CHAPTER 2
Methodology of Value-at-Risk

21 Review of the Literature

The earlier studies on the Thai government's debt does not extensively
consider interest rate and exchange rate risks. Nevertheless there is a study
involved in capability of repaying external debt. ie.. Pranee Thinakom and Direk
Puttamasiriwat's “Developing Countries' external debt and case of Thai government's
debt" (1985) by using Debt Service Ratio that is proportion of repaying the debt to
foreign income, including export earning and net unilateral transfer, per gross domestic
product (GDP). The study concludes that income of export and services is not enough
for the need of importing necessary goods and services, so the payment of external debt
depends on foreign cash flow during 1976-1983. However if there are problems in
foreign investment and external debt. The government might face liquidity problem or
foreign currencies might be scarce in Thai's financial system. In spite of these,
capability of repaying external debt had many weaknesses that might cause extreme
fluctuation of interest rates and exchange rates, impeding the government to determine
a practical target.

Then, an issue of Thai's debt management is studied by Wanarat
Mingmaneenakin (1985) on the topic of “Management of Thai's Public Debt". She
states that, for effective management and maximization of public debts, the government
should rearrange every step of operations, such as disbursement and accounting system,
etc., in harmony with it external borrowing plans. However, her study is mainly
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focused on general matter, without showing risk assessment and management for the
government,

For the studies about estimating VaR of holding portfolio in a certain
period of time, such studies can be applied to estimate maximum present value of Thai
government's external debt.

For this thesis, Value-at-Risk, a practical concept, defines the maximum
change in payments for government’ debts which could lose at a certain level of
confidence over a given time horizon when exchange rates and interest rates play
greater roles. VaR approaches have several ways such as Historical, Analytical,
Stochastic Simulation. Merrill Lynch uses historical method for risk measurement that
would be precise when portfolio composition is relatively constant over time*. This
method uses profits and losses of actual historical data to built a distribution for
calculating VaR.

Risk Metrics proposes a significant view, that is, use of cash flow
mapping where it standardizes the risk vertices of cross products. There are two ways
for searching VaR of total portfolio. The first one is the Analytical approach' of Risk
Metrics.Secondly, JP Morgan research team uses a stochastic simulation approach
known as Monte Carlo Simulation technique3 When dealing with correlated variables
based on a large covariance matrices under stochastic simulation, the recent data will
be randomly picked up in order to simulate a distribution. This approach focuses on the
most recent data to show portfolio characteristic. Under simulation processes, we can

1To see Merrill Lgnch’s 1995 annual report _
%Tlg see Kenneth Sleong, “The Right Approach”, A Risk Supplement, June 1996,page

3For more description, to see John R.Canada, William G.Sullivan and John A White,
Capital Investment Analysis for Engineering and Management 2nded' page 314-335
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use smaller amount of data to show mutual relationship and performance for precise
prediction of any future losses. Both Analytical and Monte Carlo technique have been
proposed in document of JP Morgan known as Risk Metrics.

Initially, Value-at-Risk was released by JP Morgan in 1994 and then
again revised to fit optionally in 1995 It showed an assumption that the returns of all
assets and liabilities are normally distributed. The normal distribution is the statistical
properties of financial time series. Richardson and Smith (1993) give some example
about a large percentage of such properties focus on daily returns which can be
concluded that return distributions had fat tails called excess Kurtosis. The peak around
the mean of the return distribution is higher than that predicted by the normal
distribution and there were more observations in the left-hand tail than in the right-hand
tail called negative skewness. This is due to the fact that, on the one hand, we want to
use as many time series as possible to cover all possible events of assets in a portfolio,
but on the other hand, we want to use relatively short sample periods so that parameter
estimates react sufficiently quick to new information. For these reasons, it will be
beneficial to apply Monte Carlo Simulations,

A significant key of Monte Carlo technique is to generate new cash flow
outcomes with random selection. In dealing with random variables, there is greater
uncertainty that a normal distribution is reasonable as approximation of such outcomes.
Beder (1995)5 has tested VaR methodologies in many ways. He studies eight common
VaR methodologies applied to three hypothetical portfolios. For each methodology
presented, VaR is calculated for both one-day and two-week time horizons. The first

4The studies of Mandelbrot (1963) and Fama (1965)
5 Tanya Styblo Bedar, “VaR: Seductive but Dangerous”, Financial Analysts Journal,
September-Octerber 1995 page 12-24
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methodology, historical simulation, is performed twice by changing the data base used
from the past 100 trading days to the past 250 trading days. The second methodology,
Monte Carlo simulation, also is performed twice by changing the correlation estimates
from the JP Morgan Risk Metrics data set to those from the BIS/Basle Commit
Proposal Differences in correlation. Differences in correlation estimate between Risk
Metrics and BIS/Basle are significant. Risk Metrics permits correlation across all asset
classes, using exponentially weighted daily historical observations, but the BIS/Basle
proposal permits correlation only within asset classes, not across, effectively forcing
the correlation between asset classes to be plus or minus 1, whichever produces the
higher estimate of VaR.

Beder warns the danger of using VaR methodologies and sets longer
time horizons to be appropriate for instruments. For example, he shows a surprising
result of historical simulation method that VaR of one-day time horizon is higher than
two-week time horizon in the result where approach hased on two-week time uses the
average return within a specific historical period, as another approach uses the actual
return within one day. In addition, he points out the differences of VaR result on the
same assumptions when he changes from historical simulation to Monte Carlo
simulation because difference in VaR is driven by specific historical sample against the
relative randomness of key variables. So this article urges us to regard the crucial
factors for objectives we wish to analyze over any horizon, or selected methodologies.

Leslie McNew (1996)6 recommends that JP Morgan’s Risk Metrics is a
good choice for assets and liabilities which has no optionality such as stocks, bonds and
foreign exchange as the stochastic simulation method would be suitable for other

6Leslie McNew, “So near ,So VaR” ,risk .October 1996,page 7-9
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optional works. For the historical method, although it is easy to explain to senior
management but there might be shortcoming, if portfolio mix changes over time. Since
effect of specified historical data would be disappear within short time less than that by
using other methods such as analytical Monte Carlo which estimates a whole
distribution of observations, she suggested a problem of the main assumption that
portfolio returns are normally distributed. In some risky event, such as the devaluation
of the Mexican peso, the 1987 crash and the Gulf War, these events could not be
forecasted or hedged, so forcing the extreme observations during the periods of event
risk to obtain leptokutic distribution which has a higher peak and flatter tail.

On the other hand, we face two sensitive assumptions that portfolios are
both marked to market and liquidated easily. In reality, Thai government bonds could
not based on these assumptions, but we would instead consider David Shimko’s
article.7He states that “many corporate have expressed unease with traditional VaR for
corporate risk management, on the grounds that their future cash flows are not marked
to market. Indeed, it could never be traded”, therefore, instead of heing marked to

7 David Shimko, “VaR for cooperates”, Risk , June 1996 , page 28



17

market and liquidated, indeed cash flow mapping is a good alternative for illiquid
instruments.  Despite the calculation of VaR, to test if those methods are correct, we
should have techniques for verifying the accuracy of VaR measurement.

Kupiec (1995)s tests VaR model accuracy, but examining might be
erroneous unless a large sample of historical data is available. VVaR models are different
from regression models, as there is no ex ante measure of their goodness of fit similar
to the R" statistic. Nonetheless, accurate VaR estimates of risk should correspond to the
actual profit and loss experience observed for the portfolio over time. Kupiec’s tests are
based on the binary nature of the outcome, either the actual dollar loss on the portfolio,
less than the ex ante estimate, is a success, or greater, is a failure. Kupiec considers the
amount of time that elapses until the first inaccurate VaR prediction. Intuitively, the
smaller the percentage of time that one would expect a loss of a given size, the longer
the time interval one would expect until a loss of that size is observed.

If a loss of that magnitude is observed after only a brief lapse of time,
one could infer an inaccurate VaR estimate. In case of Leptokurtic distribution,
extreme outcomes occur more frequently than in normal distribution. Kupiec points
that such a test is weak hecause these extreme outcomes in fat-tails of distribution
causes inaccuracy by underestimating of the risks from another statistical test. Kupiec
uses observed historical data for determining the maximum dollar amount of loss
observed; say, 5 percent of time, compared with the VaR model’s ex ante estimate of
dollar amount at risk over that period where the result of Monte Carlo technique is
suffered errors less than that of historical simulation,

Paul H.KuRiec, “Techniques for Verifying the Accuracy of Risk Management
Models”, The Journal of Derivatives, Winter 1995 page 73-84
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2.2 The concepts of Mapping positions of bonds

There are three general concepts to map positions of bonds whose value
is principally based on interest rates .namely principal maps, duration maps and cash
flow maps9

Principal maps assume that all interest payments occur at the current
market rates which is not a correct assumption to longer maturity bonds and to a
position of unstable interest rates. Then, for duration mapping, it relates the current
market price of the bond to the present value of all cash flow as follows:

p=1 Ct/(l+r)’

where p = present value of bond
r = yield to maturity on the bond
t = time period in which the coupon or principal payment occurs
ct=interest or principal payment that occurs in period t

9Morgan Guaranty Trust Company Global Research, Risk Metrics-Technical
Document 3rd” - May 1995 page 107-116
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With duration mapping, we can measure the weighted average time to
full recovery' of principal and interest payments as follows

D=[1(ct*)(1+) / Let/O+)l

An adjusted measure of duration called modified duration (Macaulay
duration) which could be shown as

Dmad = (I/p)* (dp/di)

Notice that the dp/di line is tangent to the price yield curve at a given
yield, so modified duration is the percentage change in price for a nominal change in
yield where we can measure the curvature of the price-yield relationship
mathematically with the second derivative of price with respect to yield, as follow:

Convexity = (Ilp)*(d2/di2)

where  d~pldi2= (I/(1+1)2* X (CL*(2+0)/(I+iy

1=l

As duration measure linearly percentage change in price for the change
inyield ,convexity is a measure of how much a bond's price-yield curve deviates from
the linear approximation of that curve .Based upon this concept, change in a bond
price is up to price change due to duration and convexity shown as
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David Blake and J.Michael Orszag (1996) illustrated the use of duration
and convexity together by taking a second-order Taylor expansion of the present value
with respect to yield.

o= [I1d/(l+r) 3+ BI(+)T

where p = present value (current price) of the bond
d = coupon payment per period
B = face value of the bond
r = yield to maturity
T=maturity of the bond in number of periods
then, David and Michael got the following:

Ap = -MD*Ar*p + (C/2)*(Ar)2*p

where MD is the modified duration defined as:
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MD = D/(l+1)K

where Kis the number of coupon payment period per year (.0, K=2 for a semiannual
bond). Dis the clration ciefined by

=d KI+n)T+L-(l+1)-rT1+B* T
D r(1+r)1 p (141

and C is cfined by the closeckform formula for bond convexity; as follows:

C = -0 [(T+IXTH2XUL+r)TR+ 2[(T+2 X UL+r)TH2-( 141)]

(a2 - (0] + B> T
Y p ftT+rf

For a conventional method, curation mepping is a method Lsing
Mecaulay curation which measures a bond price sensitivity to changes in interest rates,
and then the mockem portfolio to measure convexity. Although this conoept has been
wicely used by fixedl income maneggrs, it hes hed a short coming for calculiting a sk
of all cross proclcts to express portfolio curation.

Another conoept, cash flow mapping, which couldl have been used for
this thesis, is the decomposition of present cash flows into stancerd vertioes of
synthetic zero coupon bongs by discounting future cash flows with interest rate
positions of stich stancard vertices . The approxiration of the original cash flow's price
volatility can be otained by multiplying its modifiedl curation with its iterpolate yield
and interpolate Yield volatility. To solve the allocation (3) of cash flow of each
stanciarclzed nsk vertioes, we apply variations (a2) of them as follow



22

¢ mn—cf*CVm + (1-3) *G~m+i+ 2*&*(1-a)*pmixi+i*0'm*CTrn+i

Where

o1t veriation of cash flow's volatility price of bond having mnyears of eturity

XL covariance of cash flow's volatility price of bonds having m and m#1. years of
retunty

therefore, we can get cash flow of mand mrL standarciized sk vertioes &s

CFm=a*CFm and  CFmti=(|-a)*CFmm

S0 this cash flow meps will show the distribution of the curent market
value of future cash flows over tine. From such distribution, We can estimete a
maximum potential loss over a certain percentage of tine within a given period known
& Value-at-Risk.

2.3 Value-at-Risk Modeling

W& should look beck to the congept of VR methodology which is the
possible value of maximum loss & a conficent level. “Value-at-Risk was first
transformedl from a pleasing concept to a working reality” , according to Dennis
Weatherson , chainmen of JP Morganl) For this thesis, VaR is used in form of
payments of celots where another definition, holcing on the methematical meaning of
VAR, showed meximum change in payrents of cebts & a given level of conficence
over agiven time horizon. A proposed conoepts of VaR measurerent on three main
methoc, namely:

Dsee “Variations on atheme”, a risk special supplerrent June 199 page 2
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1 Historical method

2. Analytical method

3 Snucture Simulation method

Hstorical method is collection of historical market cite of every risk

factor tet affect value of proctcts. The market cata of Thai government's bongs,
hovever, have hardy indicated their actuel merket prices, due to low liquicity
problens, while governent'  cirect extermal loans have almost no transaction after
launching. The achance statistical approach andl mockem portfolio theory are used to
rmeasure and explain mapping of cash flows into the risk factor's vertices. VA can use
analytical and Structured simulation method to simulate present values of peynent cash
flows and their volatiliy.

2.3.1 Analytical Method

To decompose bongs and loans into cash equivalert positions, we will
create Yieldl curves with swap rates. Such aswap s the trade-off between floating rates
of FRN and fix rate which have similarly been FRN prices being ecual to par values of
bongs.To apply all classes of products suitable to decompose Thal governient bonds
and cebentures, we mep cash flow of the procucts onto standarcized risk vertioes.
Disoount factor is present value of one unit which wes paid in futlre. To get the zero
coupon rate for the several rratuirty coupon bond, we can perform bootstrapping for
building yield curves with the sunmretions of all the present value of the payments
frior o the periodl thet we want to estimete the zero rate and then get zero coupon rate
of each period to assume principel ecul to one. Hence, we get the following;



24

1=ZC*R* + (c,tl)e-RIT or

Ry=1*log ( l+c, 1
t l.1¢c,*e"

Where
GL. fix rate or price of THB interest rate Swaps on year(i,f)
R - known year(i) zero coupon rate.

:1-year zero coupon rate

Zero coupon rates of each period were cerived accorcingly for
simulating Yield curves of zero coupon bongs. Then we consicer sk factors of the
government celats conorising two groups, interest rate and exchange rate sk fector,
inclucling  1-year to 10+year zero coupon rate and SchTHB, CSTHB, SHITHB,
DMTHB, DKr/THB, FH/THB, £THB, Y/THB, SR'THB, USTHB and ECUTHB
exchange rate. These interest rate risk factors are values with zero coupon rates in each
periods and the exchange rate rise factors are valued with market valuesfor zero
coupon bongl. e can find clolp (retum of prices), s follow

Wihere  : price of zero coupon bond
Y - Vield of zero coupon bond
t :year to meturity

hence



dp/dy =, -t *

(
dp/dv = (i'E)/)

dp/p = -t*dy

(L+y)

and for exchange rate we ¢ find dolp from

1+

dp/p = Infexts )
In(ext)
where
X : exchanqe rates of bart against the foreign curencies
We can estimete ciaily volatility by nsk factors follow &

Inpt) =5t+In(Pt-i)+ £t Wheret=1.2,..T
Ot: anonrandom dtift perarmeter
8 1 an incepencent andlicentically cistributed nomal
randomvariable N~(0,Q2
OF rewnte
In(pt) =5t+8 t-i+—+5i+In(p0)+8 1+ 2 +—"#st

=Z6i+(po)+Za

T T

Welet a- 25 I+In(po) and Pzt
ol | o

25
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where the variance of I3 (019 is

El(@uT)-E(a-§ )3 = E[ (I ST = T*a2 by igroring O1

Sine Inp 1) - In(p Q) is a THperiod reum , if 6 Lis the time t stanchrd
ceviation of aily returms, the stancird deviation of T-period rumis

¢, T=T,2%a,
to cerive covariance between atime series of ceta X and thet of Y, we let

In(pit) =In(pit-i)+8it
In(P2t) =In(Pat-i)+s 2t

where t=1.2.. T ad 8fare independent romral (OCT)then XY are T-period
payment of pktand p2lrespectively, therefore

:
X = In(prr/ Pio) = I's It

Y = In(p2T/ P20) = 1 21
Accordingly, we can express the covariance between Xand Y &
adm,, = E(XY)-E(X)*E(Y)

T T
=E(18n*182) - 0; 1and82are serially uncorrectad
H H 0, EX) =EY) 0
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= Trg~y  Where CTjlLis the daily covariance

and the fonmula for the correlation is given by
Pyt=" Gut

ax.t*ayt

Then, acash equivalent amount of each interest rate risk factor is given by

1

ot = 2 [AKt * ek] bart

. LRy S
and acash equivalent gﬂ of each exchange rate risk factor is given by
VLK ek et
(I+R 1)1
(@ iweighted value or cash equivalent amourt of t-year zero
COupoN rate sk factor.

(@kiveighted value or cash ecuivalent amourt of exchange

rate risk factor
ekIvalue of SSWTHB, CS'THB, SH/THB, DMTHB, BR/THB, £/THB,
Y/THB SH/THB, USTHB andl ECUTTHB exchange rate &t settlenent cbte
R - value of t-year zero coupon rate & settlement cete
AR future annual payment cenominated in k* currency & period t
Cash flows of standarclized verties have been looked like value of a
security. With %% conficence level, we have hed covariance: metrixes of such
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secunities, 5o total nsk or volatility of overall payment cenominated in bart currency
of government” extermal clirect cebts have been given &.

C=ZoiiW +2*z Za.0jpij"Gj
or

0p2= )X iW + 2*1 ZOiOjCTi

where QT present cash flows of standardized verticesy().
G, :variance of standarclized vertioes(i)
CT : covariance of stanciaroized vertices(i).
B the correlation between retum of asset 1 and asset
(@ cash equivalert amount of risk factors
fhen  VAR=z.(Jr
where z =a stancard score of the nomal dlistribution & a given level of conficence,
forexample, 2= 1% & %%level of conficence.

2.3.2 Structured Simulation Method of Monte Carloll

The method hes cealt with market risk as a probabilistic phenomenon. It
15 also called as, the conoept step of structured simuliation method. Generally, we can
[t our view ito this step and otain approxietion of characteristics of the cesired
anSWner, SLoh as mean, variance, dlstribution shape to explain more clearly as follows:

10 Seenslﬁ%lfel\x{%ﬁsﬁ %%1%83-%86 %&Nﬂﬂs for Engineering and
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For this thesis,
we generate random
normal deviate

outcome value =
mean + (RND X
standard deviation)
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To determine the approximate number of Monte Carlo trials required to
obtain sufficiently accurate answers, we should keep a running plot on the average
answers of interest for increasing numbers of trails and judge the number of trails at
which those answers have become stable enough to be within the accuracy required

We can illustrate a figure as follows

h

O f this thesis, the annual payment in baht currency of the government
foe external debts will be assumed as random number and statistically independent
cash flows. The central limit theorem, from probability theory, establishes that the sum
of independently distributed random variable trends to be normally distributed as the
number of terms in the summation increase. Hence, basically we will desire any risk
factors' distribute shape as a set of multivariate normal with mean 0 and variance 1.

After we had already decomposed the net cash flows of any risk factor
vertices, we calculate covariance matrix = AT *A using the Cholesky factorization.

With covariance matrix 2 ,we can decompose matrix AT from 2 = AT* A Dby using
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the Cholesky decomposition. As the dimension of covariance matrix 2 s 21 x 21, we

can derive the elements of matrix ATfrom X. From definition. X = AT* A

/ \ \
SIXI — SIxI1 — Shet aixi — 0 —0 3 —3N— 32

Sill — slxl1— 102 = aiixi— a,xu — 0 0 — 31— 32Ux11
M — 21— 20 AU — AU — A 0 — 0 —3A
\ [\ [\

/ \
SIXl — SIxll — D&
SIXl— Ii1— 111

W — M — A
\ /
_ \
a 1 3IxI* 311 — aixl* azixl
alixi*aixi IX|+3M D+—+a 11xu — aiixi*a2ix|+3iix2*321x2+ ~+ailx|*a2lx|
3B azixi*aiixi+azixo*aiixet —+azixii*aiixii — a~2ixi+a~2ixt~+a 22
\ /

or each element of ATcan be solved by using

31 =(l/an )*

ali = [ Su- Xak]12

J
aj = 1*[s,j- X(aik*ajk)] ~ where i=34,.21 and j=i-I

3 3



32

We need random selections of each risk factor vertices to generate

matrix X. a set of multivariate normal MVN (0,1) to multiply Transport of matrix A

and matrix X to generate yield matrix, y = Aa*x, where y is MVN (0, ) to obtain the

combination of statistical trail values with covariance characteristics of risk factors in

term of the desired answer and to generate multivariate log normal price Z= Fe'l

where F is vector of the expected price .Then we revalue the positions of values to

distribute present values of payments of each risk vertice with histogram of the

distribution df simulated changes in values and the cumulative histogram for analyzing

VaR. Finally, we can conclude all processes as

1. To generate zero coupon rates in several lengths of Times or  yield
curves of zero coupon bonds by using THB interest rate swap.
2. To map each cash flow of any bonds and debentures into risk factor
vertices.
3. To calculate present values (current values) for any risk vertices
over aseries of time observations.
4. Analytical and Monte Carlo method.
4, Analytical Method
4.1.1TO analyze the optimal decay factor for such present values
2.1.2To estimate variance and covariance of any risk factor vertices.
4.1.3T0 calculate total variance and VaR.
4.2 Monte Carlo Method
4.2.1To analyze the optimal decay factor for the returns, ptl- pfL.)
2.2 .2 To calculate covariance matrix = AT*A of logarithm values of
returns for any risk factor vertices, we can find AT
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4.2.3To randomly select a set of multivariate normal matrix, x
composed with any risk factor vertices by using Table of
Random Normal Deviates or Excel program.2

4.2.4 To generate yield matrix y = AT*X and then

4.25T0 revalue Z = F*e'land to distribute their values into a normal
histogram and a cumulative histogram for analyzing VaR

1 Please see appendix D of Capital Investment Analysis for Engineering and
Management, 2nd" , 1996
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