodes on X-axis. In case of 

the average maximum reward, it is shown by comparing which score consistently has 

the highest score in the long run.  There is a total of five exploration algorithms in 

the research. The following are descriptions of the graph colors: “BLUE” for the 

baseline without exploration, “GREEN” for RND using the recent state as an input, 

“RED” for RND using the previous state and action as inputs, “CYAN” for RPN 

Network, “MAGENTA” for handcrafted Intrinsic reward noise, and “YELLOW” for 

count-based exploration. 

 
Figure  13: Experimental results on Taxi environment [31] 

 

Figure 13 shows the baseline (blueline) is underperformed compared to most 

algorithms except the RPN. Both RND and Count-based algorithms display better 

performance in terms of both sample efficiency and average maximum reward. The 
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added intrinsic noise shows a better exploration value in terms of sample efficiency 

compared to the baseline and outperformed all other exploration techniques in the 

short run, but its effect does not reach the later steps of the game or it is still in 

suboptimal policy as the reward does not reach the top. On the other hand, the RND 

has potential to reach higher reward in the long run than the baselined method. 

As we already seen, both count-based and prediction-based Intrinsic 

Motivation methods demonstrate solid improvement over the long period of time 

and allow the agent to seek for a more optimal policy. In detail, the RND model 

performs the best (Green line) as shown in the results. 

3.1.6 Random Network Distillation from another research 

We further investigate other scholar research that popularized the RND 

method to study the feasibility of applying RND in the multi agent model. The 

research is called Exploration by Random Network Distillation in which it aims to 

create an exploration algorithm on the very hard sparse reward environment like 

Montezuma’s Revenge. The algorithm shows an astonishing performance with a 

proximal policy optimization algorithm which achieves the best reward in that 

category which shows a huge potential in the field of information-seeking type of 

agent [2]. The authors concluded that the RND introduce variants in the playstyles 

and decision making which improve the performance but not in the complex 

problem in the long run. Table 1 reported that in the complex environment such as 

Montezuma’s Revenge or Venture, the RND exploration algorithm performs well and 

can achieve higher score than the others. 
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Table  1: The experiments of RND compared with State-of-the Art (SOTA) [24] 

 

3.2 Proposed Methodology 

In this section, we demonstrate the methodology used in the main research 

which is directly related to the topics of this thesis which is called “Multi-Agent 

Reinforcement Learning with Clipping Intrinsic Motivation”. The paper illustrates 

many concepts and experiments using Intrinsic Motivation in Multi-Agent Setup. The 

following are the details of these methodologies. 

3.2.1 The Starcraft Multi-Agent Challenge (SMAC) 

This is the main environment used for multi agent reinforcement experiments 

due to the perfect property of this environment which is rich and complex for 

exploration. As mentioned earlier, the environment focuses on micromanaging part 

of the game and it is customized to allow individual unit control which is the main 

requirement for the experiment [32]. The SMAC offers a diverse set of challenge 

maps and recommendations for best practices in benchmarking and evaluations [33]. 

In detail, there are three different categories of skirmishes reported in the 

SMAC academic paper, symmetry, asymmetry and tactics. Symmetry refers to the 

fight that has an equal and identical unit. In order to win the fight, the algorithm 

must choose action slightly better than standard rule-based in-game AI engine. The 

asymmetry refers to the skirmishes that are more challenging by reducing our ally 

units to make handicaps for the enemy. Therefore, this requires better control to win 

the skirmish. Lastly, the tactic refers to the fight that requires game understanding in 

terms of clue or specific pattern and developing intelligent strategy in order to win 

the fight.  
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Table  2: List of SMAC environments 

 
 

In our research, based on the experimental results, we selected some of the 

environments that would cover three categories which are 2s3z, 3s5z, 1c3s5z, 

10m_vs_11m and 2s_vs_1sc as shown in Table 2. The first three are symmetry type, 

the fourth is asymmetry type and the last one is tactic type. The SMAC has 6 action 

spaces which are move up, move down, move left, move right, attack and idle. It is 

necessary for the active unit to choose one of the actions to transition to the next 

state which makes the environment following the Markov Decision Process.  

To win the game, it is required to attack enemy units to reduce enemy hit 

point to zero before the opposite happens. The name of the map explicitly tells us 

about the unit in the game. The following are the brief descriptions for the unit in 

experiments. “s” stands for stalker which is a range unit, “sc” stands for spine 

crawler which is a power tower, “z” stands for zealot which is a powerful melee 

units, “c” stands for colossus which is a power area attack range unit, and “m” 

stands for marine which is weak range unit. These unit combinations and match up 

require a special technique of collaboration to win. For example, the 2s_vs_1sc 

requires both stalkers to take turns attacking the spine crawler that will result in its 

take turn attack stalkers. This causes the stalker to stay in game longer thus higher 

damage overall. 
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3.2.1 Actor-Critic 

The Actor-Critic Built on the foundation of both policy and Value-based 

method as it used both elements from both methods. The method is basically a 

temporal different method that has a separate neural network where one represents 

the policy estimation and other approximates the value function of the state. The 

former is referred to as an actor and the latter is called a critic. The general Idea in 

creating actor-critic is that the current log-likelihood training are limited by the 

discrepancy between their training and testing modes, as the models generate tokens 

conditioned on their previous guesses rather than the ground-truth state. The 

method addresses this problem by using a critic network that is trained to predict the 

value of an output state [34]. Figure 14 shows the architecture of actor-critic 

algorithm which the actor part is called Policy and the critic part is called Value 

Functions. 

 
Figure  14: The actor-critic architecture 

There are two significant advantages of combination between the two policy 

and value approaches. First, it scales very well with continuous-value action [35]. 

This is an advantage of using a policy method as the policy explicitly stores the 

action, so it does not require the search through all the action space to find the 

most valuable action. In addition to this, it can learn stochastic policy very well as it 

can learn the optimal policy of selecting various actions. Therefore, it is a good 

methodology to apply for a non-Nash equilibrium environment such as in the case of 

a competitive or cooperative environment as they are developing in the game 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

strategy. This is one of the advantages that may benefit applying on the multi-agent 

setup. 

3.2.2 Counterfactual Multi-Agent Policy Gradient (COMA) 

Multi-Agent Reinforcement Learning has many dimensions such as learning 

architecture, centralized or decentralized, or type of interaction, cooperative or 

competitive. One of the most popular paradigms for the Multi-Agent RL is in the 

centralized learning and decentralized execution where the agent shares their 

experiences in learning but acts independently to the best of their knowledge. 

This brings us to the concept of the baseline algorithms built on top of actor-

critic models and it is also implemented on the baseline environment research paper 

[32]. In the case of COMA, it is based on the actor-critic but with a slight modification 

on the critic assignment for value function. Instead of giving equal value to all the 

agents in the team, the critic assigns the value based on their contribution towards 

the team [36]. In detail, the critic neural network calculates agents' weighting by 

comparing the recent team value with using counterfactual baseline which is the 

team value when the agent is idle. As shown in Figure 15, there are multiply agents 

and the critic has to assign Advantage values to each particular actor based on the 

contribution. 

 
Figure  15: Counterfactual Multi-Agent Policy-Gradient Architecture 
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3.2.3 Intrinsic Advantage with Clipping Ratio 

In the previous section, we mentioned the baseline environment and 

baseline architectures of the experiment. In this section, we would like to introduce 

the multi-agent architecture of intrinsic motivation and how we should apply it. In 

this case, we use the standard RND architecture from the single agent experiments 

and apply it to the multi-agent environment.  

In this case, the notion of clipping intrinsic motivation is based on the intrinsic 

motivation which is generated from the RND network and the advantages value 

which is the terminology in Advantage Actor Critic (A2C) model. To begin with, the 

advantage value is the quantity of how better the action is compared to the others 

at a given state. The value is then used to optimize the policy network. In detail, the 

advantage is derived from the state action value, which is, in turn, derived from the 

reward. In this case, we would call it extrinsic advantage. To combine the intrinsic 

term, we should make it in the form of intrinsic advantage first which comes to the 

idea of clipping intrinsic motivation.  

The idea is that we should scale the intrinsic advantage to the same scale or 

similar scale as the extrinsic advantage. Using Clipping method helps to clip the 

excessive amount to suit the needed level after having been normalized by other 

methods. Therefore, it allows intrinsic advantage components to never have too 

much impact on extrinsic advantage, and thus, appropriate for optimization. The 

steps of computing intrinsic advantage are as the following explanation. 

The algorithm started with sampling a batch of experiences from the rollout 

gameplay with the environment. In batch, sampled extrinsic rewards are equivalent 

to episode length multiplied by the number of agents in parallel which is set to eight 

in this case. The sampled batch can only be used for a single iteration of 

optimization. After that, the intrinsic reward generated by RND is recorded in the 

batch in the same length. However, the intrinsic reward is scaled down by standard 

deviation of the batch as shown in the RND research paper [12]. 
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As shown in Figure 16, the intrinsic advantage is obtained from the difference 

between the Intrinsic reward and the estimated baseline which is a prediction from 

another neural network. In detail, the predictor attempts to predict the scale down 

intrinsic reward by using observation as an input. Consequently, the intrinsic 

advantage is clipped by the product of extrinsic advantage of each individual agent 

and clipping ratio of that element in the rollout. In the last step, the total advantage 

is computed as the sum of intrinsic advantage and extrinsic advantage, where 

extrinsic advantages are the sum of all agent extrinsic values in case of Centralized 

Intrinsic Motivation, while separate for each agent in case of Individual Intrinsic 

Motivation. 
 

 
Figure  16: Intrinsic Advantage Generation Process 

 

3.2.4 Individual Intrinsic Motivation Architecture (IIMA) 

The IIMA is an extension version of the standard COMA with the built-in 

variable advantages. It is defined as a combination of both components, extrinsic and 

intrinsic reward. Previously, the single agent RND networks contained the Predictor 

and Target networks used to predict the intrinsic reward from the output deviation. 
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Figure  17: Individual Intrinsic Motivation Architecture 

 

Based on IIMA Architecture (Figure 17), the individual set of RND networks is 

built for each individual agent, resulting in different intrinsic motivation advantages 

for each agent. In each IIMA, there are three neural networks, 2 for standard RND and 

1 more to use as intrinsic predictor which is used to create a baseline to create 

intrinsic advantage by minus with Intrinsic Reward as shown in the previous pre-

processing section. The IIMA is one version used to explore the multi-agent setup. 

3.2.5 Centralized Intrinsic Motivation Architecture (CIMA) 

The CIMA is built following the idea of centralized learning and decentralized 

execution paradigm which centralized the learning process off-policy in one place. In 

order to create the similar architecture with the intrinsic motivation, we combine all 

their observations to obtain an integrated observation and use it as an input to 

create the intrinsic reward as shown in Figure 18. The observations are concatenated 

together to form one large string of observation. It is expected that the architecture 

should be more suitable for multi-agent in the long run as it is built in alignment with 

the idea of the paradigm. 
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Figure  18: Centralized Intrinsic Motivation Architecture (CIMA) 
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Chapter 4  

Experiments 

The experiments demonstrated in the section are based on the previous 

setup aimed to answer the objectives of the thesis which is to develop a better 

algorithm using random network distillation on multi-agent reinforcement learning. In 

order to achieve the mentioned goal, we had been setting up the research paper 

that lay the foundation toward the thesis objective. In this case, we implement the 

following setups in our main research paper, “Multi-Agent Reinforcement Learning 

with Clipping Intrinsic Motivation” so that the results are aligned and can be used to 

clear our objectives. 
 

 
Figure  19: main components of thesis experiments 

 

Figure 19 shows the three major components that are used to construct 

different testing scenarios to compare the effectiveness and performance in terms of 

both sample efficiency and long-term maximum score 

To begin with, the experiments are implemented with different scenarios to 

compare the effectiveness of different architectures and clipping ratios. Based on the 

assumptions mentioned in the environments section, we aim to investigate 5 

different simulations: 2s_vs_1sc, 2s3z, 3s5z, 1c3s5z, and 10m_vs_11m was carried 

out. There are 3 different scenarios: no intrinsic Motivation (green), Individual Intrinsic 

Motivation or IIM (blue), and Centralized Intrinsic Motivation or CIM (red). These 
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scenarios aim to compare the performances of each different intrinsic motivation 

architectures in multi-agent setup in combination with various clipping ratios: 0, 0.2, 

0.5, 0.8, 1, 2 and 3 to find the optimal architecture on applying intrinsic motivation. 

The following are the experimental results from different categories. 
 

 
Figure  20: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 0 

 

 
Figure  21: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 0 
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Figure  22: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 0 
 

 
Figure  23: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 0 
 

 
Figure  24: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 0 
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For the clipping ratio equal to zero (Figure 20-24), the interpretation is that 

the intrinsic advantages are clipped to that zero times extrinsic advantages of that 

element in that roll out. Hence it means that the CIMA and IIMA in this case is 

basically equal to No Intrinsic Motivation. As you can see from the results, the results 

of all three lines are identical but due to the uncertainty of rollout, it may look a 

little bit different from each other. The difference will be clearer when the clipping 

ratio is not equal to zero. 

 

 
Figure  25: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 0.1 

 

 
Figure  26: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 0.1 
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Figure  27: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 0.1 
 

 
Figure  28: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 0.1 
 

 
Figure  29: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 0.1 
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The results with 0.1 clipping ratio are shown in Figures 25-29. Observing that 

IIMA and CIMA show an overall better performance than no intrinsic motivation in 

2s3z and 3s5z. At the very low clipping ratio, the IIMA shines in exploration power 

reaching 70% peak performance in 2s3z and reaching up to a 14%-win rate in very 

hard environment 3s5z which outperform any other algorithms.  

 

 
Figure  30: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 0.2 

 

 
Figure  31: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 0.2 
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Figure  32: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 0.2 
 

 
Figure  33: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 0.2 
 

 
Figure  34: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 0.2 
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Figures 30-34 show the results with 0.2 clipping ratio. Observing that the 

performance of IIMA and CIMA show an overall better performance than no intrinsic 

motivation. The CIMA shows a solid trend to outperform IIMA and no intrinsic 

motivation in the case of 2s3z and 3s5z which are a very difficult environment. 

Nevertheless, the CIMA shows a higher overhead cost as the performance ramps up 

very rapidly. In this case, the intrinsic motivation also shows a significant higher result 

than the benchmark especially in the map of 2s3z where the benchmark results only 

show 43% [19]. 
 

 
Figure  35: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 0.5 
 

 
Figure  36: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 0.5 
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Figure  37: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 0.5 
 

 
Figure  38: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 0.5 
 

 
Figure  39: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 0.5 
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In case of clipping ratio=0.5, the graphs (Figure 35-39) show that IIMA and 

CIMA may not outperform the standard benchmark unless the simulation is very 

difficult to explore in which the CIMA shows the win rate up to 2% instead of 0%. It 

is imperative that the higher clipping ratio or higher magnitude of exploration 

deteriorate the overall performance of the MARL as shown in the case of 2s3z. The 

CIMA shows a more powerful exploration as expected in the case of a difficulty 

simulation as shown in the 3s5z environment. Nevertheless, the CIMA confirm a 

higher overhead cost issues as it usually requires larger training episodes to achieve 

the same performance compared to the IIM and No intrinsic motivation in the easier 

environment. 

 
Figure  40: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 0.8 
 

 
Figure  41: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 0.8 
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Figure  42: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 0.8 
 

 
Figure  43: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 0.8 
 

 
Figure  44: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

of 10m_vs_11m with Clipping Ratio = 0.8 
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In case of clipping ratio=0.8, the graphs (Figure 40-44) show that IIMA and 

CIMA show a significant drop in performance as the clipping ratio is increased. The 

trend is observable since the clipping ratio of 0.8. In addition, we observe that the 

IIMA is more sensitive to clipping ratio as the performance is dropped faster than 

those of CIMA. 
 

 
Figure  45: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 1.0 

 

 
Figure  46: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 1.0 
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Figure  47: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 1.0 
 

 
Figure  48: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 1.0 
 

 
Figure  49: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 1.0 
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In case of clipping ratio=1.0, the graphs (Figure 45-49) confirmed the 

deterioration of IIMA and CIMA performances especially in the case of IIMA which 

dropped at an astonishing degree. 
 

 
Figure  50: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 2.0 

 

 
Figure  51: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 2.0 
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Figure  52: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 2.0 
 

 
Figure  53: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 2.0 
 

 
Figure  54: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 2.0 
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In case of clipping ratio=2.0, the graphs (Figure 50-54) show that the IIMA is no 

longer performed in the high clipping ratio while CIMA performs significantly worse 

but still durable at a very high clipping ratio even though it does not add any 

exploration value anymore. 
 

 
Figure  55: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s_vs_1sc with Clipping Ratio = 3.0 

 

 
Figure  56: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

2s3z with Clipping Ratio = 3.0 
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Figure  57: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

3s5z with Clipping Ratio = 3.0 
 

 
Figure  58: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

1c3s5z with Clipping Ratio = 3.0 
 

 
Figure  59: Win rate in percentage (Y-axis) vs Number of Episodes (X-axis) of  

10m_vs_11m with Clipping Ratio = 3.0 
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In case of clipping ratio=3.0, the graphs (Figure 55-59) confirmed that both 

architectures, CIMA and IIMA is not performing at a very high clipping ratio. 

Interestingly that the decay of RND by itself may not be enough to clear out intrinsic 

components before two million episodes.   
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Chapter 5  

Conclusion 

The research had explored the performance of Intrinsic Motivation on Multi-

agent reinforcement learning in 2 different dimensions, architecture, and clipping 

ratio. The former introduced the new architecture while the latter enforces the limit 

on optimization magnitude. In detail of the first dimension, the intrinsic motivation of 

the multi-agent architecture is constructed in two different architectures: Individual 

Intrinsic Motivation Architecture (IIMA) and Centralized Intrinsic Motivation 

Architecture (CIMA). On the other hand, due to unknown characteristics of magnitude 

of intrinsic motivation from many agents, the limit which is in forms of clipping ratio 

based on the extrinsic reward is introduced to limit the excessive magnitude that 

may cause instability to the optimization. In this case, we experiment on 8 clipping 

ratios which are: 0, 0.1, 0.2, 0.5, 0.8, 1, 2 and 3 to find the optimal solution for the 

architectures. 
 

Table  3: Best Results in percentage of different architectures and clipping ratio 
 compared with the baselines [32] 

 COMA 
(Baseline) 

No Intrinsic 
Motivation 

(COMA) 

IIMA IIMA 
Clipping 

Ratio 

CIMA CIMA 
Clipping 

Ratio 

2s_vs_1sc 98 98 99 0.2 98 0.1 
2s3z 43 55 70 0.1 65 0.2 
3s5z 1 1 10 0.1 2.5 0.2 

1c3s5z 31 17 20 0.2 17 0.1 
10m_vs_11m 7 4 5 0.1 5 0.5 

Note: The Baseline performance shows the final median performance (maximum median across 
the testing intervals within the last 250k of training) of the algorithms tested. 
 

The results in table 3 show the win rate improvement over the benchmark 

counterfactual multi-agent policy gradient (COMA) in the many complex 
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environments. The more complex, the better value for intrinsic motivation as it helps 

improve exploration on an unknown state which sometimes allows it to move out of 

the local optimal path. In this case, the CIMA achieved almost 70%-win rate on 2s3z 

with 0.2 clipping ratio and the IIMA could even reach 70% point with 0.1 clipping 

ratio while the benchmark record is only 43% [32]. In addition, in case of very 

complex environment of 3s5z, the IIMA could potentially ramp win-rate up to 14% 

while the baseline reaches the 5%-win rate mark. This illustrate the potential of 

intrinsic Motivation on very complex environment which can be extended to multi-

agent setup. Although the optimal clipping ratio is not yet explored, we do know 

that the appropriate scale of intrinsic advantage could help improve overall long run 

performance of the algorithm while the inappropriate magnitude or clipping ratio 

shows the opposite.  

It is known that the main optimization objective relies on the designed 

reward function in terms of extrinsic motivation. Hence, it is intuitive that the 

magnitude of extrinsic motivation should be more dominant compared to intrinsic 

motivation in the long run, especially at the end. Although the random network 

distillation supports the decay of Intrinsic Motivation based on the curiosity 

characteristic, the characteristic alone may still not be enough. The evidence 

supports that high clipping ratio is not appropriate but low clipping ratio shows an 

improvement over the baseline. This confirms the value of clipping ratio in such a 

high complexity environment such as a multi-agent environment.  

To illustrate in more detail, the value of clipping ratio greater than one 

always shows a significant drop in performance for both CIM and IIM because it 

allows intrinsic motivation to have a greater magnitude than extrinsic motivation 

which makes noise bigger than the main objective function. Whereas setting intrinsic 

ratio to zero in either CIM or IIM means the case of none of intrinsic motivation. 

Based on the results, a small amount of intrinsic motivation on MARL is the sweet 

spot to improve exploration. Even Though the optimal solution is yet to be explored 
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on the Multi-agent setup, the findings help lay the foundation of how to apply and 

scale intrinsic motivation for other research in the future.  

Further investigation on other clipping ratios or some other aspects rather 

than win rate may reveal more underlying insight of how to apply such a novel 

information-seeking method on different categories of multi-agent setup. Other 

research on distributed architecture and the study on impact of cooperative or 

competitive agents with intrinsic motivation may further advance the research in the 

area significantly.  
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