
CHAPTER IV

GENERALIZED CODE CONCATENATION FOR MULTIPLE
CLASSIFIER SYSTEMS

T he ECOC technique for solv ing m ulti-class pattern recogn ition problem s can be 
broken dow n into tw o distinct stages — encoding and decoding. G iven a pattern vector  
o f  unknow n class, the encoding stage consists in constructing a corresponding output code  
vector by applying to it each o f  the base classifiers in the en sem b le. The decoding stage 
consists in m aking a classification  decision  based on the value o f  the output code. The 
m ain focu s o f  this chapter is on the form er stage. In particular, w e  propose a sen es o f  
concatenated output cod es for MCS based on MDC derived from  the previous chapter. In 
Section 4 .2 , w e  start to lay som e basic know ledge in channel coding. The first part o f  
the section  introduces the threshold decoding technique for T -repetition  code, where the 
decoding o f  T -repetition  output co d e  is equivalent to A daboost [8], Based on this know ledge, 
in Section 4.3 w e propose to cascade MDC with A daboost for MCS, leading to one o f  the 
tw o-stage T -repetition  output co d e  schem es. Thus, this c lassification  sch em e can be easily  
fitted into classical co d e  concatenation schem e. M oreover, it can b e considered  as the MCS 
m ethod w here w e try to both m anipulate the input features and resam ple training exam ples 
according to A daboost algorithm  (see  section 2.2 in ch ap ter 2). W e a lso  propose to cascade  
MDC with ECOC for MCS, w hereas it should be fitted with classica l cod e concatenation  
schem e. Finally, w e  explore the possib ility  to u se  the MDC and Bagging m ethods with ECOC 
in order to generalize them  to the generalized cod e concatenation sch em e for MCS.

4.1 Introduction
A ctually, the com m on  approach used in channel coding is to introduce redundancy to 

inform ation b efore  sending on the channel. For exam ple, giving ร  inform ation sequence, 
a linear b lock  co d e  X s —> X R is applied to inform ation, and the R  resulting codeword  
are sent on the channel. The inform ation system  w orks by producing a linear dependence  
betw een the transm itted bit sym b ols, w h en  the distorted sym bol is received , it is consistent 
with exactly  on e valid elem en t o f  X R, so  the inform ation sym b o ls is decoded and then 
known.

On the other hands, one can build a coverage set o f  classifiers by repeatedly partitioning 
the com p lete set o f  c lasses into pairs o f  sup er-classes and, for each pair, training a base 
classifier to distinguish betw een these two super-classes, w h en  the partitions o f  super-classes 
are ch osen  carefu lly , redundancy is thus introduced to class inform ation in a m ore system atic
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w ay. To classify  an unknow n pattern w e present it to all o f  the trained classifiers, w ith  
the classifier outputs w e create a string w hich  corresponds to the unknow n pattern and the 
designed output cod es. In m aking an overall c lassification  decision , the decoder assigns the 
string to the class by  m eans o f  m inim um  distance decision  rule, or probability estim ation, 
or likelihood decod ing  rule [77], This is thus a m atch b etw een  the capabilities o f  decoding  
redundant inform ation in coding theory and the needs o f  partitioned h yp otheses decoding in 
pattern recognition. O ne o f  the possibilities in adding redundancy to channel sequence is by 
repeating exactly  the sam e inform ation and sending it over one sin gle channel sequentially  
or over m ultiple channels (in this case, all coded sequence are m axim ally  correlated).

In analogy to channel coding in inform ation theory, the error rate o f  MCS can be  
controlled by adding redundancy to the original patterns before final decision . Underlying  
the MCS fram ew ork, a teacher could  try to repeat target con cep t M  tim es, resem bling  
the transm ission o f  sam e inform ation over M  channels. This sch em e is som etim e called  
T -repetition  code. N ote that m any MCS are based on this T -repetition  cod e m odel. For 
exam ple, d ecision  o f  boosting based MCS [8], called  Adaboost, cou ld  b e interpreted as an 
instance o f  threshold decoding for a T -repetition  cod e under the assum ption o f  a binary 
discrete m em oryless channel constructed by the en sem b le  o f  binary w eak  classifiers.

In the case that the redundancy inform ation with m axim um  correlation are presented  
to m ultiple classifiers, the decisions am ong classifier m em bers b eco m e highly dependent 
and inefficient. In this case, w e thus face a major problem  in optim al com bin ing the 
classifiers, called  harmful collinearity [78]. A nyw ay, w e cou ld  alternatively try to m inim ize  
the correlation betw een  all inform ation channels (classifiers) by splitting the inform ation into 
distinct parts by sim p le spatial sam pling. In this case, all classifiers are independent to each  
other, but each  o f  them  m akes inaccurate decision  from  partial inform ation presented to 
them.

D em anding for so lv ing  com p lex  classification  problem s has directed toward the optimal 
design (trade-off) b etw een  the above tw o cases. O ne w ay o f  ach ieving effective  results 
is through sharing resources such as inform ation and com pon ents. There are at least two 
other m ethods for adding redundancy (sharing resources) into classifica tion  system s. The 
first m ethod is know n as ECOC, w hich exploits the conventional concept o f  channel coding, 
called forward error correcting code (FEC). The ECOC based MCS is inspired by error 
correcting co d e  transm ission technique from  com m unication  theory. In the secon d  method, 
redundancy is added into classification  system  in a m ore general w ay. This m ethod is called  
multiple description coding model [4 4 ,5 3 ], w hich  is based on the con cep t o f  fram e expansion  
(linear transform ), s in c e  the linear b lock  code is a linear transform. The d ifference betw een  
tw o m ethods is that the transform and coding b locks are interchangeable. Specifically , the 
expansion from  s  to R  dim ensions is done in the original, continuous dom ain o f  the data.

There are three broad approaches to MCS. One is based on com bin ing strong learners. 
The secon d  approaches is based on com bin ing w eak  learners. The last approach is based  
on m odular nets and hybrids. The effectiven ess o f  the com bin in g  strong learners approach
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is aim ed at variance reduction, w hile the com bin ing w eak  learned approach is aim ed at 
reducing both bias and variance. The en sem ble error o f  the com bin in g  strong learners 
approach is co m e from  the average error m inus by the average o f  m ism atch. This way, 
coverage and prediction optim izations b ecom e the key ingredient for the su ccess o f  the 
com bin ing strong learners approach. M ore im portantly, the m ain design criterion o f  MCS 
is to optim ize the perform ance o f  the system  subject to c lassifiers’ characteristics (strong 
or w eak), and restrictions on the com plexity . Our proposed m ethod learns an ensem ble  
o f  classifiers that are b iased to have high precision (as op p osed  to, for exam ple, boosting, 
w here the en sem b le  m em bers are biased to ignore portions o f  the instance space). Giving 
that the aim  o f  coverage optim ization m ethod presented in ch ap ter  3 is satisfied . W e further 
m odify  the idea o f  com bin ing strong learners to concatenated  error correcting output codes.

In this chapter, w e are interested in the equivalency betw een  decod ing  redundancy  
inform ation sent over m ultiple channels and com bin ing m ultiple hyp otheses classified  by 
m ultiple classifiers. Based on such an equivalency, w e describe tw o exten sion s to the ECOC 
to se lect su p er-classes partitions suitable for classification  problem s. The first m ethod is 
based on the classica l cod e concatenation, w hereas the secon d  m ethod is based on a m ore 
generalized concatenated  codes.

4.2 C h a n n e l C oding

In this section , w e first describe likelihood decoding o f  T-repetition co d e  and som e  
notations needed in coding theory. The likelihood decod ing  o f  T-repetition cod e described  
here is som ew hat akin to A daboost [8]. M oreover, this decoding technique currently becom es  
one o f  the favorite decod ing  m ethod used in ECOC [77]. Then, w e detail the concept o f  
classical and generalized  co d e  concatenations based on the materia] taken from  [49].

4.2.1 Coding Theory
Often the co d e  param eters (ท, k, dm) are used to distinguish b etw een  different block  

codes, w here dm is the m inim um  distance betw een all cod e w ords in the code. In a special 
case, transm itting single inform ation bit ท tim es is the (ท, 1, ท) b lock  code.

Definition 4.1 (Dual code) I f  c  is a (ท, k ) code we define the (ท — k, ท, ) dual code by c 1

c 1  = { x  G T % \  I; CXT  = :  0, ; c 6  C } ,  (4.1)

w here JT” denotes the binary vector space o f  length ท.

Definition 4.2 (Repetition code) The length ท repetition code is the set o f two code words 
consisting o f  the all-zero code word Co= 0 0 ...0  and Ci= 11... 1.
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Definition 4.3 (ท — 1 parity check code) ท — 1 parity check code (parity check matrix o f  
repetition code) o f  length ท is the set o f  a ll code words satisfying cH T =  0, where the 
ท — l x  ท parity check matrix is given by

/  1 1 0 . . .  0 \  
1 0  1 0

V 1 1 /

(4.2)

Definition 4.4 (Generator matrices of repetition codes) A generator matrix that maps the 
single information symbols to any repetition code components o f  length ท is given by

G = [I-,\-,P], (4.3)
where 1 = 1 ,  and p  is a n  — 1 vector with a ll o f  its elements are equal to 1. In other words, 
G =  [1; I; 1 1 . . .  1], and H  is its dual code.

Definition 4.5 (Majority logic decision) Consider a set o f  parity check vectors M j  o f a 
linear binary code c , where M. J spans c 1 and position j  is equal to one fo r every vector. 
The majority logic decoding o f  position j  G [1, ท] is defined by

rj © 1 if <p ๖ ) m od  2 >  L̂ J (4 4}
rj o therw ise,

where ©  is addition modulo 2, (- :, •) is scalar product o f  two binary vectors, and a parity 
check vector ๖  G c 1 . In other words, ๖  also spans the ท — 1 parity check code.

In fact, the above decoding rule can be formulated in a different, but equivalent 
manner. We may write

1 if E j = i rj >  1.2J
0 otherw ise. (4.5)

Definition 4.6 (Error probability) The block error probability  Pg gives the probability that 
a transmitted code word does not correspond to the decoded code word, and the bit error 
probability pe specifies the probability that a transmitted information bit is incorrect.

If more than e errors occur during the transmission of a binary code word consisting 
of ท bits, then

p b _ ท
jE ”=e+1 

\ (  ' - ๗ *  

E  ■ )

E ( l - P e ) ”- '7 e odd

(4.6)

J
p i ( l - p e)n- j e even.
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Example 4.1 The simple error-correcting code is the “triplication" code [42], Here, the trans­
mitter sends the information bit as the triplet (i, i, i), and the corresponding received triplet 
o f binary numbers with probable error is denoted as ( r i ,r 2,r 3). Following Definition 4.3, 
we can obtain the parity check matrix as

and G  =  (1; 1; 1).

1 0 
0 1

We can obtain three parity check vectors
๖ 1 =  / n =  (1 1 0),
๖2 =  h2 =  (1 0 1),

(4.7)

(4.8)

and theirs corresponding syndromes ร'1; and; ร'2 computed as the scalar products o f the 
received and parity check vectors (specifically, received vector is derived from the scalar 
product o f  the information bit and noise bit e j ):

ร  1 =  ( r : , b i )
=  ( n  © 1) ๏  ( r 2 © 1) ® ( r 3 ๏  0)

=  (i ๏  e i )  ©  (i ©  e 2), (4.9)
ร2 =  (r ๖ 2)

=  (i ๏  e i )  ๏  (i ๏  e 3).

F ollow ing D efinition 4 .4 , i f  the received bit r\  is corrupted by n oise bit e\, w e see  that 
the noise bit e i  can be correct by the rule

n. © 1 if; S\ + ร2 > 1.5 (4 10)
T1 otherw ise.

Sim ilarly, the next j  received  bit can be correctly detected by exp lo itin g  C l ,  ; l  -= 1 , . . . ,  j  — 1 
(see [79] in details).

Furthermore, i f  the probability o f  error for each bit is p e, then the probability o f  error 
o f  the triplication co d e  (3rc) is

P F  =  E k ( " ) r f < i - ๗ - ' .  ( 4 1 ,,
=  3pg(l -  Pe) +  Pe,

w hen w e use the bound m inim um  distance decoding m ethod.
N ext, w e  can get an elem entary proof that the b lock  error probability o f  triplication cod e  

P e3rc is a lw ays less than bit error probability Pe as long as Pe <  s in c e  3 p g (l  - P e )  + P e  <  Pe 
is equivalent to 3p e ( l  — Pe) +  p i <  1 or 2Pe +  ( - 3 )p e +  1 >  0, w hich  is an upw ard-going  
parabola, w e need on ly  ch eck  w here its roots are. U sing the quadratic form ula, w e find that 
they are located  at \  and 1. C onsequently in the range 0 <  Pe <  I  the error rate produced  
by coding is sm aller.
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Definition 4.7 (Threshold decoder) The threshold decoding o f  position j  G [1, ท] is defined

2. / i f Ei L,  พ 1 < | E |  (4121
I rj  © 1 o th erw ise ,

where
V = i"(»(bj)) = 0

1
^ (bj)) >  0 
otherw ise, (4.13)

พ1 =  |L (s(b j))|, and L (s (bj)) denotes the log likelihood ratio for the j ' i i  information bit. 
In fact, L (s(bj)) is called the soft-output of the decoder and can be interpreted as reliably 
information of the decoded information bit. For the sake of brevity, we refer the reader to 
Reference [49] for the derivation of L (s(bj)), which we can introduce the term here as

L (s(b)) =  ๒ % %
1 i+nie.,1,PP(b)tanh(lL(c,,r,) (4.14)

— l-n iesUpp(b) t a n h ท)'
Note that threshold decoding technique was first introduced by Massey [42] as the 

extension of the majority decoding technique. It is also called weighted majority decoding 
and a posteriori probability (APP) decoding. In fact, equation (4.14) is likely to be equal to 
the combining weight of the Adaboost algorithm.

4.2.2 Generalized Code Concatenation
The traditional codes cannot be used for several communication channels, e.g., wireless 

channel. The major difficulty of traditional codes is that, in an effort to approach the 
theoretical limit for Shannon’s channel capacity, there is need to increase the codeword 
length of a linear block code, which, in turn, causes the computational complexity of a 
decoder to increase exponentially. Random codes are known to achieve shannon limit 
performance as k gets large, but at the price of a prohibitively complex decoding algorithm. 
Ultimately, a point is reached where complexity of decoder is so high that it becomes 
physically unrealizable. The way to combat the problem is to use concatenated coding, 
where two (or more) constituent codes are used in serial or in parallel. To obtain high 
coding gains with moderate decoding complexity, concatenation of codes has thus proved to 
be an attractive scheme.

The idea of code concatenation was first investigated in 1966 by Forney. As shown in 
Figure 4.1, he defined an inner code together with the channel as a superchannel. A second 
code, called the outer code, encoded the data to be sent over the superchannel. One can 
view the construction of code concatenation according to Forney as classical concatenation. 
The perspective of the classical concatenation of the B  inner and A  outer codes can be 
easily modified to the generalized code concatenation paradigm, as shown in Figure 4.2. 
This perspective was proposed by Blokh and Zyablov (see [49, page 290] and the References 
therein).
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To gain the knowledge of generalized concatenation, we are going to study the concept 
through the following examples. Here, the code parameter (g; ท, k, d m ) are used to distinguish 
between concatenated block codes, where q indicates the code alphabet, ท is the number of 
codeword, k  is the number of information bits, and dm is the minimum distance between 
all code words in the code. This is with the purpose to differentiate between binary and 
non-binary codes.
Example 4.2 (Classical Concatenation ) Let US considéra single parity check code B  (2; 4 ,3 ,2) 
with length 4 as the inner code. The outer code is the repetition code A ( 2 3; 8 ,1 ,8 ) .  Thus, the 
codeword o f  the concatenated code Cc consists o f an 8 where the encoded inner codeword 
are listed in the rows. The length o f  the codeword is thus become ท =  4 X 8 =  32 for 
k =  3 information bits. The minimum distance is d =  dadb =  8 x 2  =  16. The classical 
code concatenation technique is shown in Figure 4.3. Therefore the concatenated code has 
parameters

a c (2 ; 32 ; 3 ; 1 6 ) . (4 .1 5 )

In the following example, we construct a generalized concatenated code based on the 
same code as above.

Example 4.3 (Generalized Concatenation) Let US also consider a single parity check code 
B {2; 4, 3, 2) as the inner code, which we term it the first inner code B '1'1. We partition 
this code into four subcodes by carrying out in a way that the minimum distance within a 
subcode is maximized. Each subcode is partitioned into two codeword o f  the original code 
set. All 8 optimized codeword o f B ^ \ 2; 4 ,3 , 2) are listed below:

(0000), (0011), (0101), (0110),
(1001), (1010), (1100), (1 111),

We can rearrange these possible codeword to subcode with best minimum distance as
B (:2)(2 ;4 ,1 ,4 )  =ะ { (0000), (1 1 1 1 )} ,
B (2)(2; 4 ,1 ,4 )  = { (0011), (1100) }, 1
# ( 2) ( 2 ; 4 ,1 ,4 )  = { (0101), (1 0 1 0 )} , 
t f (2)( 2 ; 4 ,1 ,4 ) = { (0110), (1001) }.

Based on this partitioning, we can define how to identify the four subcodes and their 
codeword within each subcode by using two outer codes:

ü (1) G G F ( 2 )2 and  a (2) G G F { 2). (4 . 18)

For example, when a A  ะ= (10) and a®  =  1, the selected codeword is B $ t 1 =  (1010). In 
Figure 4.4, we graphically demonstrate the partitioning o f the code B ll) (2; 4, 3, 2). The basic 
idea o f  this method is to protect the enumeration o f the partitioning using the outer repetition 
code _4(1*(22; 8 , 1 ,8) and an extended Hamming code. This generalized code concatenation 
technique is shown in Figure 4.5. Finally, it is not difficult to see that the parameter o f the 
generalized code is

Cpc(2; 32; 6; 16). ( 4 .1 9 )
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Figure 4.1 Code concatenation according to Forney.

Concatenated Concatenated
Encoder Decoder

Figure 4.2 Code concatenation according to Blokh and Zyablov.

Concatenated Code

Outer Code A

'o เ1 '2
'o *1 *2
'o *1 เ2
'o *1 [2
'o *1 *2
'o *1 l2
'o *1 !2
'o '1 !2

Inner Code B

*0 เ1 f2 p0
*0 *1 !2 *0
เ0 'l *2 P0
*0 '1 !2 *0
'o !1 *2

OP

'o '1 '2 *0
เ0 เ1 '2

0๐

เ0 !1 '2 e

Figure 4.3 Example of classical concatenation (systematic).



{(0000,0011,0101,0110,1001,1010,1100, n i l ) } 
B(l) (2;4,3,2)

Figure 4.4 Example of codeword scheme for generalized code concatenation.

N Concatenated 
Code

1st Outer Code MC-LDB

2nd Outer Code

*0 '1 '2

'o *1 '3

'o '1 น
'o '1 '5

'o *1 Po
'o !1 Pi
'o '1 P2

*0 '1 p3
A

Mapping 

------------- >

ex ๐ 0 b01 CNJ0
.๐

b03
b 10 b 11 b 12 b 13
b20 b2i b22 b23
b30 b31 b32 b33
b40 b41 b42 b43
b50 b51 b52 b53
b60 b61 b62 b63
b70 b71 b72 b73

Figure 4.5 Example of generalized concatenated encoding.
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4.3 Applications to Multiple classifier Systems
In this section, we first describe two classical code concatenation schemes for Ivi­

e s .  The implementations of both classical code concatenation schemes for MCS are just 
straightforward. For example, we can simply use two cascaded T-repetition codes for 
implementing the first classical code concatenation scheme. Both T-repetition code can 
be derived from different coverage MCS construction methods, e.g., outer code from MDC 
or Bagging, and inner code from Adaboost. This way, two cascaded MCS can be easily 
cast into the classical code concatenation framework. Alternatively, we can also cascade 
T-repetition code with FEC to implement the second scheme according to the classical code 
concatenation framework. In fact, this technique can be viewed as the method that hybridly 
manipulates the input features and resamples training examples according to Adaboost, and 
also viewed as the input-output coding method for MCS.

In generalized code concatenation MCS scheme, we derive two of the outer codeword 
based on either MDC or Bagging method. Then, each outer codeword is mapped to the inner 
codeword by using SVM-ECOC.

4.3.1 Classical Concatenated Input-Output Code with Multiple Description Coding and 
Adaboost

As previously discussed, we can simply use two cascaded T-repetition codes to 
construct a multiple classifier system. One of the advantages of using the proposed cascaded 
MCS scheme is that it can overcome one of the short comings in using just only one single 
MCS method, especially Adaboost. As argued in [27], noise handling is a crucial issue 
of Adaboost. From experimental results presented in chapter 3, we have also seen that 
Adaboost with LDB can help improve the recognition accuracy. In particular, the main 
purpose of local discriminant bases and its variants [80] are usually aimed at denoising 
signal. They also believe that denoising, compression, and pattern recognition are very 
closed fields. This way, LDB can be used with great success to denoise signal before using 
Adaboost. It is also reported that more resistance to overtraining is obtained when we use 
classifier with LDB. However, Coiflets seem to be less resistant to overtraining than other 
wavelet filters, as they are adapted too well to training data [15]. In order to further reduce 
the overfitting and increase the efficiency of Adaboost, we thus use Adaboost with multiple 
description. This technique is shown in Figure 4.6.

4.3.2 Classical Concatenated Input-Output Code with Multiple Description Coding and 
Block Codes

In the second scheme, we can use two concatenated codes, where the outer code is from 
T-repetition code and inner code is from parity check bits or FEC. On the implementation of
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this scheme for MCS, the implementation can be done by using Bagging with SVM-ECOC. In 
this case, bagged data sets can be considered as the encoded T-repetition outer codeword and 
SVM-ECOC is then used for implementing the inner codeword, we can also further use MDC 
as the T-repetition outer code and SVM-ECOC as the inner code. As discussed in previous 
sections, this technique can exploit the advantages of MDC over the conventional Bagging 
method. This technique is viewed as an extension method for the MDC and Adaboost. The 
technique is thus illustrated in Figure 4.7 .

4.3.3 Generalized Concatenated Input-Output Code
There are problems in using generalized concatenation for MCS. One of the difficulties 

in implementing the generalized code concatenation scheme for MCS is that the power of a 
code to correct errors is directly related to the row separations. However, the error correcting 
codes only succeed in MCS if the errors made in the individual bit positions are relatively 
uncorrelated. This way, large row separation preferred for generalized coding matrix in 
coding theory will not be the only separation we prefer in MCS. This is from the fact that 
there are many simultaneously correlated errors in many bit positions.

On the implementation of generalized concatenation for MCS, the length of the output 
codeword for each subcode will be dramatically reduced, since there are less super-classes 
partitions to be selected for each subcodes. For example, on the implementation of classical 
concatenation of 7-class classification problem, we can use (15,7) BCH code matrix (inner 
code) to encoded the repetition code (outer code). This way, if it is assumed that 4-repetition 
code is used in the classification system, the length of the codeword is thus become 
n c =  15 X 4 =  60.

On the other hand, the encoding of 3 information bits is carried out as follows. 
One information bit i0 are encoded by «4^), giving the first four super-class partitions

=  (cq1̂ , c ^ \  c^ )  obtained from the 7 original classes. The remaining two
information bits (il, 1 2 ) are encoded by A^2\  giving the second four codeword super­
class partitions a 2̂) =  ( cq2\  Cj2\  C'2\  Cg2̂ ). In other words, information bit io is mapped 
by 8-repetition outer code 4 .^ ,  and information bits (zi, *2) are mapped to encoded bits 
( i i , i 2 , i \ , i2, i l ,  Ï2 , i l ,  2̂) by the outer code A ^ .  Evidently, the maximum number of super­
class partitions is 4. In this case, we can use 7 bit exhaustive code matrix for encoding 
a 2̂). This way, if it is assumed that 8-repetition code is used in the classification system, 
the length of the codeword is thus become n g c  =  7 X 8 =  56. This way, we can see that the 
numbers of base classifiers of both proposed scheme become comparable. It can be seen 
that in MCS we deal with the super-class partitions, while in coding theory we deal with the 
codeword partitions. This technique is shown in Figure 4.8 .
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Outer Code By MC-LDB ------------->

'o *1 เ2
เ0 *1 *2
*0 เ1 เ2
*0 *1 เ2
'o เ1 *2
'o เ1 *2
เ0 *1 เ2
เ0 เ1 เ2

Inner Code By Adaboost
------------->

T+1  ̂iteration

Target Hypothesis ----------- >

Figure 4.6: Example of classical code concatenation based multiple classifier systems using 
MDC and Adaboost.

Outer Code By MC-LDB Inner Code By SVM-ECOC

'o เ1 เ2 Po
เ0 *1 *2 Po
*0 เ1 *2 Po
*0 *1 *2 Po
*0 เ1 *2 Po
*0 เ1 *2 Po
เ0 เ1 *2 Po
*0 เ1 *2 Po

Hamming Dist.
-> Hamming Dist. Decoder

MajorityCombination

Hamming Dist. Decoder

TargetHypothesis

Figure 4.7: Example of classical code concatenation based multiple classifier systems using 
MDC and ECOC.
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4.4 E x p e r im e n ta l R esults

For classical code concatenation schemes, we conduct the experiments on the same 
SAR ATR problem discussed in chapter 3 of this dissertation. In the experiments, we also 
used the first order Coiflet filters for the LDB algorithm. Four different image sizes from 
32x32 to 80x80 had also been used in our experiments. We also used the same number of 
hidden nodes for Adaboost algorithm, and same 3-class exhaustive output code for ECOC 
as well.

For generalized code concatenation schemes, we first generalize the classical code 
concatenation based on MDC and Adaboost using the generalized concatenated BCH code. 
For the second method of this approach, we exploited the bagged ensemble of SVM-ECOC 
with the generalized concatenated BCH code. Both methods are applied to classical and 
generalized code concatenation schemes of the 7-class Satimage problem obtained from UCI 
repository, respectively. We compared a series of our proposed methods with Boosting, 
random subspace method, random tree methods over the Satimage data set examined for 
classification performance in [81].

4.4.1 Classical Concatenation Codes
Here, we first present the experimental results regarding to the classical code con­

catenation based on MDC and Adaboost. As presented in Table 4.1, our proposed method 
gives better overall performance than both the single output code schemes: T-repetition-like 
code scheme (Adaboost) and ECOC. As shown from Figures 4.9 to 4.12, we obtained the 
percent of recognition accuracy of the classical code concatenation method based on MDC 
and Adaboost, whereas each recognition accuracy is plotted as a function of number of weak 
classifiers and descriptions used in Adaboost at window size 32 to 80.

Note that the performance improves continuously as the number of weak classifiers 
increases with large number of descriptions. As shown in Figure 4.13, we obtained the 
percent of recognition accuracy of the classical code concatenation method based on MDC 
and Adaboost. Each recognition accuracy is plotted as a function of image size and number 
of descriptions used. At window size 64, the performance of the scheme was better than 
when it was evaluated at window size 80. This may be from the fact that too much noise 
was included at the large window size.

Here is the second set of experimental results regarding to the classical code concatena­
tion based on MDC and ECOC. As presented in Table 4.2, our proposed method improve the 
overall performance over the single output code scheme of ECOC. As shown in Figure 4.14, 
we obtained the percent of recognition accuracy of the classical code concatenation method 
based on MDC and Adaboost. Each recognition accuracy is plotted as a function of image 
size and number of descriptions used. It is also happened that the performance of the 
scheme was not so good at window size 80 as well.
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Figure 4.8 Generalized concatenation code scheme for multiple classifier systems.

Table 4.1: The performance of classical code concatenation method based on MDC and 
Adaboost for 3-class MSTAR data set. Comparison of difference methods is in overall 
percentage of images correctly recognized as a function of image size.

Methods /  Image size 32x32 48x48 64x64 80x80
MDBC+NN 75.88 N/A N/A N/A

CGSM N/A N/A N/A 98.53
SVM-ECOC (original) 84.46 90.16 91.76 92.70

SVM-ECOC (LDB) 85.42 90.81 92.51 92.14
Adaboost (original) 88.24 93.35 93.48 93.68

Adaboost (LDB) 89.66 93.16 94.26 93.97
MDC-Adaboost (LDB) 91.27 95.64 96.36 96.25
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Figure 4.9: Percent of recognition accuracy of the classical code concatenation method based 
on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is plotted as 
a function of number of weak classifiers and descriptions used in Adaboost at window size 
32.
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Figure 4.10: Percent of recognition accuracy of the classical code concatenation method 
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is 
plotted as a function of number of weak classifiers and descriptions used in Adaboost at 
window size 48.
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Figure 4.11: Percent of recognition accuracy of the classical code concatenation method 
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is 
plotted as a function of number of weak classifiers and descriptions used in Adaboost at 
window size 64.

Figure 4.12: Percent of recognition accuracy of the classical code concatenation method 
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is 
plotted as a function of number of weak classifiers and descriptions used in Adaboost at 
window size 80.
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Figure 4.13: Percent of recognition accuracy of the classical code concatenation method 
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is 
plotted as a function of image size and number of descriptions used.

Table 4.2: The performance of classical code concatenation method based on MDC and 
SVM-ECOC for 3-class MSTAR data set. Comparison of difference methods is in overall 
percentage of images correctly recognized as a function of image size.

Methods /  Image size 32x32 48x48 64x64 80x80
MDBC+NN 75.88 N/A N/A N/A

CGSM N/A N/A N/A 98.53
SVM-ECOC (original) 84.46 90.16 91.76 92.70

SVM-ECOC (LDB) 85.42 90.81 92.51 92.14
MDC-SVM-ECOC 87.47 92.96 93.77 93.11
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4.4.2 Generalized Concatenation Codes
Here two experiments were conducted and compared for both multiple classifier 

systems based on the classical and generalized code concatenation schemes for the Satimage 
data set.

4.4.2.1 Multiple Description Ensembles of SVM-ECOC
We used the third order Daubechies filters for computing discrete wavelet packet 

transform into three decomposition levels. On the implementation of the MDC, we created 
8 redundant versions of the wavelet packet decomposition functions for each of the data 
subset. We computed and selected LDB for each transform version of each data subset, 
following the same procedure presented in chapter 3. We then sorted the selected LDB 
and create 8 descriptions, also following the same procedure presented in chapter 3. We 
evaluated the MCS methods using various numbers of MDB (from 29 to 33) for training 
the SVM-ECOC. However, the number of MDB used here is 33. We found that the more 
number of MDB used, the more recognition accuracy increased. Note that the SVMs with 
radial basis function (rbf) kernel were used in this evaluation. In fact, the kernel widths of 
32, 40, 48, and 56 were used in these experiment settings.

Intuitively, the numbers of base classifiers used in both proposed multiple classifier 
systems should be comparable. For example, when comparing the generalized code 
concatenation schemes as in these experiment settings, we can use the (15,7) BCH output 
code for 7-class code matrix together with (7,4) exhaustive output code for 4-class code 
matrix. For the classical concatenation scheme, the multiple classifier system can be 
implemented by using (15,7) BCH output code for 7-class code matrix for encoding the 
4 description data subsets. This way, the number of the base classifiers is thus become 
ncc — 15 X 4 =  60. For generalized concatenation scheme, we apply the procedure 
presented in Subsection 4.3.3 using (7,4) exhaustive output code matrix to encode 4 super­
class partitions of each multiple descriptions (all of the 8 descriptions). In detail, information 
bit i0 is mapped by 8-repetition outer code *4.^, and information bits ( i l , 1 2 ) are mapped to 
encoded bits ( il, 12, il ,  *2, *1) *25 i\ ,  *2) by outer code . Thus, the first row information 
bits (i0, i 1) is used to encode 4 super-class partitions of classes. The second row information 
bits (i0, i2) is also used to encode another 4 super-class partitions of classes. This repeats 
for the other row sequentially as well. As a consequence, the number of the base classifiers 
is thus become rigc =  7 X 8 =  56. However, one may avoid the ambiguous decision usually 
occurred when the number of the classifiers is even. In the following experimental results, 
we thus summarize the MCS classification accuracy based on their best performance.

As shown in Figure 4.15, the MDC classical code concatenation scheme gives better 
performance than the single SVM-ECOC methods and the generalized code concatenation 
scheme. As shown in Table 4.3, the experimental results of the MCS methods using the
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Table 4.3: The performance of generalized code concatenation method based on MDC 
and SVM-ECOC for Satimage data set. Comparison of difference methods is in overall 
percentage of patterns correctly recognized.

Methods / 
Data Set

Boosting Random
Subspaces

Random
Tree

SVM-ECOC
(original)

SVM-ECOC
(LDB)

c c c
(LDB)

GCC
(LDB)

Satimage 91.89 92.19 92.24 91.2 90.5 91.3 90.1

kernel width of 40 is presented. It should be noted that the results in the table is the 
best classification performance with 8 and 3 descriptions of the classical and generalized 
schemes, respectively. The proposed methods provide comparable results compared with 
the state-of-the art MCS methods.

The reason why the classical code concatenation scheme outperformed the generalized 
scheme lies on the fact that in theory the minimum distance of the former scheme is larger than 
the latter scheme. This comes from the fact that when we use 4 descriptions of (15,7) BCH 
output code matrix in the classical scheme, the minimum distance is dcc — dadb =  4 X 8 =  32. 
On the other hand, when we evaluate the generalized scheme with 8 descriptions with (7,4) 
exhaustive output code matrix, the minimum distance is dgc =  4 X 4 =  16 (the minimum 
between superclass codewords is 4 for each (7,4) exhaustive output subcode, and this label 
is protected with an outer code (*1, *2) with distance 4). Moreover, the column separation 
of the subcode is less separated, so there may be more correlation among classifiers trained 
by the generalized scheme than the classical scheme. From the above explanation, we can 
see why the classical scheme is outperformed the generalized scheme when the number of 
classes for the classification problem is small. However, when the number of classes for the 
classification problem is increased (greater than 8), the difference between both classification 
performance should be negligible, and at some point the performance of the generalized 
scheme should be outperformed the classical scheme. For example, when the number of 
classes is 16, the minimum distances of both schemes become 28 and 16, respectively. In 
particular, we then end up using (15,16) BCH output code matrix for classical scheme (the 
minimum distance becomes 7), and (15,8) BCH output code matrix for encoding superclass 
(the minimum distance becomes 8) with the protection of 2-repetition outer code (for the 
comparable number of base classifiers, we have to reduce the number of descriptions to 4 
instead of 8). It is in this context that we are continuing in investigation the generalized 
scheme for a large classification problem.

4.4.2.2 Bagged Ensembles of SVM-ECOC
In this experiment, a collection of N  bootstrapped samples with ท elements, generated 

by choosing at random examples in the training set, according to a uniform probability 
distribution. We also created 8 description data subsets. We also conducted a series
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Table 4.4: The performance of generalized code concatenation method based on Bagged 
ensembles of SVM-ECOC for Satimage data set. Comparison of difference methods is in 
overall percentage of patterns correctly recognized.

Methods / 
Data Set

Boosting Random
Subspaces

Random
Tree

SVM-ECOC
(original)

BSVM-ECOC
(CCC:original)

BSVM-ECOC 
(GCC: original)

Satimage 91.89 92.19 92.24 91.2 91.22 89.91

of experiments in a similar way to the generalized concatenation scheme with multiple 
description coding. As presented in Table 4.4, our proposed method has comparable 
results compared with the state-of-the art MCS methods, similarly, the classical scheme is 
outperformed the generalized scheme using the Bagging approach.

4.5 C onclusions

There are three broad approaches to MCS. One is based on combining strong learners. 
The second approaches is based on combining weak learners. The last approach is based on 
modular nets and hybrids. Giving that the aim of coverage optimization method presented 
in Chapter 3 is satisfied. Our proposed method learns an ensemble of classifiers that are 
biased to have high precision (as opposed to, for example, boosting, where the ensemble 
members are biased to ignore portions of the instance space).

Our proposed methods for coverage construction of multiple classifier systems are 
developed and applied to the public MSTAR database and the UCI repository data set. 
The main task of these methods is to construct multiple classifier systems based on two 
extensions of the ECOC approach: (1) classical code concatenation and (2) generalized code 
concatenation so that the highest classification performance is attained. An evaluation of the 
proposed methods on the classification of two public data sets provides additional proofs of 
the prospect of the improvement of our proposed multiple classifier systems.
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Figure 4.14: Percent of recognition accuracy of the classical code concatenation method 
based on MDC and SVM-ECOC for 3-class MSTAR data set. Each recognition accuracy is 
plotted as a function of image size and number of descriptions used.
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Figure 4.15: Percent of recognition accuracy of all of the code concatenation methods for 
Satimage data set. Each recognition accuracy is plotted as a function of image size and 
number of descriptions used, a) kernel width 32. b) kernel width 40. c) kernel width 48. 
d) kernel width 56.
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