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In recent years, the most successful and pervasive technique for pattern recognition and
machine learning is a special family of classifiers known as multiple classifier systems. They have
all demonstrated consistent —in some cases, remarkable improvements in predictive accuracy over
single classifier systems. This dissertation extends the traditional concept in many aspects: improved
recognition accuracy of multiple classifier systems through the use of linear transforms; robust
generalized channel coding for multiple classifier systems; and optimal combining of predictions.

The first contribution of this dissertation is an exploration of the use of frames, Which are
overcomplete sets of vectors, to form efficient discriminant representations, called Local piscriminant
Frame Expansion (LDFE). The scheme is a simple and efficient method suitable for extending the
Local Discriminant Bases (LDB) feature extraction algorithm into m uitipte Description Coding (MDC)
framework. To combat misclassification, preassigned amounts of redundancy are adced to the original
data during the feature extraction process. Unequal discriminant assignment is implemented by varying
the amount of redundancy with the importance of data. For the second contribution, this dissertation
develops three extensions of the original ECOC method based on more generalized concatenated
coding schemes. These are the attempts to improve classification through the concatenations of
two or more heterogeneous multiple classifier systems. Other contribution is the optimization of
combining of the predictions. In particular, a new weighted combining scheme is investigated. The
algorithm utilizes a ridge estimator with statistically tunning parameter. Finally, a face recognition
task is performed by using LDB with neural networks. Based on the key observation on the high
interpolation power of neural networks, a collection of transform networks is constructed, in which it
can be interpreted as both the frameworks of incremental tearning (at the output level) and s ayesian

model averaging.
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