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Previous Thai question answering and machine reading comprehension
researches focus on small scale dataset and do not utilize the deep learning
approach to build the models. In this research, we develop a Thai machine reading
comprehension (MRC) model on Thai MRC dataset provided by NECTEC. This
dataset consists of 17,000 question-answer pairs and has two classes of questions,
which are factoid and yes-no questions. We use BIDAF as the based MRC
architecture. We have performed experiments with 3 different multiclass model
designs, which includes special tokens, joint, and cascade model. We also utilize
contextual embeddings for Thai language to enhance the model’s performance. As
the results suggest that cascade architecture has the best F1 performance. We
then incorporate transfer learning and modify the attention mechanisms to

increase the model’s accuracy on yes-no questions.
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1. Introduction

Machine reading comprehension (MRC), one of the many natural language processing
(NLP) tasks, involves making machines that possess the ability to read, understand, and
comprehend the human languages. One possible way to formulate the MRC problem is through
question answering (QA). After reading the given articles or documents, the machine must be

able to answer the questions (or queries) related to the assigned literature.

Similar to the breakthroughs of deep learning image classification on ImageNet dataset
[1], large and representative datasets are required to build or improve neural machine reading
comprehension models. In 2016, Stanford University introduced a large question answering
dataset, which consists of more than 100,000 questions created by crowdsourcing workers to
read and create questions from Wikipedia articles. The dataset is called SQUAD [2], an
abbreviation of Stanford Question Answering Dataset. The dataset is publicly available so there is
healthy competition to increase the performance of the reading comprehension model.

Currently, the best performers already exceed human capability whose accuracy is at 86 %.

After the release of SQUAD [2], researches in English NLP has continued to grow as
different types of question answering datasets have been released. Examples of such datasets
include conversational question answering [3], [4], multi-hop reasoning dataset [5], and visual

question answering [6].

For the Thai language, a moderate scale dataset has been released in question
answering from the Thai Wikipedia competition in 2018 with 4,000 factoid questions, we refer to
this dataset as NECTEC V1. The competition was held by the National Electronics and Computer
Technology Center (NECTEC). In said competition, the competitors employed various deep
learning machine reading. In 2019, NECTEC has held another competition of Thai question
answering with a larger dataset, increasing number question-answer pairs to 17,000. We refer to
this newer version of the dataset, which is also the dataset of focus in our study as NECTEC V2.
Another challenge that was added to this new competition is the introduction of yes-no
questions. This new challenge provides an excellent opportunity to develop a reading
comprehension model that can handle multiple types of questions. An example of a factoid

question of the dataset can be seen in Figure 1.



Context: nza@ UMY (Vinern) AemenauldvesUszmasTimuiu
ﬂ:Lﬂﬁmﬂm}jﬁqﬂua’nmuLLazﬂ’Jqu‘iUﬁLﬂaﬁniw 5585 LURT NzLad1U
wiufusseggenissduimeia 44 wesiduuranhitdyvasusymne
aimusou q neaauanngilulsuuazn

Question: ntaa UL TuRegMInaulivaszinaosls
Answer: UssinAgaiau

Figure 1: Example of a factoid question. Keywords can be found in bold letters.

In terms of past Thai reading comprehension researches, some researches focus on
converting natural language into a structured query language then answering the questions based
on structured data [7, 8] or using lexicon rules to answer the queries [9]. In this work, we aim to
develop a deep learning reading comprehension model that can answer multiple types of

questions based on unstructured text data.

With a larger scale dataset and a multiclass question setting, we propose to develop a
novel Thai machine reading comprehension that has can process both factoid and yes-no
questions. We propose to use BIDAF [10] as our baseline for this research since it acts as
baselines for many newer reading comprehension datasets such as [3] and [4]. Our
implementation of BIDAF also performs better compared to the winner of the previous

competition on a similar dataset, NECTEC V1. (section 6.1).

In our research, we experiment with various multiclass architecture designs in section
4.2.2. We also utilize contextual embeddings as discussed in section 4.2.1. After we have found
that the cascade model has the best performance in section 6.3, we shift our focus to further
increase the model’s performance on yes-no questions as the model’s accuracy on this type of
question was still low. We then continue the experiments with the techniques that can improve
the performance on yes-no questions as discussed in sections 4.3 and 4.4. Our work has the

contributions as follow:

- We have performed experiments with various multiclass architecture to select the
most suitable architecture for the Thai NECTEC MRC dataset. (section 4.2),

- We integrate contextual embeddings constructed from a large scale pre-trained
language model to the MRC model and compare its performance to static word
embedding in the Thai multiclass MRC setting. (section 4.2.1),

- Transfer learning from Thai natural language inference task is used to increase the
model’s performance on yes-no questions, and

- We modify bidirectional attention mechanisms to further enhance the model’s

performance on yes-no questions.



1.1

Objectives

We propose to develop a machine reading comprehension based on deep learning

model for Thai corpus. Our model will support two types of questions: (1) factoid questions and

(2) yes-or-no questions.

1.2

Scope of Works

The experiment is conducted on the NECTEC Thai question answering dataset from
Question answering program from the Thai Wikipedia competition under the National
Software Contest (NSC Thailand).

Our task focuses on questions whose answers appear as spans of text in the document.
Each question requires information from a single Wikipedia article only.

We aim to develop a Thai reading comprehension model that can answer factoid and
yes-no questions provided that the documents are given to the model.

Contextual embeddings will be integrated into our proposed reading comprehension
model to provide contextual information of the documents.

The performances of our proposed technique will be compared to baseline methods,
such as BIDAF [10].

Evaluation of the model’s performance will be conducted on token levels.



1.3

Step of Works

1.

10.

11.

Literature review

Request for Thai MRC dataset

Dataset exploratory analysis

Define the research problem

Implement and establish the baseline

Perform preliminary experiments and discuss the results
Thesis proposal

Continue the experiments

Publish the paper and conference preparation

Thesis document preparation and submission

Final thesis defense
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1.4 Publications

“Machine Reading Comprehension on Multiclass Questions Using Bidirectional Attention
Flow Models with Contextual Embeddings and Transfer Learning in Thai Corpus” by Theerit
Lapchaicharoenkit, Peerapon Vateekul in the International Conference Proceedings Series by ACM

(not published) conference takes place in Singapore, July 17-19, 2020.
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2. Background Knowledge
This chapter covers the theory and related knowledge required to conduct this research.
We will discuss the MRC task, word vector representations, contextual embedding, recurrent
neural network and its components, attention mechanism, architecture of deep learing model

used in machine reading comprehension research and concept of transfer learning.
2.1 Machine Reading Comprehension Tasks (MRC)

MRC is the task of teaching machine the ability to read and understand the given
guestions then answer the questions based on provided documents. Various MRC tasks exist and
can be broken down into 4 main categories: (1) cloze task; (2) multiple choices; (3) span

extraction; (4) free form generation [11].

Cloze test task was amongst the first MRC task supported by large scale datasets. In this
setting, the model is tasked to pick the correct entities or words that appear in the context
passage to fill in the missing blanks of the query. Hermann, et al. [12] crafted the large scale
cloze test dataset and developed a machine reading comprehension model that can perform

such task.

Multiple-choice question setting asks the model to pick the candidate answer based on
the provided questions and passages similar to examination for students in real life. An example
of a multiple-choice question includes [13] which is a collection of English examination questions

in China.

In the span extraction task, the model must extract the correct span of tokens or words
which can be found in context passage. Factoid questions in our work can be classified as this

type of reading comprehension task as well.

Freeform answer generation requires a more complex model as the answer does not
necessarily have to be located in the passage. Text generation technology is commonly used
with question answering techniques to successfully deal with this type of task. CoQA [4] is one of

the datasets where the answers to questions are not required to appear in the document.
2.2 Static Word Embeddings

Word embedding is one of the methods used to represent words by static dense vectors
and are employed by researchers to represent natural language for intelligent agents and various
NLP models. Examples of static embedding words vector are word2vec [7] and Glove [8]. One
possible way to construct a word vector is to create word vectors with the ability to predict the

nearby words. Large corpus such as Wikipedia can be used in the process.
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Sleep = [0.05, 0.6, -0.11, 0.05, -0.23, 0.16]
is =[0.8,-0.7, 0.4, 0.95, 0.87, 0.34]

The size of the vector dimension used to represent each word is a design choice and can
be adjusted. Embedding word vectors can capture the semantic relationship between each word
and many NLP researches utilize this ability. Our work uses Thai2fit word embedding for this type

of word embedding.
2.3 Contextual Embeddings

Peters et al. [14] have pointed out that representations of words should also have the
ability to vary across different contexts. For example, the word ‘left’ plays a different role in ‘she
left me for him.” and ‘The book is on the left shelf’. Peters et al. [14] have developed a
pretraining method that constructs a language model that can capture and represent contextual
relationships among words in sentences. This method of pre-training model is also known as
ELMo. The representations of the same word will vary from passage to passage which is different
from word embedding where the representational vector of the same word stays the same
regardless of the surrounding contexts. These representations can be applied to various
downstream NLP tasks such as question answering, named entity extraction, and sentiment

analysis.

Besides ELMo, other pre-trained language models also can construct deep

contextualized embeddings, some of them include BERT [15] and ULMFIT [16].
2.4 Recurrent Neural Network and Long Short-Term Memory (LSTM)
A recurrent neural network is designed to deal with sequential or time-series data.

Information will flow through a series of nodes from one direction to another direction. The

processed output from a node will be fed into the node as well as input data itself.



13

he_q hy hysq
Why Why Why
St-1 St /rn\-iml
_.CD Wi Wi ot Wi
Win Win Wen
Xpq X Xpsa

Figure 2. RNN processes data sequentially which can deal with textual data.

Equations governing RNN are listed below.

St = f(he-1, %) (1)
S¢ = gWppSe—q + Wynx, + b) @)
h’t == WhySt (3)

S¢ represents a hidden layer, h; represents the output of the hidden layer S¢. X
represents the input of hidden state, s; at time step t. Wypn, Whn andWhy represent parameter
in computation from input to hidden state, hidden to hidden state, hidden state to output state

respectively. b is an optional bias unit.

One thing worths noting about RNN is the nature of backpropagation in this type of
neural network. Similar to ANN, back-propagation is required to compute errors and gradients,
which are necessary components in the model’s optimization process. Backpropagation in RNN
tends to suffer from ’vanishing gradient’” and ’exploding gradient’ phenomena where gradients of
the model get recurrently larger and larger (explode) or get smaller and smaller (vanish). This
makes it difficult to optimize RNN as the parameters inside the network cannot be updated
properly.

LSTM is a variation of RNN that can address the gradient issues with the cost of being
more complex than the traditional RNN. LSTM composes of smaller units referred to as ’cell
states’. Each cell state can be viewed to consist of three gates. Forget gate (/) decides which
information from previous cell states should be carried over. Update gate (7 chooses and
computes the information for the current cell state. Output gate (02 computes the output of the

current state as well as information that will be passed to the next cell states.
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fe = o(Wpihe—q + Weoxe + by) 4)
iy = o(Wishe—y + Wizx; + b;) (5)
Ce = gWerhey + Weox, + by) (6)
0 = 0(Wyirhe—q + Wyyxe + b;) (7)
he = 0p * g(fy o Coq +ip 0 Cp) 8)

2.5 Attention Mechanism

The attention mechanism is the concept first introduced in [17]. The attention
mechanism was used to help RNN components of the neural machine translation model
accurately focuses on the words that are crucial to the translation of the next word. However,
attention mechanism is proved to be a general and powerful concept that can be readily applied
to various deep learning tasks including many NLP related works such as [18], [15], and [19]. In
machine reading comprehension, attention mechanisms can be used to align or capture the

relationship between the question and the context passage.

The example of passage to query attention in MRC is illustrated in Figure 3. It can be
observed that the model comprehends that the span ‘wsPaausasERINLRIAUAUNTANE S0
1n3e4lns’ (announcement of weddings between volleyball player Feng Kun and Kiattong
Radchatagriengkai) is highly correlated to the word span ‘@usanyu’ (who does Fengh Kun marry

to?). It also can be pointed out that the mentioned passage span is the answer to the question.
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2.6 General Architecture of Machine Reading Comprehension Model

There are many types of researches in the area of MRC in the English language. Liu et al.
[11] have conducted a comprehensive review and survey of methods and trend in reading
comprehension and has pointed out the general architecture of the deep learning models that

are used in this field of research.
2.6.1 Embedding Layer

This layer serves the purpose of encoding or mapping natural language into meaningful
dimensional space. Word vectors, contextual embeddings, and linguistic features like part-of-

speech and name entities are normally used as input vectors for this layer.
2.6.2 Feature Extraction Layer

Various deep learning techniques and architecture can be used to extract the
information from the input embeddings in both question and context vector. Commonly used
methods include the utilization of RNN or CNN while some recent researches employ a purely

attention-based architecture in this layer [20].
2.6.3 Context Passage and Question Interaction Layer

In this step, the attention mechanism has been a widely used technique in capturing the
interaction between context vectors and question vectors. There are various kinds of attention
mechanisms that can be utilized in context and question interaction layer. Lie et al. [11] classifies
them into 2 main categories: unidirectional and bidirectional attention. Unidirectional attention
mostly employs attention from query to context only while bidirectional uses the attention from
both context to query and query to context direction. Bidirectional attention is proven to be

better and examples of works that rely on such mechanisms include [10] and [21].
2.6.4  Answer Prediction Layer

This module usually varies from task to task based on the type of answers that the
model needs to predict. Examples include prediction of the single word [12], spans of words [2],
[3], selecting the correct answer from multiple choice [13], or free form text generation. Our work
mainly deals with the span prediction type. For span prediction, the boundary method which is a
method of selecting answer spans by predicting the start position and end position of the

answers is normally used.
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2.7 Pre-training and Transfer Learning

Transfer learning is a learning paradigm that utilizes the ability of the models or agents
that were trained for one task to another task. In NLP, a large amount of unlabeled corpus was
used to create representations of words or sentences through unsupervised learning setting. This
step can be referred to as a pre-training step. Such representations can then be incorporated and

help aid the model learing in a supervised learning task.

Word2vec [22] and Glove [23] were one of the first examples of transfer learning in NLP.
Examples of more recent approaches of pre-training and transfer learning include ELMo [14], and
BERT [15]. Transfer learning also plays a significant role in machine reading comprehension
research. Question answering is also normally used as a performance benchmark of many pre-
training models. This phenomenon also contributes to the fact that many of the top performers
in English machine reading comprehension utilize major pre-training and transfer learning

researches.
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3. Related Works

In this section, we review the works related to the machine reading comprehension
dataset, related Thai machine reading comprehension research, the architectural detail of BIDAF
[10], and explore researches that attempt to modify attention mechanisms that are better suited

for MRC task.
3.1 Machine Reading Comprehension Dataset

Various English MRC datasets were curated to drive the research. The majority of the
datasets were created through the mean of crowdsourcing. SQUAD [2] is one of the first large
scale dataset that is suitable for building data-driven deep learning architecture. SQUAD 2.0 [24]
introduces an addition of unanswerable questions to the original dataset. QUAC [3] and CoQA [4]
aim to introduce the task of conversational machine reading comprehension. In this task, the
model must answer a series of questions that mimic the real-world conversations, so the
questions are present in the form of multiple turn questions. shARC [25] also tasks the model to
answer questions from a series of conversations but focusing more on answering questions
related to regulations and rules. HotpotQA [5] introduces a dataset consisting of questions that
require reasoning from multiple evidence to support the answer. RecipeQA [6] combines NLP and
image processing and task the model to answer questions based on both textual information and

pictures related to cooking recipes.

SQUAD [2] and SQUAD2.0 [24] are similar to the dataset in our research in the sense that
they both require the model to perform span extraction and the model must answer different
types of questions. Another MRC dataset that is related to our research is BoolQ [26]. Clark et al.
[26] has curated a dataset that contains only naturally occurring yes-no questions and pointed
out the challenges in the task. BoolQ differs from our work as the task does not require the
model to support factoid questions. Clark et al. [26] also discovered that for ‘yes-no’ questions,
transferring knowledge from inference task yield better result than transferring knowledge from
span retrieval question answering task. Conversational reading comprehension is also related to

our work because some of the questions found in the dataset are yes-no questions.
3.2 Multiclass Questions Reading Comprehension

In English MRC research, multiclass questions in reading comprehension tasks can be
found in conversational reading comprehension datasets such as CoQA [4] and shARC [25]. In
these datasets, some questions can be answered by ‘yes’ and ‘no’ which resembles our
research area. In QUAC [3], different types of questions exist including yes-no, dialog act,

answerable and unanswerable questions. The difference between these datasets and our focus
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dataset (NECTEQC) is that questions are conversational-based and some questions may relate to

other prior questions in the conversation. In our research, we focus on single-turn questions.

Choi et al. [3] have modified BIDAF to answer different types of questions by appending
special tokens of ‘no answer’ to the context passage. The model predicts the special tokens or
predict the span of texts depending on the class of questions. Zhong e al. [27] employed a
transformer-based model to encode document vectors, question vectors, scenario information,
and historical conversation dialog altogether before passing to later layers of the model. Ohsugi
et al. [28] concatenated hidden representations used for start and end prediction then pass the
concatenated vectors to dense layer for answer type predictions. Ju et al. [29] have also utilized
3 different dense layers for outputting ‘yes’, ‘no’, and ‘unknown’ based on classes of questions.
In our work, we propose to integrate the question classification (section 4.2.2.3) module into the
machine reading comprehension model to help guide the model during the prediction term.

Examples of multiclass questions in our research can be seen in Figure 4. The factoid
question translates to ‘Where does the 2010 Women’s Futsal World Tournament take place?’

and the yes-no question translates to ‘Does diamond cutting originate from Germany in 13757’
Factoid Question: mMsuvstunngeanddaniull a.a. 2010 InTuiUszmela

Yes-no Question: NMsRnsz lwwasgrisEuaulaagaieasdiululla.a.1375
viza Ll

Figure 4. Example of multiclass questions.
3.3 Boolean Question Answering (BoolQ Dataset)

We dedicate this subsection to discuss about Boolean question answering dataset called,
BoolQ [26]. Clark, et al. [26] has curated an English dataset solely comprises of 16,000 naturally
occurring Boolean or yes-no questions. The questions are pooled from records of Google search
engine’s queries hence providing elements of natural occurrence. Other preceding MRC datasets
may contain some yes-no questions but are not the majority type of questions. Examples of such

Boolean questions are shown below in Figure 5.
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Examplel: Is the sea snake the most venomous snake?
Example2: Is static pressure the same as atmospheric pressure?

Example3: Is Tim Brown in the Hall of Fame?

Figure 5. Examples of Boolean questions which are sampled from Table2. in [26]

Apart from the dataset curation, Clark, et al. [26] have also established various baselines
including reader models with transfer learning from other MRC datasets or reader models from
pre-trained LMs such as and ELMo [14], OpenAl GPT [30], and BERT [15]. In [26], it is found that
using transfer learning from natural language inference (NLI) dataset, such as MNLI [31], provides a
better result than transfer learmning from extractive QA dataset like SQUAD 2.0 [24] or multiple-
choice QA like RACE [13] despite having move similar format than NLI dataset. Based on this
discovery, we also perform similar experiments to boost the performance in Thai MRC yes-no

questions as discussed in section 4.3.
3.4 Thai Question Answering Research

Decha et al. [9] have developed a Thai question answering system focusing on factoid
questions from Wikipedia using the pipeline concept. First, the system performs word and
sentence segmentation using a machine learning approach, a trained artificial neural network that
can predict the sentence boundary. In the next stage of the system, the questions are classified
into different categories based on lexical rules. Keywords from question can then be extracted
and used to retrieve answer candidates from the passages. The retrieved candidates will be used
in word order consistency function to select the best alternative. Word order consistency is a
heuristic function used to measure sentence structure similarity between the questions and the

source documents.

In our research, we propose to create an end-to-end deep learning model that can
support both the question and answer while [9] applied machine learning only in word

segmentation step and sentence segmentation.

Another Thai question-answering research was conducted by Kongthon et al. [8]. The
research focused on answering tourism-related questions by querying the ontology. Natural
language questions are converted into query language format to find the answers. Jitkrittum et al.
[7] developed a Thai question answering system, which also relies on structured data query
language. Our research will be based upon finding the answers span from unstructured Wikipedia

articles and not focus on tourism-related questions.
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3.5 Comparison of Deep Learning Thai NLP Researches

As there are many publicly available Thai NLP deep learning models for various NLP
tasks. Jettakul et al. [32] have conducted a comprehensive survey of the performance of different
models to Thai NLP tasks, including Tokenization, part-of-speech tagging, named-entity
recognition. Noisy nature of natural language data was artificially created and injected into the
experimental datasets. The study has revealed that Synthai performs the best in terms of
tokenization, V-BLSTM-CRF is the best model on named-entity recognition, and BLSTC-CRF is the
best in part-of-speech tagging task.

3.6 BIDAF

BIDAF has been used as a baseline in many reading comprehension datasets that were

released after SQUAD, as can be seen in [3], [4], and [33].

The key contribution of BIDAF lies in its design of the attention flow layer. In BIDAF, the
attention vectors are concatenated with the embeddings from the previous context embedding
layer and flow through the downstream layer of the models. This flow of attention vector is a
contrast to the design of attention mechanism in other reading comprehension models in which

the attention vector is used to summarize the question and context vectors.
3.7 Attention Mechanisms in MRC

In the field of MRC researches, many authors have explored the possibility of modifying
or introducing new attention mechanisms to aid the model’s performance on the MRC task. Qu,
et al. [34] has developed global self-attention and unidirectional attention mechanism for
Conversational MRC task while previous works utilize RNN to forward question-turn level
information. Xie, et al. [35] incorporated semantic features and metadata features into the
calculation of attention mechanism to help the model in answer selection task and solve the
attention divergence problem. [36] introduced a new attention mechanism called extAdditive for
cloze style question answering. In our work, we focus on testing if the yes-no questions require
different attention mechanisms from factoid questions and check this idea by omitting the
context-to-question attention mechanism, which is present in the design of BIDAF [10]. We

discuss this experiment thoroughly in section 4.4.
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4. Methodology

In this work, we aim to develop a novel Thai machine reading comprehension model
that supports multiclass questions. Our proposed models have the ability to handle factoid
questions and yes-no questions of questions through the integration of question classifier module
and yes-no prediction module. Multi-task learning is employed to help train the joint architecture
model. We also propose to enhance the models with contextual embeddings constructed from a
pre-trained language model, namely BERT [15]. Since our experiments suggest that cascading
architecture has the best performance, we further enhance the cascade model with a transfer
learning scheme designed specifically to increase the model’s accuracy on yes-no questions.
Lastly, to increase the yes-no prediction accuracy further we modify the attention mechanism by
omitting the context-to-question attention mechanism from the network.

In this section, we discuss the dataset preprocessing steps in section 4.1, our proposed
multiclass model architecture in section 4.2, transfer learning scheme in section 4.3, and
modification of attention mechanism in section 4.4. The overall workflow of our proposed work is

shown in Figure 6.

i Start and end postion ;
Y

. o Factoid
Question Classification

Passage Modelling

(BILSTM)

?

Attention Mechanism
(C2Q and Q2C)

?

Feature Extraction
(BILSTM)

?

Token Embedding
(Static or Contextual)

Preprocessing (special
tokens, passage capped)

question and context passay/

Figure 6. A high-level overview of our proposed model.
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4.1 Dataset Preprocessing

We discuss the steps of dataset preprocessing before we pass the textual information to
the MRC models in this section.

4.1.1 Match Wikipedia article with questions

The questions provided in the dataset by NECTEC do not have accompanying context
passage but can be mapped manually with Wikipedia using provided article ID.

4.1.2 Remove HTML tag

Thai Wikipedia corpus contains HTML tag are needed to be removed before passing the
context passage to the model as these HTML tags do not provide any information related to the
questions.

4.1.3  Appending YES/NO tokens (Special token model)

After removing the HTML tag from the context passage, we added YES/NO tokens to the
passage. The added tokens will serve as answer spans for yes-no questions. The answer start and
end position are shifted accordingly to preserve the position of original ground truth tokens for
factoid questions if the YES/NO tokens are added to the start of the context passage. This
method of adding special token is similar to QUAC [3] where the authors of the dataset append
special token [UNS] to the passage. This method of appending special token applies to the
model in section 4.2.2.1 only. We have experimented with both adding YES/NO token to both at
the start of the context passage and the end of the context passage. We have found that the
latter performs significantly better than appending to the start of the passage. This result can be
found in appendix A.

4.1.4 Start and end positions of ground truth answer

The start and end position of the answers for each factoid question is based on
character positions. As the evaluations of the models are conducted at the token spans level
rather than the character’s level, we need to properly map those character positions into
positions of token spans. For example, if the answer to a certain question is “15338U” (school)
and the context passage is “gnispululsasou” (student goes to school). The start position is 11 at
vowel “1”, and the end position is 19 at alphabet “u”. As F1 evaluation metric is calculated
based on token levels. We also need to map character positions into token positions as well. In
the previous example, if we tokenize “tinisaululsaseu” (student goes to school) into “tini3awu”
(student), “lU” (goes to), and “I53t381” (school). The ground truth tokens will be at position 3.

Possibility of wrong word tokenization exist, which could result in some tokenized words
do not accurately match with the actual ground truth answers. Another possible scenario is when
the character starting positions of the answers do not match with the start positions of the

tokenized passage tokens. For example, the actual answers tokens are [HnSeY, Y8y, AN, Nw]
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while the tokenized passage tokens are [wedn, 58U, Yoy, ﬁ:u, A1, WWUIN]. It can be observed that
the first character of the answer ‘U’ does not appear exactly at the start of a token as it should
and the final character ‘W’ also does situated at the end of the token as well. In such case, we
will mark the first token ‘Usitin’ as the start of the answer and the final token ‘Uwu1n’ as the end
of the ground truth token spans for the training process.
4.2 Proposed Multiclass Machine Reading Comprehension (MRC) Model

In this section, we explain our proposed multiclass MRC models designed to support
factoid and yes-no questions in Thai MRC corpus. We start by describing the method of
integrating contextual embeddings to the MRC models in section 4.2.1. Then, the designs of
different architecture are explained in section 4.2.2. We present 3 different architectures which
are special token, joint architecture, and cascade architectures.
4.2.1 Integration of Contextual Embeddings

To incorporate contextual information for the reading comprehension model, we
propose to replace the normal word embeddings with the contextual embedding before
inputting the vectors into the model. This should help model capture and understand complex
context-dependent information and ultimately perform better in our question-answering task. As
the size of the dataset is not large, transfer learning from these models that were pre-trained on
large Thai corpus should also be beneficial to the model’s performance. This method of
integration is inspired by [14] where the authors incorporate contextualized embeddings from
ELMo architecture and they boosted question answering performance of BIDAF by 4%. We also
would. Like to note that previous Thai question answering researches and competitions have not
incorporated contextual embeddings into the models. We have also shown examples where the
model with contextual integration performs better than static word embedding in sections 7.1

and 7.2. The illustration of our proposed implementation can be seen in Figure 7.
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Figure 7. Integration of Contextualized Embeddings into our BIDAF model.

We choose Thai monolingual BERT as the pre-trained language model for contextual
embeddings extraction. Our method of utilizing BERT [15] as contextual embeddings extractor is
similar to the method proposed in [37], where the authors use incorporate English version of
BERT for English conversational machine reading comprehension (CMRQ). In our study, we use
BERT to support multiclass machine reading comprehension by constructing contextual

embeddings for the BIDAF models.

BERT-th
Pre-trained LM

[CLS] .qun, 1, g, Tu, vy 29, WY, T, UBN [SEP] [CLS] 24, uMay, 4y, uan, fn, 7, 1 20, wes, 990, A an [SEP]
Figure 8. lllustration of input of BERT when using sliding windows, tokens in bold are overlapped

between 2 windows.
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We apply BERT to context passages and questions separately. We append BERT specific
token [CLS] to the start and [SEP] for the sequence of texts that are passed into BERT. If the
context passages tokens are longer than 510 tokens which is the size of sequence length in
normal BERT architecture, we use the sliding window approach to help extract the context
passage. The input into BERT with the usage of the sliding window is shown in Figure 9. The
length of each sliding window is 128 BERT token positions. In each window, we use the
centermost sequences as the contextual representations as illustrated in Figure 9. As BERT
utilizes the self-attention mechanism in transformer architecture [18], the centermost
representations are the ones that are the most exposed to surrounding context information.

S

‘ Window 1 ‘ | L1 | 128

ez I

o [ e

] (TR W
,,,,,,,,,,,,,,, - e
.

‘ Last window ‘ : 128 | 380

Figure 9. lllustration of the sliding window position in BERT.

We sum all 12 layers of hidden representation from BERT to be used as contextual
embeddings for the BIDAF model. As BERT uses different tokenizer from the one we use in our
reading comprehension model, we map the representations from BERT tokenized word to Bailarn
tokenized words by choosing the last sub-token of the same token to represent the token. For
example, if the BERT tokenized tokens are [‘n1’, “wn’] and Bailarn tokenized tokens is [‘Nn’],
we use the representation of BERT tokenized token ‘U’ to represent the word ‘N’

4.2.2 Multiclass Question Architecture

In addition to the existing architecture of BIDAF [10] that deals with span prediction task,
we augment the model with classifiers which deal with different types of questions. We propose
3 different architectures which are special token (section 4.2.2.1), joint model (section 4.2.2.2),

and cascade models (4.2.2.3).
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4.2.2.1 Special Token Architecture

In this variation, we will input both types of questions into our model block
indiscriminately. For factoid questions, the model will have to predict the spans that contain the
correct answer while for yes-no questions, the model needs to point the start and end position
to the special token at either ‘YES’ or ‘NO’. The model diagram can be seen in Figure 10. This
design is based on a modification of BIDAF in [3], which is designed to deal with unanswerable
questions. We have found that appending special tokens ‘YES’ and ‘NO’ to the end of the
passage performs better than appending to the beginning of the passage. This model acts as a
baseline in terms of multiclass architecture because there is no significant modification done to

the model, the modification is done in the input side only.

iniSeun wau lu YES| NO nSeu oeu T YES| NO

0.2 0.05 0.05 P05 01 005 0.05 . 06 ; 0.05

Span Prediction Softmax > Softmax

Modelling layer
(BILSTM)

Attention Layer Attention (C2Q and Q2C)

Uj
uq| up

Feature
Extraction
(BILSTM)

Word and Wty weu YES NO T TR TR O i
Contextual
Embeddings €1 €2 €3 i1 Ct a1 a2 a3 qj

Passage and ;
Questions uniFeuzavluii TsaSauuazniasumisdanin YES NO inFaurauluieumisda lawiala

Figure 10. The special token architecture. In our example question, ‘do the students like to

study?’ is a yes-no question, so the model needs to predict special token “YES’ or ‘NO’.
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Since this model’s prediction mechanism is span retrieval. The objective function for this

model is the span prediction loss only, similar to the original BIDAF [10].

N
-1
Lspan = Wz log (Psyf) + log (PEylE) (1)
i

Lgpqn denotes a loss of the span retrieval module. This loss is essentially cross-entropy
losses that are calculated across tokens found in context passages. Lpgy, is the sum of the loss
of actual start and end indices. N represents the number of learning examples. PS5 and, PE are
the predicted start and end indices respectively.
4.2.2.2 Joint architecture

In this architecture, we utilize the question classifier module to classify different types of
questions. We hypothesize that using information from the question side alone is enough to
classify their types. In the proposal, we proposed to classify types of questions using a fully
connected layer. However, we have found that we can simply differentiate types of questions by
checking Thai keywords, so we replace the fully connected layer with this method instead. The
incorporation of question classifier can be seen in Figure 11. We describe the keywords used for

classifying types of questions in section 4.2.2.3.
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Figure 11. Our proposed joint architecture. In this example query, the question is 'what do the
students like to do?' (WmiSeuveuriezls), which is a factoid question.

In this architecture, we also introduce a ‘yes-no classifier’ module to predict the answer
of yes-no questions. This new module is located at the prediction level, which is the same level
as the span retrieval module and utilize the enhanced context representations which have
incorporated information from both context and query passages. The equation for the objective

function of the yes-no classifier can be seen in equation (2).

N
-1
Lyy = = > (1 = y™)log (1 = ¢!™) + y/Vlog (4/)) @
i

g™ = softmax(WTyy lma)é[M; Glat ) )
<i<
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Lyn represents the loss function of the yes-no classifier, which is binary cross-entropy
loss. We compute this loss for yes-no questions specifically. inN is a binary indicator of yes-no
question’s answers and, q{N denotes the yes-no class probability. Wyy € R'°?  denotes

2dxT denotes the enhanced context

trainable weights for the yes-no classifier. M € R
representations, d is the dimension of the hidden vector while T is the number of tokens in
context passages. G € R8AXT s the output of the attention layer. The equation (3) uses
element-wise max to construct a single vector that represents context passage. This

representation vector can be then used for yes-no prediction.

Liotar = LSpan + Lyy @)

During the training process, we compute loss for the span extraction module for factoid
questions only. If the question is a yes-no question, the only loss for the yes-no classifier is
computed. During the inference time, we use either span retrieval module or yes-no module
depending on the output of the question classifier. We then combine the loss of two tasks as
shown in equation (4). We stick with the combination of 1:1 as our preliminary experiment
suggests that such combination has the best performance in Appendix B. Our proposed question
classification method shares some similarities with [38]. In [38], The authors focus on modeling
different types of questions to answer factoid questions in SQUAD [2] but in our proposed
research, we aim to utilize gquestion classification to help guide the prediction of multiclass
questions, namely factoid and yes-no questions.
4.2.2.3 Cascade Architecture

In this architecture, we utilize a question classifier, which is similar to the question
classifier module in joint architecture (section 4.2.2.2), to classify types of questions beforehand.
After the classification, we will train separate models for different types of questions separately.
The overall architecture is illustrated in Figure 12. BIDAF for span prediction has only span
prediction module and uses the same objective function as equation (1). On the other hand,
BIDAF for yes-no prediction has only the yes-no classifier and uses the yes-no objective function
described in equation (2).

For the question classifier, we have found that we are able to differentiate yes-no
questions from factoid questions simply by searching for keywords that do normally appear in
the yes-no question. The keywords used for distinguishing types of questions are Taveli’, T4

vy, “Tadde’, Tavseladly’, and ‘vselyl.
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Figure 12. Architecture of the cascade model. Different BIDAF models are trained for different

types of questions.

4.3 Transfer Learning from Natural Language Inference (NLI) Dataset

After we have found that cascade architecture achieves the best performance (section
6.3). The model’s accuracy on the yes-no question still has room for improvement. We further
enhance the cascade architecture (section 4.2.2.3) with transfer learning from natural language
inference. Our idea is based on Clark, et al. [26], where the authors had demonstrated the
effectiveness of using transfer learning from different MRC datasets to the Boolean dataset. Clark,
et al. [26] had observed that transferring from natural language inference yields a significant
increase to the model’s performance on Boolean questions. In their recurrent models, this
accuracy is increased by 5.97%, when comparing to training from scratch. The increase in
performance is also greater than transferring from extractive MRC datasets like SQUAD [2], where
the performance is increased by 3.18%.

Inspired by these findings, we also compare the effectiveness of utilizing transfer learning
from extractive MRC dataset to yes-no questions against transferring from the NLI dataset to yes-
no questions in the Thai MRC dataset. For extractive MRC, we use the factoid questions in the
NECTEC V2 dataset. We select Thai sentence pairs found in XNLI [39] dataset as the NLI dataset
to be transferred to yes-no questions. We refer to Thai sentence pairs from the XNLI corpus as

the XNLI-th dataset. More detail of the XNLI dataset is explained in section 5.1.2.
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We compare various transfer learning schemes to assess the effectiveness of transfer

learning from each dataset. Figure 13. highlights different scenarios of transfer learnings in our

experiments.
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Figure 13. lllustration of different transfer learning setting. (a) top-left: from factoid to yes-no, (b)

top-right: from XNLI-th to yes-no, (c) middle-left: from factoid to yes-no using contextual, (d)

middle-right: transfer via fine-tuned BERT, (e) bottom-left: use fine-tuned BERT for factoid and (f)

bottom-right: pre-training BIDAF with fine-tuned BERT.
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4.3.1  Transfer learning from Factoid Questions with Static Word Embeddings

We transfer the weights of BIDAF for span prediction in cascade architecture (section
4.2.2.3) to be used as initial weights for yes-no prediction. The weights that are transferred are
from the token embedding layers up to the modeling layer as in Figure 13 (a). This variation
serves as a comparison for transfer learning from XNLI-th.
4.3.2 Transfer learning from NLI with Static Word Embeddings

We modify cascade architecture (section 4.2.2.3) to handle the XNLI-th by changing the
number of classifier outputs from 2 to 3 as XNLI-th has 3 classes to predict. We discuss the detail
of the XNLI-th dataset in section 5.1.2. The objective function of the model is also updated to be
cross-entropy loss. The rest of the model architecture is the same as the cascade architecture
used for yes-no prediction. Similar to 4.3.1, we transfer the weights up to the modeling layer, and
initialize new weights for yes-no classifier task. This setting is shown in Figure 13 (b).
4.3.3 Transfer learning from Factoid Questions with Contextual Embedding

This is essentially similar to the method discussed in section 4.3.1, except we change the
static word embeddings to BERT-th, as displayed in Figure 13 (c).
4.3.4  Transfer learning from NLI with BERT fine-tuning

Another approach to use BERT, besides contextual embeddings extractor, is to fine-tune
BERT to specific NLP tasks such as text classifications and natural language inference task. We
fine-tune BERT-th on the classification task in XNLI-th. The method of fine-tuning in this setting is
similar to the way Devlin, et al. [15] fine-tune BERT for MNLI [31], which is also a corpus for NLI
task.

XMLI-th class
label

A

) (o) o} o)) )

Sentence 1 (senl): witlusazandos nbwinrmreynuednediloslugn 1920
sentence 2 (sen2): walUTurndeTinlul 1900

Figure 14. lllustration of fine-tuning BERT on XNLI-th task.
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In NLI, the sentence pairs are divided by BERT’s special token ‘[SEP]” which is illustrated
in Figure 14. The main idea of fine-tuning BERT for the NLI task is to add a fully connected layer
or dense layer for class prediction. The representation vector of the special token ‘[CLS]’, which
can be viewed as a single representation vector of the sentence pair, is passed into the fully

connectedly. Representation from the topmost layer of BERT is fed to the classifier layer.

g N = softmax(Wyyi;' C) (5)

C € R represents the last layer representation of token [CLS], W € RKXH
represents the trainable weights of the XNLI classifier and K is the number of class which is 3 for
our case. qXN“ is the output classes of the XNLI-th task, which can be one of the following:
entailment, neutral, and contradiction.

After the fine-tuning, we can then use the fine-tuned BERT-th to create contextual
embeddings for our MRC model similar to the approach discussed in section 4.2.1. We replace
the BERT-th in Figure 8 with BERT-th that was fine-tuned on XNLI-th. We hypothesize that BERT-th
will have the ability to construct contextual embeddings that are more suitable to the yes-no
prediction task and will increase the MRC model’s performance on the task. Transfer learning for
this setting is shown in Figure 13 (d).

4.3.5 Transfer learning from NLI with BERT fine-tuning and BIDAF pre-training

This transfer learning setting uses BERT that was fine-tuned on XNLI-th, which is similar to
setting in 4.3.4. Before we train the model on the target yes-no questions in NECTEC V2, we first
pre-train BIDAF on yes-no questions like in 4.3.2 but we use BERT XNLI-th to create the

contextual embeddings. Figure 13 (f) demonstrates this transfer learning scenario.
4.4 Dropping Attention Mechanism for yes-no questions

BIDAF was designed to have 2 attention mechanisms which are context-to-query and
query-to context. BIDAF was built to deal with the extractive task which is equivalent to the task
of answering factoid questions in our study. We suspect that, for answer yes-no questions, the
model may not need both of the attention mechanisms to perform well. To answer yes-no
questions, the reader must evaluate if the questions, which can be viewed as some forms of
statements, is true or not based on the provided context passage. Based on this intuition, the
context-to-query mechanism should not be as important as query-to-context. We design an
experiment to omit the context-to-query attention mechanism and observe if the model

performs better on yes-no questions.
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The original implementation combines embeddings from contextual layer and attention

vectors to yield G, which is defined as

G:t = ﬁ(H:ti ﬁ:tlﬁ:t) (6)
B(h,ﬁ,fl)=[h;ﬁ;h°ﬁ;h°fl] (7)

G represents intermediate context vectors (t is the length of the context passage
tokens). U:t denotes context-to-query attention vector and H:t denotes query-to-context

attention vector. f is a trainable function used to fuse 3 vectors: § € R84x*T,

For our proposed attention mechanism modifications, we redefine G and ﬂ as per

below.
G:t e :B(H:tl H:t) 8

B(h k) =[h;hoh] )
As we reduce the attention vector dimensions, the size of fuse function § must also
change: € R*@XT The trainable weight vectors used in the span prediction layer and the yes-no

prediction layer are also needed to be resized accordingly, from 10d x T to 6d x T.

| Start position ‘ ‘ End position |

Prediction Dense + Dense + Yes No
layer softmax softmax classification

mq m
mt
Modelling layer,
(BiLSTM)
91 92 a3 Gt
. , Attention mechanisms Attention mechanisms

Attention layer| a) Both C2Q and Q2C a) Both C2Q and Q2C

X b) Only Q2C b) Only Q2C

Our contribution

Figure 15. Modification of attention mechanisms for yes-no questions. We propose to use a) both

attention mechanisms and b) only the question-to-context mechanism.

Similar to the method proposed in applying transfer learning (section 4.3), we perform
this experiment on cascade architecture by modifying the attention mechanism in BIDAF for yes-
no prediction. To confirm that dropping context-to-query mechanism does indeed benefit only

yes-no questions, we also experiment with a variation of cascade architecture that drops context-
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to-query attention in BIDAF for span predictions and BIDAF for yes-no predictions alike. The

illustration of our experiments is shown in Figure 15.
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5. Experiments
In this chapter, we describe the detail and implementation of our experiments. First, we
present the statistics of the datasets used in this research, which are NECTEC and XNLI [39]
datasets in section 5.1. Next, we present the detail of our implementations in section 5.2. The

detail of the statistic test is in section 5.3 and the evaluation metrics are described in section 5.4.
5.1 Dataset Statistics

5.1.1 Question Answering Program from Thai Wikipedia

We use the dataset from the “Question Answering Program from Thai Wikipedia”
competition under the Twenty-Second National Software Contest (NSC 2019). In this competition,
the model must also have the ability to query for the Wikipedia article as well as answering the
questions. In our work, we will focus on the machine reading comprehension aspect only. The
statistics of the dataset is shown below in Table 2. We refer to the Thai datasets as NECTEC V1
and NECTEC V2.

Table 2. Comparison of Thai dataset statistics and it’s English counterpart.

Dataset NECTEC V1. | NECTEC V2. | SQUAD V1 + V2
Number of questions 4,000 17,000 161,560

- Factoid questions 4,000 15,000 107,785

- Yes-no questions 0 2,000 0

- Unanswerables 0 0 53,775
Average context passage length (tokens) 936 736 140
Average question length (tokens) 12.2 15.4 11.2
Average answer length (tokens) 24 1.11 1.61

Table 3. Yes-no Class Distribution.

NECTEC V2 Number of questions
Yes-no Questions 2,000
- “Yes’ as answer 994
- ‘No’ as answer 1,006

Bailarn tokenizer [32] was used for Thai tokenization. It can be observed that numbers of
learning instance available in Thai dataset is still significantly smaller than ones in the English
counterpart. Another observation worth noting is that the average tokens found Thai passage is

significantly larger than its English peers. For yes-no questions, t\he answer class is balance with
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questions with ‘yes’ as answers constitute 49.7% of total yes-no questions and questions with
‘no’ as answers constitute 50.3%.

From Figure 16, we can observe that majority of the context passage length is under
5000 tokens. Figure 17 demonstrates that the distributions of context passage length are highly

skewness with the skew value of 5.75 for factoid questions and 8.72 for yes-no questions.
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Figure 16. Context passage length (in number of tokens) distribution. We only show the context

passage with token lengths of less than 5,000 tokens in this visualization.
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Questions tokens length distributions are less skew than context length. Skewness of

factoid questions is 0.815 while skewness of yes-no question is 0.129. The distribution is shown in

Figure 18.
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Figure 18. Question length distribution
The starting and ending positions of answers are shown in Figure 19. Similar to context
passage length distribution, starting and ending positions are also highly positively skew. As Table
2 points out, the average value of answer spans is just 1.12 tokens so the cumulative probability
distribution for starting position almost coincides with the cumulative probability distribution of

ending position.
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Fieure 19. Starting and Ending Positions of Answers
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5.1.2 XNLI-th

XNLI [39] is a corpus designed to help aid the research in the area of cross-lingual
understanding (XLU) and is an extension of the MNLI [31] dataset, an abbreviation of multi-genre
natural language understanding. MNLI is the dataset of the natural language inference task and is
also the part of GLUE [40], general language understanding evaluation, benchmark. While MNLI
focuses on the English language only, XNLI extends the scope to include 14 other languages
including Thai. Conneau, et al. [39] achieved this by translating 7,500 sentence pairs from dev and
test set of MNLI into other languages. The translations of validation and test sets were done by
human experts. In addition to the translation of development and test sets, [39] also used a
machine translation system to translate the sentence pairs in the training set into different
languages to be used in one of their baseline methods.

Since we focus on the monolingual setting in our research, we incorporate only
translated Thai sentence pairs in our transfer learning experiment (section 4.3). Table 4 describes

the dataset statistics of XNLI-th.

Table 4. Statistics of XNLI-th. N stands for Neutral, E stands for Entailment and C denotes

Contradictory classes in XNLI-th class distribution

Average Average Answer Distribution
Number of
XNLI-th premise  hypothesis
sentence pairs N E C

tokens tokens
Training set 386,442 Zo 12.07 128,842 | 128,828 128,772
Validation set 2,490 24.0 11.5 830 830 830
Test set 5,010 24.1 11.6 1,670 1,670 1,670

Total 393,942 252 12.1 131,342 | 131,328 131,272
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Figure 20. Distribution of number tokens in premise and hypothesis of all datasets in XNLI-th

Table 4 shows us that the class distribution is balanced across training, validation, and
test dataset of XNLI-th. Another interesting aspect of this distribution is the number of tokens
found in the sentence pairs, which is lower than the number of tokens found in context passage
of the NECTEC dataset as shown in Table 2. Figure 20. shows us that the tokens in the premise

sentences are more skew than tokens in hypothesis with the skewness of 73 vs 1.3 respectively.

5.2 Implementation Detail

We use the PyTorch library [41] for general deep learning implementation. The AllenNLP
[42] framework is also used to aid the implementation of BIDAF and our modified versions of
BIDAF in section 4.2.2. For BERT related implementation, we use HuggingFace’s Transformer [43]
framework. For the weights of pre-trained Thai monolingual BERT, we refer to this work’.

For all experiments involving the NECTEC V2 question answering dataset, we use 3-fold
cross-validation with stratified sampling. We then elaborate on the hyperparameter of our
proposed models in the following section. For the experiment involving attention mechanism
modification, we use the same hyperparameters as sections 5.2.1 and 5.2.2, the difference is the

reduction in attention mechanism as explained in section 4.4.

5.2.1 Multiclass Architecture Hyperparameters

Table 5 describes the hyperparameters detail of each multiclass architecture. We did not
include a highway layer in our implementation. Similar to original BIDAF implementation, Dropout
is used for LSTM layers and prediction layer. We also use dropout at yes-no prediction layers.

Epochs with the best performance of overall F1 on the validation set are used to evaluate the

L https:/github.com/ThAlKeras/bert
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performance on the test set. We freeze weights of BERT-th for experiments with contextual
embedding.
Table 5. Hyperparameters for multiclass architecture. Asterisk indicates the implementation in

the contextual embedding setting.

Hyperparameters Special Token Joint/Cascade

Word Embedding Thai2fit v0.1 Thai2fit v0.1

Word Embedding (dimension) | 300 / 768* 300 / 768*

Contextual Embedding BERT-th BERT-th

Tokenizer Bailarn (Synthai) Bailarn (Synthai)

BiLSTM Hidden dimension 100 100

Batch Size 10/ 5% 10/ 5%

Optimizer Adadelta Adadelta

Learning Rate 0.1 0.1

Training epochs a0 40 (for joint and BIDAF for
factoid)

100 (for BIDAF for yes-no)

Passage length (tokens) 5000 / 2500%* 5000 / 2500%

RNN components BILSTM BIiLSTM

Vocabulary Only include pre-trained word + | Only include pre-trained word
minimum of 3 occurrence + minimum of 3 occurrence

Similarity Function DotProduct Similarity DotProduct Similarity

Dropout 0.2 0.2

Yes-no Dense layer (s) - 2 layers with RelU

Yes-no Dense layer hidden - 200

dimension

5.2.2 Transfer Learning Hyperparameters

For transfer learning from XNLI-th, the overall model’s hyperparameters are the same as
section 5.2.1 except for the learning rate. For transfer learning settings that BIDAF parameters are
transferred, discussed in section 4.3.1, 4.3.2, 4.3.3, and 4.3.5, we change the optimizer from
Adadelta to SGD and learning rate from 0.1 to 0.00001 with momentum of 0.9, and learning rate
of 0.001 for parameters in yes-no classifiers. The rest of the hyperparameters are the same as

Table 5.
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For transfer learning schemes in section 4.3.4 and 4.3.5, we only change BERT-th into
BERT-th that was fine-tuned on XNLI-th. Table 6 shows the detail of the hyperparameters of fine-
tuning BERT-th on XNLI-th.

Table 6. XNLI-th BERT fine-tuning hyperparameters.

Hyperparameters XNLI-th fine-tuning
Batch Size 32
Tokenizer Pre-trained Thai SentencePiece *
Optimizer AdamW
Learning Rate 3*10°
Training epochs 2
Passage length (tokens) 128
Dropout (Classification layer) 0.1

5.3 Statistical Hypothesis Test

We use stratified 3-fold cross-validation to evaluate the model’s performance. We use
the paired student’s t-test for statistics test. We employ the modified version of the student t-
test to address the violation of the data sampling assumption. This modified version of the paired
student’s t-test is proposed by [44]. In the research, they propose the proper method to correct

the variance estimate which is shown in Figure 21.
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Figure 21. lllustration of variance estimate [44]. Figure is retrieved from [45]

2 https://github.com/ThAlKeras/bert
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The paired student’s t-test, similar to other statistical tests, is conducted to compare the
difference between two population means. Unlike other statistical tests, paired student’s t-test is
done when the sets of observations can be paired with another group of observations, for
instance, the pre-course examination scores and post-course examination of the same group of
students. In this research, we use paired student’s t-test to compare the performance of the 2

models on the same test fold.

Table 7. Examples of differences of F1 score calculation across different folds. We use the
calculation of paired student’s t-test between special token (model 1) and cascade model

(model 2) performance as discussed in section 6.2 as an example.

Model 1 Model 2 F1 score
Testing Fold
Overall F1 % Overall F1 % Difference
Fold 1 63.53 63.74 0.210
Fold 2 62.94 64.13 1.199
Fold 3 62.69 63.37 0.680

Table 8. Step-by-step calculation of each statistical parameter shown in Figure 21.

Statistical Parameter Value
Mean of difference (67) 0.0069
Variance (0'2) 1.601 * 10
Modification of Variance (inod) 8.009 * 10°
t-test 2.449
P-value 0.0142

Table 7 and Table 8 demonstrates the steps of paired student’s t-test calculation. We
first calculate the difference of overall F1 score, which is our main evaluation metrics as
discussed in section 5.4. This is shown in Table 7. Table 8 shows the calculation of each
statistical parameters that lead to the p-value of the comparison. In comparison of each model
pair, the difference in the model’s performance has statistical significance when the p-value is

below 0.05.
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5.4 MRC Evaluation Metrics

In this section, we present the evaluation metrics for the MRC tasks. F1 score and EM are
factoid question’s metrics while yes-no accuracy is the yes-no question’s metric. Since the F1
score is calculated on token levels, the choice of tokenizers affects on the F1 score calculation.
In Thai NLP, tokenization aspect is more difficult that English as there are no clear word
boundaries. In this study, we select Bailarn tokenizer [32] for both preprocessing and model
evaluation. This choice of tokenizer may be different from the ones used in the competition,
which use the maximum matching algorithm. We have found that Bailarn tokenizer tokenize
passage more correctly, especially when the answers are name-entities, comparing to the
maximum matching algorithm which is not a deep learning-based tokenizer. The examples of
tokenization are shown in Appendix C.

5.4.1 MRC Evaluation Metrics

F1 score is the harmonic average between precision and recall of the model. In our
context, precision and recall are measured based upon numbers of correctly predicted tokens
compared to the ground truth token span. For yes-no questions, the F1 score will be either 0 or
1, depending on whether the model predicts the answer correctly. F1 score is an evaluation

metric for factoid questions.

TP

P LY AAN AN (9)
Precision TP - FP
TP
5 —— (10)
Recall TP+ FN

_ 2 * Precision * Recall

F1= (11)

Precision + Recall

TP denotes true positive and represents numbers of predicted tokens that are also
appeared in the ground truth. FP denotes false positive, which is an indicator of numbers of
predicted tokens that are not in the ground truth. FN represents the false negative, which is the
number of actual ground truth tokens not retrieved by the model.

5.4.2 Exact Match (EM)

The exact match score is a binary indicator whether the model correctly retrieves the

same span as ground truth span. Like the F1 score, the EM is an evaluation metric for factoid

questions.
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5.4.3 Yes-no Accuracy and Question Accuracy

Yes-no accuracy is the percentage of correctly predicted yes-no questions, while
question accuracy measures the percentage of correctly classified question types (factoid or yes-
no).

5.4.4 Overall F1 (%)

This metric is a weighted average of F1 score from factoid questions and yes-no accuracy
from yes-no questions. This serves as a general measurement of how well the model performs

on overall questions in the dataset.
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6. Experiments Results and Discussion

In this chapter, we discuss the results of each experiment in our research. We first
explain the baseline establishment which was conducted on NECTEC V1 in section 6.2 After
section 6.2, we conduct our experiment on NECTEC V2. Next, we describe the performance of
each multiclass architecture along with the effect of integrating contextualized embeddings to
the model in sections 6.2, 6.3 and 6.4. We then present the results of using transfer learning to
increase yes-no questions accuracy in cascade architecture in sections 6.5 and 6.6. Section 6.7
describes the result of attention mechanism modification and section 6.8 concludes the

experiment results with the ablation study.

6.1 Baseline Establishment on Factoid Questions in NECTEC V1

First, we replicate the winner’s results of NECTEC V1. which consists solely of factoid
questions. From the result of the competition on NECTEC V1. This is to ensure that our based
model, BIDAF, can achieve similar results to the winner of the analogous dataset. The winner of
employs an MRC model called WabiQA [46]. WabiQA is based upon DrQA [47] whose work
focuses on both information retrieval and reading comprehension aspects.

As we do not have access to test set used in the first competition (NECTEC V1), we
replicated the results on the validation set of which is a 10% split from the available
development dataset. This is to align the training method and allow for a fair comparison. The
hyperparameter detail of the model used to compare with the result in NECTEC V1 is similar to

the ones listed in Table 5. but we use batch size of 6.

Table 9. Result on NECTEC V1. Our implementation exceeds WabiQA both in terms of F1 and

EM.
Validation Score
Model
EM (%) F1 (%)
WabiQA 45.50 58.25
Our implementation of BIDAF 49.00 63.37

We hypothesize that the reason BIDAF performs better than WabiQA is that BIDAF employs
bidirectional attention, both from query-to-context and vice versa while WabiQA utilizes only
query-to-context attention. This bidirectional flow of information should help capture the
necessary information better. It also can be observed that WabiQA employs attention at a lower

level just after the token embedding layer. Passing the token embeddings through 1 layer of
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LSTM before applying attention could be more beneficial as the output representation vectors of

LSTM contains more contextual information than token embedding vectors.
6.2 Multiclass Architecture Performance with Static Word Embeddings

We now turn our attention to the performance comparison for each proposed multiclass

architecture which is located in Table 10.

Table 10. Performance of each multiclass architecture in the static word embedding setting.
Column with asterisk indicates the main evaluation metric. All p-values are reported against the

special token model. Bold and italic row highlights the model with the best average

performance.
Multiclass Overall F1 Factoid Yes-no Question
P-value
Architecture (%)* EM (%) F1 (%) Accuracy (%) Accuracy (%)
Special token 63.05 49.35 64.62 51.25 99.15 -
Joint 63.92 50.20 65.32 53.41 99.81 <0.001
Cascade 63.75 49.69 65.16 53.15 99.81 0.014

From Table 10., we can observe that both joint architecture and cascade architecture
have better performance than the special token model across all evaluation metrics. This shows
that having a dedicated module to handle yes-no questions is better than modify and integrate
the yes-no task into the span prediction task. Even though both joint architecture (section 4.2.2.2)
and cascade architecture (section 4.2.2.3) performance are greater than the baseline special
token (section 4.2.2.1) with statistical significance. When we assess the performance of joint
architecture and cascade architecture, joint architecture’s overall F1 is not greater than cascade’s
overall F1 with statistical significance with a p-value of 0.62. According to this statistics test, we
cannot conclude that joint architecture performs better than cascade architecture. For the
explanations on why joint architecture performs better than cascade architecture on average, we
suspect that the model gains benefit from utilizing shared weights between span prediction task

and yes-no classification task.
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6.3 Multiclass Architecture Performance with Contextual Embeddings
We describe the performance of different multiclass architecture when enhanced with

contextual embedding in Table 11.

Table 11. Effect of integrating contextual embeddings to multiclass architecture. A column with
an asterisk is the main evaluation criteria and row with bold and italic indicates the best

performance. All p-values are reported against the special token model.

Multiclass Overall Factoid Yes-no Question P-value

Architecture F1(%)* | EM (%) | F1 (%) | Accuracy (%) | Accuracy (%)

Special token 66.27 54.38 64.62 51.06 98.81 -
Joint 67.05 54.40 68.64 55.06 99.81 0.233
Cascade 67.51 54.72 69.11 55.56 99.81 0.016

According to Table 11, joint architecture (section 4.2.2.2) does not statistically perform
greater than the baseline special token (section 4.2.2.1) while cascade architecture with
contextual embedding performs better than special tokens method with statistical significance.
From experiment with static word embeddings in section 6.2, we cannot conclude if joint is
better than the cascade model, in this setting, however, we have found that cascade architecture
performs better than joint architecture with the p-value of 0.007. With this information, we
conclude that cascade architecture performs better than both joint and special token
architectures.

For cascade architecture, we hypothesize that having a separate model for each task
may perform better since the objective functions are separated. However, to achieve this effect,
the model must be provided for sufficient training data for each task. The population of yes-no
questions in our study is only 2,000, which is a relatively small number of training data for a deep
learning model. This effect is mitigated by utilization contextual embeddings, which provides
adequate transfer learning that’s why we cascade architecture has the best performance in this
setting. This contrasts with results from section 6.2 where, on average, joint architecture with
static word embeddings performs better than cascade architecture. We suspect that static word
embeddings do not provide transfer learning as adequate as contextual embedding so the model
with joint architecture performs better as the model has the benefit of utilizing shared weights

between two tasks.
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6.4 Effects of Contextual Embedding Integration
Now we evaluate the performance’s improvement when applying contextual embedding

to the model. This is shown in Table 12.

Table 12. Comparison of contextual embeddings and static word embeddings, Column with an
asterisk is the main evaluation criteria and row with bold and italic indicates the best

performance. All p-values are reported against their respective static counterpart.

Word Factoid Yes-no Question
Multiclass Overall
Embedding Accuracy = P-value
Architecture F1 (%)* EM (%) F1 (%) | Accuracy (%)
Setting (%)
Static 63.05 49.35 64.62 51.25 99.15 -
Special token
Contextual 66.27 54.38 64.62 51.06 98.81 <0.001
Static 63.92 50.20 65.32 53.41 99.81 -
Joint
Contextual 67.05 54.40 68.64 55.06 99.81 <0.001
Static 63.75 49.69 65.16 53.15 99.81 -
Cascade
Contextual 67.51 54.72 69.11 55.56 99.81 <0.001

We can observe from Table 12 that all architectures gain a substantial increase in almost
all performance metrics with statistical significance. However, we also note that yes-no question
accuracy drops in the special token model when we apply contextual embeddings. A possible
explanation is that adding artificial token, such as ‘YES’ and ‘NO’ into the original context
passage, does not make contextual sense and introduce unoriginal words into the passages, so
the contextual embedding does not work as well as expected. This finding is also similar to the
results from [14] and [37], in which the model also observe a gain in performance when

enhanced with contextual embeddings.

6.5 Results of Transfer Learning from XNLI-th to Yes-no Questions

We now discuss or findings on the effect of using transfer learning from the NLI dataset
such as XNLI. We apply transfer learning to cascade architecture only. The results of the
experiment are described in Table 13. We present only performance in yes-no questions only as
the factoid question component remains similar to components discussed in previous
experiments (section 6.2 and section 6.3). In this experiment we use fine-tune BERT-th on the
XNLI-th dataset then use it as contextual embeddings extractor. The accuracy of fine-tuning on
the XNLI-th dataset is 68%. More details of the result of pre-trained models can be found in

Appendix D.
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Table 13. Yes-no accuracy improvement from transfer learning. P-value for the static word
embedding setting is compared against training from scratch while contextual models are

compared against normal BERT.

Word Yes-no
Embedding Transfer Learning scheme Accuracy P-value
Setting (%)
Train from scratch (4.2.2.3) 53.15 -
Static Transfer from factoid (4.3.1) 53.84 0.597
Transfer from XNLI-th (4.3.2) 54.50 0.08
BERT-th (4.2.1) 55.56 -
BERT-th + transfer from factoid (4.3.3) 54.31 0.107
Contextual
BERT-th + XNLI-th (4.3.4) 56.90 0.111
BERT-th + BIDAF + XNLI-th (4.3.5) 60.18 0.063

It can be seen that applying transfer learning from XNLI-th both word in the static word
embedding setting, in which both BIDAF and word vector architectures are pre-trained on the
XNLI-th dataset and in the fine-tuning setting where we BERT is fine-tuned on XNLI specific task
and later used as a feature extractor. Another observation from Table 13 is that the performance
of transfer learning from factoid questions are not as competitive as XNLI-th. Transferring from
factoid question in contextual embedding setting (section 4.3.3) even has worse performance
than from training from scratch. This could be due to the fact that factoid and yes-no questions
have different characteristics, so the transfer learning is not that effective. The setting where we
both fine-tune BERT on XNLI-th and BIDAF before transferring both components of the model

(section 4.3.5) has the best accuracy.

6.6 Results of Transfer Learning from XNLI-th to Factoid Questions

Next, we would like to confirm if the BIDAF for span prediction will also receive
performance improvement if transfer learning from XNLI-th is applied. We present the results of
the experiment of transferring from XNLI-th to factoid questions in Table 14.

Table 14. Results of applying transfer learning to both factoid questions and yes-no questions.

Factoid Yes-no
Transfer Target Overall
EM (%) F1(%) Accuracy P-value
Learning scheme Questions = F1(%)
(%)
BERT-th + XNLI-th Yes-no 67.67 54.73 69.10 56.90 -

BERT-th + XNLI-th both 67.35 53.93 68.75 56.90 0.3246
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We can observe from Table 14 that applying XNLI-th transfer learning to both factoid
questions worsens the model’s EM and F1 performance. A possible explanation for this finding is
that when we fine-tune BERT to specific tasks like XNLI-th, the language model loses the ability
to generalize and may perform worse on other tasks that the model is not fine-tuned on. This is
also in line with previous observation in [26], in which the author has pointed out that using
transfer learning from an extractive dataset (like factoid questions) is not as effective using
transfer learning from the NLI dataset to Boolean questions. We suspect that the reverse,

applying NLI to extractive questions, also holds true.

6.7 Effects of Modifying Attention Mechanism
Now we move to the last experiment in our study, attention mechanism modification.

The results of such modification is shown below in Table 15.

Table 15. Comparison between having 2 attention mechanisms and dropping C2Q. P-Value of

Drop C2Q is report against the model with both attention mechanisms for both word embedding

settings.
Word Embedding = Attention Mechanisms Yes-no P-value
Setting Accuracy (%)
Both C2Q and Q2C 53.15 -
Static
Drop C2Q 58.31 <0.001
Both C2Q and Q2C 55.56 -
Contextual
Drop C2Q 59.21 0.003

Table 15. provides the evidence that dropping the C2Q mechanism does indeed leads to
an increase in performance on yes-no questions, supporting our claim that C2Q does not play a
critical role in yes-no questions and keeping only Q2C attention mechanism results in superior

performance.

Table 16. Effects of dropping C2Q in factoid questions. F1 is the main metric for this table.

Word Embedding = Attention Mechanisms Factoid P-value
Setting F1 (%) * EM (%)
Both C2Q and Q2C 49.69 65.03 -
Static
Drop C2Q 25.06 35.21 <0.001
Both C2Q and Q2C 54.72 69.11 -
Contextual

Drop C2Q 27.03 37.33 <0.001
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Table 16 proves that context-to-query (or C2Q) serves has its purpose in the span
prediction task and dropping it causes a serious drop in factoid’s performance metric. This
supports the claim that, for yes-no questions, only the Q2C mechanism is crucial while both

attention mechanisms play an important role in factoid questions.

6.8 Ablation Study
In this section, we now study the contribution of different techniques discussed in this
research. We have summarized the effects of each module to the model’s overall performance

in Table 17.

Table 17. Contribution of each proposed techniques. Row (2) and (3) are compared against the

preceding rows. Row (4), (5), and (6) are compared against row (3).

Factoid Yes-no Question
Overall
Model Setting EM (%) F1 (%) Accuracy (%) Accuracy
F1(%)* value
(%)
(1) Special token 63.05 49.35 64.62 51.25 99.15
(2) Cascade 63.75 49.69 65.16 53.15 99.81 0.014
(3) Cascade + BERT-th 67.51 54.72 69.11 55.56 99.81 <0.001
(4) Cascade + BERT-th + XNLI-th 68.06 54.72 69.11 60.18 99.81 0.058
(5) Cascade + BERT-th + Drop
67.94 54.72 69.11 59.21 99.81 0.002
c2Q
(6) Cascade + BERT-th + Drop C2Q
68.00 54.72 69.11 59.67 99.81 0.004

+ XNLI-th

We can observe that adding contextualize embeddings yields the largest boost in the
model’s overall performance. In terms of yes-no accuracy, using transfer learning from the XNLI-
th gives the best result. Unfortunately, combining both transfer learning and dropping the C2Q
attention does not vyield us the best result. We suspect we do not have enough data to
appropriately re-train the part of the model that has mismatched dimensions as a result of
attention mechanism modifications. The performance in row (6) uses the transfer learning setting
from Figure 13 (e). as we have found that such setting has better performance than setting in
Figure 13 (f). We would like to point out that, for experiments from row (4) to row (6), we focus
on introducing techniques that improve the model’s performance in terms of yes-no accuracy.
We do not realize a significant improvement in overall F1 % as the yes-no questions make up

only 11.7% of the whole dataset.
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7. Qualitative Analysis of the Proposed Methods
In this section of our thesis, we discuss the results of our proposed methods in
qualitative aspects. We start with the comparison of factoid question predictions from a model
with static word embedding and contextual embedding in factoid questions (section 7.1) and yes-
no questions (section 7.2). We conclude section 7 by with visualization of query-to-context

attention heatmap in section 7.3).

7.1 Static Word and Contextual Embeddings Predictions in Factoid Questions

We now aim to discuss some examples question-answer pair that models with
contextual embedding correctly predict while the models with static word embeddings do not.
We define correctly predicted factoid questions if the predicted EM is 1 and 0 otherwise. Table
18 discusses the examples where some or both versions of the models predict the questions

correctly while Table 19 focuses on the questions that both models predict incorrectly.

Static Both correct Contextual Both incorrect
1308 6172 2089 5431

Figure 22. Vein diagram of factoid question predictions from static and contextual embeddings

models, we define correct as having EM=1.0 and incorrect otherwise.
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Table 18. Comparison of predictions from models with static word and contextual embeddings,

we have highlighted a seement of context passage that relates to factoid questions. Green

highlights indicate the region of passage that is related to contextual embedding model

prediction while the yellow highlights belong to the static word embeddings

Question-answer pair

Embeddings

Prediction

1. Context: ¥z vzvig viso 11ng (FoImermant:
PipersarmentosumnRoxb.) 10ufitluisd Piperaceae sinduauriung
wrlusaliidnuwimguasdivuadnn senguiuglifiveuiiuiiqu &
ATty eitusieinstind, laensidenisiifluseuuarluud
waluwneeniazihlulngila -ﬁ%aﬁmﬁaﬁu 5 BnAong
mawdlaisend "WaYu’ "Wangun’ "wgde’ "JYae" "Jdun" menna
Na1sENIT g’ Mamadanuisendt "Wnua 'Wnyas "linwng
\An" "WnBian" LLaz_

Question: NunAldveslneSundusengiteyls

Reasoning: Keywords are located quite far apart

Static word

Na
Y

Contextual

U

Ground

Truth

UHIN

a

2. Context: fngUTon-1 dngUaen-1 (MitsubishiF-1) ingow-

Y

1 Juedosdusurmudildideauuusniiasnlaeussn fngld o7

o

dudanIdvesszmagUu uaziden lngdBien-1 -Ha31e U3enia

o

aa o a = a A4 a o W
U9 187 Budans (UseinagUu) -Ussiniasestuduldatuayunas

ec®

¥

MAINANUAUNTIALT -LATBIBURA:2X =A19TN: 7.88 LUAT -8

17.86 11nT -g4: 4.39 LA -WuUn: 21.18M1519m3 -wrdnidan:

6,288 Alansu -Uwiinds¥ugage: 13,614 Alaniu -
_ﬁizﬁummqa 11,000 w5 -8n37leilel/Aui -

o

Adivinssu 556 Alawasiiletu ge-i-ge nouAnduuns ASM-1
ﬁﬁmuaaaqﬂLLazﬁaﬁﬂﬁuLa%mmm 830 Ansdruunilads -Rdedy
lhagn: 2,870 Alawns -8195: JunaeinadIndomyuadu-61
YA 20 1Y, 1 nsrUen -81ysUdsteImagenna 4 U w3e 9175
UdoeUsuisesu 2 da -gnszilnuunn 500 Youss-12 gn -a1u1se
Aindao1ysld 3,629 Alansu

Question: i3esdulingiien-1 fdns3ageanldfnlamns/dlug
Reasoning: Both pick number as answers but contextual model

picks number with correct meaning.

Static word

11,000

Contextual

1,700

Ground

Truth

1,700

3. Context: -Lﬁunwﬂuﬁﬂ/\lmﬁaa'mmhwné’aqu Y

waznsuwun Tuyuy seu 9 Nu ez iusnideavilevesesn

Static word

gvinfianu
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atUaludanianuns Fesruvesisauwilfedanu Mluaswusnlae | Contextual | W3annu

George Scott Robertson 18 w.a. 2439 Jneglun1wnauusaaIN

Question: Mwganudneglun1wingaile Ground yadonu

Reasoning: Keywords are located quite far apart Truth

4. Context: lolasiaumaslsd (S9ngw: Hydrogen chloride) gns | Static word | Afudu

Tuanad HCL W Jufhedifie Wifd  fgvisdanseu Wedudannuiuag

Nerdudend  atulavusznaume nsalalnspaasnaeasiinduiile -
. Contextual AU
lalasauraslsnazangluin  Awlalasiaumaslsawaznsnlalasnas
sniuansiaiindaud Ay

Tuna wadl Imeenans walulad waz gnanmnIsusn

Ground ATuEYY

e a

Question: lalasiaunaelsd dgnsluanadn HCL WWufinedinulifiad Trth
ru

gusfinnTouiloduiannuTuaziineslstuy

Reasoning: Contextual model does not answer the whole span

We can analyze from examples in Table 18. that the models with contextual
embeddings can understand the meaning or the context behind the answer candidates better
than the static word embeddings. For question 1 in Table 18, the contextual-enhanced model
also can answer the factoid question in which the keywords are located far apart while the
model with static word embeddings fails to predict this question correctly. The reasoning behind
question 3 in Table 18 is similar to question 1. Another observation from question 2 is that we
may see that both versions of the model are able to predict the tokens with correct types of
words/ pos tags, both models realize that the number should be the answers to the given
question, but the model with contextual embedding is able to correctly select the 11,000 km/hr
as an answer since the candidate matches contextual sense with the provided question.
Question 4 shows the examples where static word embedding predicts correctly while the
contextual embedding model does not. In question 4 example, the full correct answer is “ATud
913” (white smoke), we suspect that the contextual enhanced model thinks that the token

“ATU” (smoke) might appropriate enough as an answer.


https://th.wikipedia.org/wiki/%E0%B8%9E%E0%B8%B4%E0%B8%A9
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Table 19. Examples of factoid questions, which both models fail to predict correctly. We have

highlighted the regions of text that are keywords to the questions.

Question-answer pair Embeddings | Prediction
1. Context: Jnamiswudunsrorsunardusiodoadosey | Static word | nszumasidia
il 872wty lweuandn nsawmmues a¥etunly WILNNITEOA
adenszumannInszmstanihgilanumTYlasveNwIuNSY #hawlan
aumonluiiniadl o aetuhdelfuiunsyeluannedggaiy UMY
fuAutszana 2 menytiudendt “Yaviidu” dewluatesunia
fizdnsmnstheludedudadugivendmeuniuldufdnenid | Contextual | wszumaiie
winpggATesinwasgUidwsalindiunaaediui “Bu” WITNVITEON
wizvmaLd sz s dadundeimersmunatedi i Whgualan
ATIPIEITIA” UNIY
Question: fapmAsnTunUIERNFIwIVLATAS STy Ground Synai 1
Svalela Truth
Reasoning: The model may lack sufficient world knowledge
2. Context: sunayieln videTomsnsie Sgitessueanioln ueu | Static word | Alossunamie
mindnt  waznyngluimaymswenuauints  Wusgluusune 1N
915louAiun uneenanuruiulvevesendiauiun drudeaauin | Contextual | ¥17glsy
wady emaste gihen Wuiissifisuiuiieserdemnownnnit | Ground wosAuus
12,000 Urieu gnaunulaeydglsulul am 1520 lag wosiuug | Truth W8y
wady  egslsimuruiuilesiinanasesiuuauiinaaugn
#nluATadnasTy 1870
Question: uaraladudAunuigitessaanieln
Reasoning: Question contains some ambiguity, the word that
models pick as an answer is partially correct

Static word 2
3. Context: wywmatulssueviduiissasvoidnuduis
Juddunenivinnwg  lududs lasimiidnssy an3n Uszindl
AavyTamsssy wazafnnudesne o Wauneadely ... Wa
wswalilvgazseuanednaiiunsmuallvil vienivna Favianedls | Contextual 2

NsiinAsaN 2 FeansusnsmuallalafinguidRTnuauinnmiioudiu

NMTUIYNIE
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AN

Question: dANBURWUITTUERNTURITTIE Ground

Reasoning: The context states information that is vital to the Truth

question very subtly.

Table 19 shows some examples of the questions that both models with static and
contextual embeddings fail to predict correctly. Example 1 is the case where both models pick
the correct entity, which is the full name of the king (“‘Wixm‘wamLﬁﬁ]Wizwwﬁ*&Jamﬁﬁmﬂaﬂ
UNM131Y”) but the correct answer is another entity that can generally use to refer to the king
(“Synadi 17). We suspect that the models lack the general world knowledge, so the models
were unable to pick the latter entity as an answer. For example 2, the answer that
contextualized model picks can be considered as partially correct. The question is “who
discovered Tierra del Fuego”, in which the contextualized model picks “European” as an answer
while, in reality, the actual answer is “Ferdinand Magellan”. The model may think that the word
European is highly correlated or refer to the word “Ferdinand Magellan” thus picking the word
“European” as an answer. For the final example, the information required to answer the question
is not explicitly stated in the context passage. Since the question asks for some number and the
actual answers are not explicitly stated, the models retrieve the next available number in the
context passage as an answer instead.

From the examples shown in Table 19, we can see that the questions, which both
models predict incorrectly are more difficult than the examples. Some questions require the
models to have world knowledge (example 1) while other questions may demand the model to

have a more complex reasoning skill (example 3).
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7.2 Static Word and Contextual Embeddings Predictions in Yes-no Questions

Similar to the analysis in section 7.1 we now assess the predicted answers in yes-no questions. Table
20 shows questions where some models predict correctly and Table 21 shows examples that both types of
models fail to predict.

Both incorrect
531

: "»;\ j," N [~ !
f_édidigns  from models with static and contextual




Table 20. Yes-no predictions from static word and contextual embedding models, both of which

are shown with the ground truth of the questions. Yellow highlights indicate the area, which is

critical to the answers of yes-no questions

Question-answer pair

Embeddings

Prediction

1. Context: 139157 A8udesad (MVRDV) Wudinauesnwuy

andnonssuuaziadios feegluuassemmeiiy  Ussmeiuise fuaus
redanduue Jne1991 Tevesdtnmuduisnusdevotnnsnons
oA 33 ana (M - AniileTnA.1959) 91A0U Wiy 33 (VR - Anidledn.a
1964) uazuAa o 33 (DV - Anlea.a. 1965) 1@ AU WIualae
vhaufidnnuaninenssusinsluady wazdinnuanuinveasy
gaena dnee 33 inevhnuiiueyieuasandufunenaduiensdi
s

UseimnAlusasaun (a.A. 1993 - a.A. 1997) HaUOBNLUUUgAlASU

NuTUsnAlaas1slawndtnnulndves Tudlasdaiosdu
Msneaslawn  81AsHnaAENNeFIUATONAWBSAY  (A.A.1994 -
A.A.1997) wavAawiendll 2000  dlessulunes  Uszwe
WasuL (A.A.1997 - A./.2000)

. & a s & o w U oA
Question: 1391567 Wudinnueenwuuaataenssunaziaiioslu
UATTOAND AN UsemAlusosuauanesiile A.A.1991 luunsaly
Reasoning: Yes-no question and context passage do not have

exact word to word.

Static word

Taila

Contextual

Ground

Truth

2. Context: snasndneufmuadunzunsndounaimansves
nssanssidasnlduonisenanuimngnueansaouivisnazases
muUnd s iinulesamenilawesnsiidensenlutisireves
mamiasss  luaywdienmsaendvessnudsdUaid 20 vesnis
fansafuarnounafndudunsasndnoutmun fgUfnisal 1%
nssansssilanlaefidnnadedisvomisnyssana 20-40% Tue

AUANUTULIIVBINNTABNGN

Question: snaensmneufvunilunzfisnliuendesnanuilungn
YauNIANBUANITNITAaRAmNUNR Tovsell
Reasoning: Yes-no question and context do not have exact word

to word and keywords are located far apart.

Static word

Taila

Contextual

Ground

Truth

3. Context: Wulng Wulngd @ana1wnsn TETMTIOLAY) Aoanene

duasvaansaosilunudsusenumenuselUlng  Yareauiiiviey

U

Static word
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Muwdudassionintaiedu  (N-terminal)  dulanediivgansuenda | Contextual | lally
WudaseiSeniivane® (C-terminal) nsiSendaulndasiSonmuansu
nspariluanUaredulunvansd wWilndvuadnvaneving
AN A luFdidin Ground Ll
Truth
. 5 & a 3 ay o = v v
Question: Wilnalduaienedmasveansnasiluiundeunanunie
WusziUlnduanesunfingerilududasziieninvate M Tuvsely
Reasoning: Yes-no question has misleading/adversarial word.
4. Context wAzW@d  uweawaes WWuwmasUsznounisgu | Static word | lally
a o P = & < Ao v as a
wellwdu AyInavUea Fadumasul 1-Jau ndusedlaedlsn manen
3 waglsnnedmmingluguvesuriudeslurisiiunay .a.1986 uazdnasa | Contextual | 14
TusUves®d 8 oy, Watui 8 Juiau A.A.1998 AusemalUy wazlau 1ol
i . v Ground ke
was Tsunufineney lo” Afufedee gilor anTluler wsandld |

fgiu

Question: 1AzNTALenwIeuwnawualeudmiulszneu
nspusetiuduasineuvealivielyl

Reasoning: Yes-no question has misleading/adversarial word.

Similar to examples shown in Table 18 of section 7.1, yes-no models, which are

enhanced with contextual embedding, can answer yes-no questions where the keywords in

context passage are distant which are represented by questions 1 and 2 in Table 20. Contextual

embedding also gives the model ability to handle misleading or attacking words as shown in

question 3 of Table 20. Question 4 from Table 20. Shows the case where the static word model

predicts correctly, and the contextual model does not. The contextual vectors for the token

“latlau” (K-pop) in the question could be similar to the token “1allou” (J-pop) in the context

passage so the contextual model gives ‘yes’ as an answer while static word embedding vector

for K-pop and J-pop could be more different and gives ‘no’ as an answer.
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Table 21. Examples of yes-no questions that both types of models predict incorrectly. We have

highlighted the regions of text that are keywords to the questions.

Question-answer pair Embeddings | Prediction
1. Context: umimgufdusimsnmylunguiduimsnwiluidy Static word | 14
nufinultiunsdedadnlevalatwamsevine.a. 1907 §4 1915 | Contextual | 1o
aumguiduivsnmilunavesealiudsidansldsenimnain | Ground lafla
1nn5linge (warp) vesU3nil-nanduniadanissuil 20 Truth

Question: nqufduimsnwiialuidunguianaliudadedadsn

Tovalntimunszning.a. 190 s 191 Towield

Reasoning: Number were changed.

2. Context: vuad WWugluuureunasarlusalulssmeaniuay Static word | 14
medauresszmndlng aunsauvseenlafunaigedis mudnua | Contextual | 19
FusweInsa WU dde sty dnaeu d1i3es d1dewionasu &1 | Ground Taila
WA §18e s ddalumanansidaleindunesUssnnmils Truth

Question: nuedndugunuuveunaanlunaamzluniadaiuves
Uszwmalnawiniulavsely

Reasoning: Requires complex reasoning.

From Table 21, question in example 1 changes the number of years that normally

appear in the context passage, from 1907 to 190 and 1915 to 191 respectively. In this case, we

expect that the models are still not robust against attack on numbers so the models fail to

predict this type of question correctly. For example 2, this question requires complex reasoning.

The question asks if certain dance style A can only be found in the northeastern region of

Thailand and Laos or not. The context passage has a span of text that describes that this style of

dance A can be normally be found in the mentioned region. But 2 — 3 sentences later, the

context passage mentions that another kind of dance style B can also be classified as style A and

is practiced in the central region of Thailand.


https://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B9%80%E0%B8%97%E0%B8%A8%E0%B8%A5%E0%B8%B2%E0%B8%A7
https://th.wikipedia.org/wiki/%E0%B8%A0%E0%B8%B2%E0%B8%84%E0%B8%AD%E0%B8%B5%E0%B8%AA%E0%B8%B2%E0%B8%99
https://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B9%80%E0%B8%97%E0%B8%A8%E0%B9%84%E0%B8%97%E0%B8%A2
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B9%80%E0%B8%95%E0%B9%89%E0%B8%A2&action=edit&redlink=1
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B8%9E%E0%B8%B7%E0%B9%89%E0%B8%99&action=edit&redlink=1
https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%B3%E0%B8%81%E0%B8%A5%E0%B8%AD%E0%B8%99
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B9%80%E0%B8%A3%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87&action=edit&redlink=1
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B9%80%E0%B8%A3%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87%E0%B8%95%E0%B9%88%E0%B8%AD%E0%B8%81%E0%B8%A5%E0%B8%AD%E0%B8%99&action=edit&redlink=1
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B9%80%E0%B8%9E%E0%B8%A5%E0%B8%B4%E0%B8%99&action=edit&redlink=1
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B9%80%E0%B8%9E%E0%B8%A5%E0%B8%B4%E0%B8%99&action=edit&redlink=1
https://th.wikipedia.org/w/index.php?title=%E0%B8%A5%E0%B8%B3%E0%B8%8B%E0%B8%B4%E0%B9%88%E0%B8%87&action=edit&redlink=1
https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%B3%E0%B8%95%E0%B8%B1%E0%B8%94
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7.3 Query-to-Context Attention Heatmap Visualization in Yes-no Questions

We illustrate the heatmap of context-to-query and query-to context attention in Figure

24 and Figure 25 respectively.
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Figure 24. Heatmap from context-to-query attention mechanism in one of the yes-no questions.
The lighter shade in the heatmap represents tokens with a higher similarity score. For each row,

the summation of the similarity scores equals to one.
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Figure 25. Query-to-context heatmap where the question vector gauges the importance of
different context tokens, the lichter shades in the heatmap represent tokens with a higher
similarity score. (a): left-side is a yes-no question involving pig’s diet. (b): right-side is a yes-no
question about Thai poet. Both examples are correctly yes-no questions that are correctly

predicted.
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From Figure 24, we can see how context-to-query attention work. The mechanism is
designed to guide the model to focus gauge the importance of query tokens judging from
context tokens. We may observe that some query tokens are deemed important by many
context words, e.g. “37°. Comparing to Figure 25, the query-to-context (Q2C) attention mechanism
measures the importance of context tokens from all query tokens as a whole. During the
analysis, we have found that most query-to-context heatmap has similar characteristics with
Figure 25, in which query tokens assign a high value of similarity score to only a few context
tokens. Figure 25 also represents attention heatmap from correctly predicted yes-no questions,
we suspect that query-to-context attention allows the model to focus on the context tokens
that are located in the area that is most relevant to the meaning of query vectors, making it
easier for the model to fact-checking the context passage to answer yes-no questions. From an
example shown in Figure 25 (a), attention mechanism guides the model to focus on the context
word “fiu” (to). This word acts as preposition between the phrase “Aulgrsiouardaiduonns
widleu” (is omnivore similar) and the phrase “UssnyswmyUn” (its boar ancestors). These 2 phrases
are essential to answer the question *gnsusiasdudnifugiuemsaivuasdnimiiouivusanygy
ﬁam&ﬂﬂ‘dﬁahj” (Pigs, even though are hoof animals, are omnivore like its boar ancestors?). The
attention heatmap in Figure 25 (b) also works in a similar manner, where the token “31” (is called
as) serves as preposition between 2 phrases in the context passage with critical information.

In contrast to Figure 25, Figure 26 highlights the heatmap visualization of query-to-
context attention in incorrect predicted yes-no questions. In Figure 25, the attention mechanism
guides the model to correct region of the context passage, which potentially leads to correct
prediction while in Figure 26, the attention mechanism guides the reader to the incorrect regions
of the passages that do not necessarily relate to the questions, which ultimately lead to incorrect

predictions of yes-no questions.
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8. Conclusion

In this research, we have built a multiclass machine reading comprehension model for
Thai corpus. Our model is built based on BIDAF, which deals with factoid questions only. We
enhance BIDAF to support 2 types of questions found in our dataset, which includes factoid and
yes-no questions. We compare three types of multiclass architectures, which are special tokens,
joint, and cascade model architectures. Both joint and cascade model performs better than the
special token model, which serves as a baseline for multiclass MRC in our study.

We conduct our study on the Thai question answering dataset provided by NECTEC in
Thailand 2020 National Software Competition (NSC). This dataset consists of 17,000 question-
answer pairs and has two types of questions which are factoid and yes-no. Experiments from
multiclass architecture with static word and contextual embedding suggest that cascading type
has the best performance in terms of overall F1. We then further enhance the cascading
architecture by applying transfer learning and attention mechanism modification. We intend to
use these 2 techniques to enhance the model’s performance on yes-no question specifically and
we achieve that objective even though the performance of the model on overall F1 does not
increase significantly. Transfer learning from the NLI dataset boosts the model’s accuracy on yes-
no questions. Pre-training both the MRC reader (BIDAF) and the LM (BERT) is proved to yield the
best results. We also have demonstrated that using transfer learning from NLI to factoid
questions does not statistically increase the performance. Dropping context-to-query attention
mechanisms can also help increase the performance on yes-no questions but greatly hurt the
model’s ability to answer factoid questions.

For future research direction, there are many areas for Thai MRC to research further.
Larger scale and more diverse dataset consisting of different types of questions in one possible
area. The number of monolingual Thai MRC datasets is still somewhat limited. Another line of
research which focuses on using the benefit of rich resource languages like English by transferring
it to other lower resource language, a concept of cross-lingual NLP. Singh, et al. [48] and
Conneau, et al. [39] researches involve this aspect of natural language processing tasks. Another
future direction that the authors are interested in is the usage of MRC reader models or pre-
trained LMs, which are tailored for MRC with long passages since the lengths of our context
passages in the NECTEC dataset are very long. Finally, more incorporation of Thai-specific
techniques, like usage of Thai dependency parse to help the reader mode, can also be pursued

further.



68

9. Appendix
A. Appending Special Tokens to the Beginning or Ending of the

Passages
Table 22 shows that appending the special tokens at the end of the passage works
better in terms of overall performance, which is judged from overall F1 (%). A very low
performance in yes-no accuracy for the version, which we append the tokens to the beginning of
the context passage is noteworthy. The fact that most factoid questions tend to have the answer

position located at the earlier portion of the passage could attribute to this phenomenon.

Table 22. Special token model's performance with different special token positions. Column with

an asterisk is the main evaluation measurement.

Factoid Yes-no Question
Position of Overall
Accuracy P-value
YESNO tokens F1(%)*  EM (%) F1(%) Accuracy (%) %)
%
At the beginning 61.10 49.42 64.99 20.27 92.65 -
At the ending 63.05 49.35 64.62 51.25 99.15 <0.001

B. Experiments on Loss Combination in Joint Model

We have varied the span retrieval and yes-no classification loss combination in the joint
model (section 4.2.2.2) as preliminary experiments. Table 23 reports the results on the validation

set. We stick with the combination of 1:1 (no multiplicator factor).

Table 23. Preliminary Experiments on Loss Combination. Column with an asterisk is the main

metric.
Factoid Yes-no Question
Span Yes-no Overall
Accuracy Accuracy
Retrieval Loss Loss F1 (%)* EM (%) F1 (%)

(%) (%)

1.0 5.0 63.35 48.17 64.25 56.55 99.74

1.0 0.2 64.43 49.60 65.51 56.34 99.74

1.0 1.0 66.14 51.92 6732 57.33 99.74
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C. Examples of Maximum Matching and Bailarn Answer Tokenization

We now show some results on the tokenized factoid question’s answers. Table 24 shows
only some of the mismatched tokenized answers from two tokenizers. There are 7,743 miss-
matched tokenized answers between Maximum matching and Bailarn tokenizers [32]. For the

maximum matching tokenizer, we use PythaiNLP implementation of Newmm.

Table 24. Comparison of Newmm and Bailarn Tokenizers

Newmm Bailarn
5, nAud] [Bniud]
L3, %, A1) [lmn]
[U5E51U15UR, Ialdey, 1o, ., i) [Us67U15UR, Ialde, 1ov., ind]
LA, 1o, 3, 1ae, -, 13, dleyeyn] LA uLeidY, -, T5ilyey]
a9, 19, 14, 8, 5, 98] iy, Lowwasiaa)
[USH, LADY, 79, an, Adwe] [US¥Y, \navioanfand]
[udl, 12, wwnew, w.e., 2539] [Su, 71, 12, ey, WA, 2539]
[Usenedangy] [Useine, 89ngu]
[§afu, Ay, was, wan] [{afu, Auuasian]
04, wau] Oduwau]
(n, ann, 13, 3, 5] (lnann, 1ds]
[aWssed, W, 139, N3] [AW3304w1, 1IBNW1]
Loas, Uwoas, 151090, windu] LoasUwas, 151099, windu]
[, vy, U, U9, 93, 1@, 8, U1, Lua) [Wauds, U9, gaiea, ULua]
[, 1, U9, alases, soaa) [Uautaauase, s0aa]
[@aninsviay, tne, A38, 9949, 3] [@anilnsvia, ne, 73, &, 9949, 3]
[, 34, -, §94] [, 3u-, §04]
[agwy, 5, &, 7 [agwy, Jean]

[Wensguuns, Sade, o, 4, 93, 1, A, e] | [wen, Sguues, Saden, 4, 93, wevaam]

Gy, la, 18] Gy, lals]

[Wanda, 4, In, ad, 1, 13, @] [Wania, dlnad, wisw]
(e, s, wvess] (e, Aaumass]

[391130, 18, 39, glay] [0, Tan, sogley]

[ug, 9%, 9%, A] [Uzgzaen]
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D. Pre-training results on XNLI-th dataset

Table 25 describes the result of the pre-trained models on XNLI dataset. It can be seen
that even though the performances of some pre-trained models are not strong on XNLI, the pre-

trained models still increase the performance of the yes-no model as shown in section 6.2.

Table 25. Performance of pre-trained models on XNLI corpus

Model Test Accuracy (%)
BIDAF with Static embedding (section 4.3.2) 52.83
BIDAF with contextual embedding (section 4.3.5) 67.54

BERT fine-tuning (section 4.3.4) 68.00



(10]
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