CHAPTER IV

GENERALIZED CODE CONCATENATION FOR MULTIPLE
CLASSIFIER SYSTEMS

The ECOC technique for solving multi-class pattern recognition problems can be
broken down into two distinct stages — encoding and decoding. Given a pattern vector
of unknown class, the encoding stage consists in constructing a corresponding output code
vector by applying to it each of the base classifiers in the ensemble. The decoding stage
consists in making a classification decision based on the value of the output code. The
main focus of this chapter is on the former stage. In particular, we propose a senes of
concatenated output codes for MCS based on MDC derived from the previous chapter. In
Section 4.2, we start to lay some basic knowledge in channel coding. The first part of
the section introduces the threshold decoding technique for T-repetition code, where the
decoding of T-repetition output code is equivalent to Adaboost [8], Based on this knowledge,
in Section 4.3 we propose to cascade MDC with Adaboost for MCS, leading to one of the
two-stage T-repetition output code schemes. Thus, this classification scheme can be easily
fitted into classical code concatenation scheme. Moreover, it can be considered as the MCS
method where we try to both manipulate the input features and resample training examples
according to Adaboost algorithm (see section 2.2 in chapter 2). We also propose to cascade
MDC with ECOC for MCS, whereas it should be fitted with classical code concatenation
scheme. Finally, we explore the possibility to use the MDC and Bagging methods with ECOC
in order to generalize them to the generalized code concatenation scheme for MCS.

41 Introduction

Actually, the common approach used in channel coding is to introduce redundancy to
information before sending on the channel. For example, giving  information sequence,
a linear block code X s — X R is applied to information, and the R resulting codeword
are sent on the channel. The information system works by producing a linear dependence
between the transmitted bit symbols, when the distorted symbol is received, it is consistent
with exactly one valid element of X R, so the information symbols is decoded and then
known.

On the other hands, one can build a coverage set of classifiers by repeatedly partitioning
the complete set of classes into pairs of super-classes and, for each pair, training a base
classifier to distinguish between these two super-classes, when the partitions of super-classes
are chosen carefully, redundancy is thus introduced to class information in a more systematic
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way. To classify an unknown pattern we present it to all of the trained classifiers, with
the classifier outputs we create a string which corresponds to the unknown pattern and the
designed output codes. In making an overall classification decision, the decoder assigns the
string to the class by means of minimum distance decision rule, or probability estimation,
or likelihood decoding rule [77], This is thus a match between the capabilities of decoding
redundant information in coding theory and the needs of partitioned hypotheses decoding in
pattern recognition. One of the possibilities in adding redundancy to channel sequence is by
repeating exactly the same information and sending it over one single channel sequentially
or over multiple channels (in this case, all coded sequence are maximally correlated).

In analogy to channel coding in information theory, the error rate of MCS can be
controlled by adding redundancy to the original patterns before final decision. Underlying
the MCS framework, a teacher could try to repeat target concept M times, resembling
the transmission of same information over M channels. This scheme is sometime called
T-repetition code. Note that many MCS are based on this T-repetition code model. For
example, decision of boosting based MCS [8], called Adahoost, could be interpreted as an
instance of threshold decoding for a T-repetition code under the assumption of a binary
discrete memoryless channel constructed by the ensemble of binary weak classifiers.

In the case that the redundancy information with maximum correlation are presented
to multiple classifiers, the decisions among classifier members become highly dependent
and inefficient. In this case, we thus face a major problem in optimal combining the
classifiers, called harmful collinearity [78]. Anyway, we could alternatively try to minimize
the correlation between all information channels (classifiers) by splitting the information into
distinct parts by simple spatial sampling. In this case, all classifiers are independent to each
other, but each of them makes inaccurate decision from partial information presented to
them.

Demanding for solving complex classification problems has directed toward the optimal
design (trade-off) between the above two cases. One way of achieving effective results
is through sharing resources such as information and components. There are at least two
other methods for adding redundancy (sharing resources) into classification systems. The
first method is known as ECOC, which exploits the conventional concept of channel coding,
called forward error correcting code (FEC). The ECOC hased MCS is inspired by error
correcting code transmission technique from communication theory. In the second method,
redundancy is added into classification system in a more general way. This method is called
multiple description coding model [44,53], which is based on the concept of frame expansion
(linear transform), since the linear block code is a linear transform. The difference between
two methods is that the transform and coding blocks are interchangeable. Specifically, the
expansion from . 10 . dimensions is done in the original, continuous domain of the data.

There are three broad approaches to MCS. One is based on combining strong learners.
The second approaches is based on combining weak learners. The last approach is based
on modular nets and hybrids. The effectiveness of the combining strong learners approach
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is aimed at variance reduction, while the combining weak learned approach is aimed at
reducing both bias and variance. The ensemble error of the combining strong learners
approach is come from the average error minus by the average of mismatch. This way,
coverage and prediction optimizations become the key ingredient for the success of the
combining strong learners approach. More importantly, the main design criterion of MCS
is to optimize the performance of the system subject to classifiers’ characteristics (strong
or weak), and restrictions on the complexity. Our proposed method learns an ensemble
of classifiers that are biased to have high precision (as opposed to, for example, boosting,
where the ensemble members are biased to ignore portions of the instance space). Giving
that the aim of coverage optimization method presented in chapter 3 is satisfied. We further
modify the idea of combining strong learners to concatenated error correcting output codes.

In this chapter, we are interested in the equivalency between decoding redundancy
information sent over multiple channels and combining multiple hypotheses classified by
multiple classifiers. Based on such an equivalency, we describe two extensions to the ECOC
to select super-classes partitions suitable for classification problems. The first method is
based on the classical code concatenation, whereas the second method is based on a more
generalized concatenated codes.

42  Channel Coding

In this section, we first describe likelinood decoding of T-repetition code and some
notations needed in coding theory. The likelihood decoding of T-repetition code described
here is somewhat akin to Adaboost [8]. Mareover, this decoding technique currently becomes
one of the favorite decoding method used in ECOC [77]. Then, we detail the concept of
classical and generalized code concatenations based on the materia] taken from [49].

421  Coding Theory

Often the code parameters ( , k, dm) are used to distinguish between different block
codes, where dm is the minimum distance between all code words in the code. In a special
case, transmitting single information bit  times is the ( , 1, ) block code.

Definition 41 (Dual code) Ifc isa( , k) code we define the ( —k, ,) dual code by ¢ 1
¢l ={x GT%\ LcxT =:0,;c6C}, (4.1)
where JT” denotes the binary vector space of length

Definition 4.2 (Repetition code) The length  repetition code is the set of two code words
consisting of the all-zero code word Co=00...0 and Ci= 11..1
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Definition 43 ( —1 parity check code) —1 parity check code (parity check matrix of
repetition code) of length is the set of all code words satisfying cHT = 0, where the
—Ix  parity check matrix is given by

['110 ... 0\
10 1 0 1)
V1 1/

Definition 4.4 (Generator matrices of repetition codes) A generator matrix that maps the
single information symbols to any repetition code components of length s given by

G =[P 43

where 1=1, and p is an —1 vector with all ofits elements are equal to 1 In other words,
G=[LI11..1, and H isits dual code.

Definition 45 (Majority logic decision) Consider a set of parity check vectors M j of a
linear binary code ¢, where M.J spans ¢ 1 and position | is equal to one for every vector.
The majority logic decoding ofposition | G [1, ] is defined by

> _drnoerif - <p )mod2 > N (44}
. r otherwise,

where © is addition modulo 2, (- :, ¢) is scalar product of two binary vectors, and a parity
check vector G cl. In other words, also spans the —1 parity check code.

In fact, the above decoding rule can be formulated in a different, but equivalent
manner. We may write

~ )1 fEj=irp> 12
sad { 0 othejrvvisje. (49)

Definition 4.6 (Error probability) The block error probability Pg gives the probability that
a transmitted code word does not correspond to the decoded code word, and the bit error
probability pe specifies the probability that a transmitted information bit is incorrect.

If more than e errors occur during the transmission of a hinary code word consisting
of bits, then

Pb — E "=ptl | E(I-Pe)”-7 e odd
| Lo (4.6)

E h)pi(l-pe)n-j e even.



54

Example 41 The simple error-correcting code is the “triplication™ code [42], Here, the trans-
mitter sends the information bit as the triplet (i, i, 1), and the corresponding received triplet
of binary numbers with probable error is denoted as (ri,r2,r3). Following Definition 4.3,
we can obtain the parity check matrix as

}11 . 1 1 0
H:<112>_< 1 01 (1)
and G = (L; 1 1),

We can obtain three parity check vectors
1= h= (1 10),
2= h2= (1 0 Q)
and theirs corresponding syndromes ‘1;and; ‘2 computed as the scalar products of the

received and parity check vectors (specifically, received vector is derived from the scalar
product of the information hit and noise bit ¢j):

(48)

1 = (r:,bi)

= (n ®1) (r2© 1) ® (r3 0)

= (i ¢i) ©(i©e2), (4.9)
2 = (r 2

= (i ei) (i e3)

Following Definition 4.4, if the received bit r\ is corrupted by noise bit €\, we see that
the noise bit ei can be correct by the rule

?_{n.©1 if S\ + 2> 15 (410
YT T otherwise.

Similarly, the next | received bit can be correctly detected by exploiting .. ;1 =1,...,] —1
(see [79] in details).

Furthermore, if the probability of error for each bit is pe, then the probability of error
of the triplication code (3rc) is

PE = Ek(")rf<i- - (41,

3pg(l - Pe) + Pe,

when we use the bound minimum distance decoding method.

Next, we can get an elementary proof that the block error probability of triplication code
P&rc is always less than bit error probability Pe as long as Pe < since 3pg(l -Pe) +Pe < Pe
is equivalent to 3pe(l —Pe) + pi < Lor 2Pe + (-3)pe+ 1> 0, which is an upward-going
parabola, we need only check where its roots are. Using the quadratic formula, we find that
they are located at \ and 1 Consequently in the range 0 < Pe < | the error rate produced
by coding is smaller.
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Definition 4.7 (Threshold decoder) The threshold decoding of position j G [1, ] is defined

2 ifEiL, 1< |E | (4121
| rj © 1 otherwise,
Where
(b= O " (b)) > 0
V=i (»(bj))' 1 otherwise, (413)

1= |L(s(bj))|, and L(s(bj)) denotes the log likelihood ratio for the j'ii information hit.
In fact, L(s(bj)) is called the soft-output of the decoder and can be interpreted as reliably
information of the decoded information bit. For the sake of brevity, we refer the reader to
Reference [49] for the derivation of L(s(bj)), which we can introduce the term here as

L(s(b)) =  ww
1 i+nig.,JFRD)tanh(L(c, I,
— |-nigfita n h ;
Note that threshold decoding technique was first introduced by Massey [42] as the
extension of the majority decoding technique. It is also called weighted majority decoding
and a posteriori probability (APP) decoding. In fact, equation (4.14) is likely to be equal to
the combining weight of the Adaboost algorithm.

(4.14)

422 Generalized Code Concatenation

The traditional codes cannot be used for several communication channels, e.g., wireless
channel. - The major difficulty of traditional codes is that, in an effort to approach the
theoretical limit for Shannon’s channel capacity, there is need to increase the codeword
length of a linear block code, which, in turn, causes the computational complexity of a
decoder to increase exponentially. Random codes are known to achieve shannon limit
performance as k gets large, but at the price of a prohibitively complex decoding algorithm.
Ultimately, a point is reached where complexity of decoder is so high that it becomes
physically unrealizable. The way to combat the problem is to use concatenated coding,
where two (or more) constituent codes are used in serial or in parallel. To obtain high
coding gains with moderate decoding complexity, concatenation of codes has thus proved to
be an attractive scheme,

The idea of code concatenation was first investigated in 1966 by Forney. As shown in
Figure 4.1, he defined an inner code together with the channel as a superchannel. A second
code, called the outer code, encoded the data to be sent over the superchannel. One can
view the construction of code concatenation according to Forney as classical concatenation.
The perspective of the classical concatenation of the B inner and A outer codes can be
easily modified to the generalized code concatenation paradigm, as shown in Figure 4.2,
This perspective was proposed by Blokh and Zyablov (see [49, page 290] and the References
therein).
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To gain the knowledge of generalized concatenation, we are going to study the concept
through the following examples. Here, the code parameter (g; , k, dm) are used to distinguish
between concatenated block codes, where g indicates the code alphabet, is the number of
codeword, k is the number of information bits, and dm is the minimum distance between
all code words in the code. This is with the purpose to differentiate between binary and
non-pinary codes.

Example 4.2 (Classical Concatenation) Let USconsidéra single parity check code B (2; 4,3,2)
with length 4 as the inner code. The outer code is the repetition code A (23;8,1,8). Thus, the
codeword of the concatenated code Cc consists of an 8 where the encoded inner codeword
are listed in the rows. The length of the codeword is thus become = 4 x 8 = 32 for
k = 3 information bits. The minimum distance is d = dadb= 8x2 = 16. The classical
code concatenation technique is shown in Figure 4.3. Therefore the concatenated code has
parameters
ac(2;32;3; 16). (4.15)
In the following example, we construct a generalized concatenated code based on the
same code as above.

Example 43 (Generalized Concatenation) Let U also consider a single parity check code
B{2;4,3,2) as the inner code, which we term it the first inner code B'1L We partition
this code into four subcodes by carrying out in @ way that the minimum distance within a
subcode is maximized. Each subcode is partitioned into two codeword of the original code
set. All 8 optimized codeword o fB ~\2; 4,3, 2) are listed below:

(0000), (0011), (0101), (0110),
(1001), (1010), (1100), (1111),
We can rearrange these possible codeword to subcode with best minimum distance as

B(2)(2;4,1,4) = {(0000), (1111)},
B(2)(2;4,1,4) = {(0011), (1100) }, 1
#(2)(2:4,1,4) = { (0201), (1010},
tf(2)(2;4,1,4) = { (0110), (1001) }.
Based on this partitioning, we can define how to identify the four subcodes and their
codeword within each subcode by using two outer codes:

a6 GF(2)2 and a@ o GF{2). (4.18)

For example, when aA = (10) and a® = 1, the selected codeword is B$tl = (1010). In
Figure 4.4, we graphically demonstrate the partitioning of the code BII) (2; 4,3, 2). The basic
idea of this method is to protect the enumeration of the partitioning using the outer repetition
code 4(1*(22;8,1,8) and an extended Hamming code. This generalized code concatenation
technique is shown in Figure 4.5. Finally, it is not difficult to see that the parameter of the
generalized code is

Cpc(2; 32; 6; 16). (4.19)
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Figure 4.3 Example of classical concatenation (Systematic).
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Figure 4.4 Example of codeword scheme for generalized code concatenation.

N Concatenated

Code
01 So bl gh®
ZEON b10 b1t b12 b33
no - b20 b2i b2 b23
0
%8{%00% | 1 Mapping
i —r—s—_ Wl . b3 b3l bR b3
0 1 Po bd0 b4l bd2 h43
3 0 1 Pi b50 b5l b52 b53
| oL P b6 b6l b2 b63
2nd Outer Code | | 0 Fﬁ b70 b7 bz b73
%]
BN 5
Po
P
3
[ Ps |

Figure 4.5 Example of generalized concatenated encoding.
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43 Applications to Multiple classifier Systems

In this section, we first describe two classical code concatenation schemes for Iv-
es. The implementations of both classical code concatenation schemes for MCS are just
straightforward.  For example, we can simply use two cascaded T-repetition codes for
implementing the first classical code concatenation scheme. Both T-repetition code can
be derived from different coverage MCS construction methods, e.g., outer code from MDC
or Bagging, and inner code from Adaboost. This way, two cascaded MCS can be easily
cast into the classical code concatenation framework. Alternatively, we can also cascade
T-repetition code with FEC to implement the second scheme according to the classical code
concatenation framework. In fact, this technique can be viewed as the method that hybridly
manipulates the input features and resamples training examples according to Adaboost, and
also viewed as the input-output coding method for MCS.

In generalized code concatenation MCS scheme, we derive two of the outer codeword
based on either MDC or Bagging method. Then, each outer codeword is mapped to the inner
codeword by using SVM-ECOC.

431 Classical Concatenated Input-Output Code with Multiple Description Coding and
Adaboost

As previously discussed, we can simply use two cascaded T-repetition codes to
construct a multiple classifier system. One of the advantages of using the proposed cascaded
MCS scheme is that it can overcome one of the short comings in using just only one single
MCS method, especially Adaboost. As argued in [27], noise handling is a crucial issue
of Adahoost. From experimental results presented in chapter 3, we have also seen that
Adaboost with LDB can help improve the recognition accuracy. In particular, the main
purpose of local discriminant bases and its variants [80] are usually aimed at denoising
signal. They also believe that denoising, compression, and pattern recognition are very
closed fields. This way, LDB can be used with great success to denoise signal before using
Adaboost. It is also reported that more resistance to overtraining is obtained when we use
classifier with LDB. However, Coiflets seem to be less resistant to overtraining than other
wavelet filters, as they are adapted too well to training data [15]. In order to further reduce
the overfitting and increase the efficiency of Adaboost, we thus use Adaboost with multiple
description. This technique is shown in Figure 4.6.

432 Classical Concatenated Input-Output Code with Multiple Description Coding and
Block Codes

In the second scheme, we can use two concatenated codes, where the outer code is from
T-repetition code and inner code is from parity check bits or FEC. On the implementation of
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this scheme for MCS, the implementation can be done by using Bagging with SVM-ECOC. In
this case, bagged data sets can be considered as the encoded T-repetition outer codeword and
SVM-ECOC is then used for implementing the inner codeword, we can also further use MDC
as the T-repetition outer code and SVM-ECOC as the inner code. As discussed in previous
sections, this technique can exploit the advantages of MDC over the conventional Bagging
method. This technique is viewed as an extension method for the MDC and Adaboost. The
technique is thus illustrated in Figure 4.7 .

433  Generalized Concatenated Input-Output Code

There are problems in using generalized concatenation for MCS. One of the difficulties
in implementing the generalized code concatenation scheme for MCS is that the power of a
code to correct errors is directly related to the row separations. However, the error correcting
codes only succeed in MCS if the errors made in the individual bit positions are relatively
uncorrelated. This way, large row separation preferred for generalized coding matrix in
coding theory will not be the only separation we prefer in MCS. This is from the fact that
there are many simultaneously correlated errors in many bit positions.

On the implementation of generalized concatenation for MCS, the length of the output
codeword for each subcode will be dramatically reduced, since there are less super-classes
partitions to be selected for each subcodes. For example, on the implementation of classical
concatenation of 7-class classification problem, we can use (15,7) BCH code matrix (inner
code) to encoded the repetition code (outer code). This way, if it is assumed that 4-repetition
code is used in the classification system, the length of the codeword is thus become
nc= 15X 4 = 60.

On the other hand, the encoding of 3 information bits is carried out as follows.
One information bit i0 are encoded by «4%), giving the first four super-class partitions

= (o4 c™cM) obtained from the 7 original classes. The remaining two
information bits (il, 12) are encoded by A" giving the second four codeword super-
class partitions @2) = (ean G2 c22 GRY. In other words, information bit io is mapped
by 8-repetition outer code 4.7, and information bits (zi, *2 are mapped to encoded bits
(ifi2,i\,i2il, I2,il, 2 by the outer code A~. Evidently, the maximum number of super-
class partitions is 4. In this case, we can use 7 bit exhaustive code matrix for encoding
@¥). This way, if it is assumed that 8-repetition code is used in the classification system,
the length of the codeword is thus become nge = 7 X 8 = 56. This way, we can see that the
numbers of base classifiers of both proposed scheme become comparable. It can be seen
that in MCS we deal with the super-class partitions, while in coding theory we deal with the
codeword partitions. This technique is shown in Figure 4.8 .
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Figure 4.6: Example of classical code concatenation based multiple classifier systems using
MDC and Adaboost.
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Figure 4.7: Example of classical code concatenation based multiple classifier systems using
MDC and ECOC.
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44  Experimental Results

For classical code concatenation schemes, we conduct the experiments on the same
SAR ATR problem discussed in chapter 3 of this dissertation. In the experiments, we also
used the first order Coiflet filters for the LDB algorithm. Four different image sizes from
32x32 0 80x80 had also been used in our experiments. We also used the same number of
hidden nodes for Adaboost algorithm, and same 3-class exhaustive output code for ECOC
as well.

For generalized code concatenation schemes, we first generalize the classical code
concatenation based on MDC and Adaboost using the generalized concatenated BCH code.
For the second method of this approach, we exploited the bagged ensemble of SVM-ECOC
with the generalized concatenated BCH code. Both methods are applied to classical and
generalized code concatenation schemes of the 7-class Satimage problem obtained from UCI
repository, respectively. We compared a series of our proposed methods with Boosting,
random subspace method, random tree methods over the Satimage data set examined for
classification performance in [81].

441 Classical Concatenation Codes

Here, we first present the experimental results regarding to the classical code con-
catenation based on MDC and Adaboost. As presented in Table 4.1, our proposed method
gives better overall performance than both the single output code schemes: T-repetition-like
code scheme (Adaboost) and ECOC. As shown from Figures 4.9 to 4.12, we obtained the
percent of recognition accuracy of the classical code concatenation method based on MDC
and Adaboost, whereas each recognition accuracy is plotted as a function of number of weak
classifiers and descriptions used in Adaboost at window size 32 to 80.

Note that the performance improves continuously as the number of weak classifiers
increases with large number of descriptions. As shown in Figure 4.13, we obtained the
percent of recognition accuracy of the classical code concatenation method based on MDC
and Adaboost. Each recognition accuracy is plotted as a function of image size and number
of descriptions used. At window size 64, the performance of the scheme was better than
when it was evaluated at window size 80. This may be from the fact that too much noise
was included at the large window size.

Here is the second set of experimental results regarding to the classical code concatena-
tion hased on MDC and ECOC. As presented in Table 4.2, our proposed method improve the
overall performance over the single output code scheme of ECOC. As shown in Figure 4.14,
we obtained the percent of recognition accuracy of the classical code concatenation method
based on MDC and Adaboost. Each recognition accuracy is plotted as a function of image
size and number of descriptions used. It is also happened that the performance of the
scheme was not so good at window size 80 as well,
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Figure 4.8 Generalized concatenation code scheme for multiple classifier systems.

Table 4.1: The performance of classical code concatenation method based on MDC and
Adaboost for 3-class MSTAR data set. Comparison of difference methods is in overall
percentage of images correctly recognized as a function of image Size.

Methods / Image size 32x32 48x48 64x64 80x80
MDBC+NN 7588 NA NA NIA
CGSM NA  NA NA 953

SVM-ECOC (original) 8446 90.16 91.76  92.70

SVM-ECOC (LDB) 8542 9081 9251 92.14

Adaboost (original) 8824 9335 9348  93.68

Adaboost (LDB) 80.66 93.16 9426 93.97

MDC-Adaboost (LDB) 9127 964 9636 96.25
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Figure 4.9: Percent of recognition accuracy of the classical code concatenation method based
on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is plotted as

a function of number of weak classifiers and descriptions used in Adaboost at window size
32.
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Figure 4.10: Percent of recognition accuracy of the classical code concatenation method
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is
plotted as a function of number of weak classifiers and descriptions used in Adaboost at
window size 48.
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Figure 4.11: Percent of recognition accuracy of the classical code concatenation method
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is

plotted as a function of number of weak classifiers and descriptions used in Adaboost at
window size 64.
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Figure 4.12: Percent of recognition accuracy of the classical code concatenation method
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is
plotted as a function of number of weak classifiers and descriptions used in Adaboost at
window size 80.
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Figure 4.13: Percent of recognition accuracy of the classical code concatenation method
based on MDC and Adaboost for 3-class MSTAR data set. Each recognition accuracy is
plotted as a function of image size and number of descriptions used.

Table 4.2: The performance of classical code concatenation method based on MDC and
SVM-ECQOC for 3-class MSTAR data set. Comparison of difference methods is in overall
percentage of images correctly recognized as a function of image Size.

Methods / Image size 32x32 48x48 64x64 80x80
MDBC+NN 7588 NA NA NA
CGSM NA  NA NA 9853

SVM-ECOC (original) 8446 90.16 9176 92.70

SVM-ECOC (LDB) 8542 9081 9251 92.14

MDC-SVM-ECOC 8747 9% RB77 931l
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442  Generalized Concatenation Codes

Here two experiments were conducted and compared for both multiple classifier
systems based on the classical and generalized code concatenation schemes for the Satimage
data set.

4421 Multiple Description Ensembles of SVM-ECOC

We used the third order Daubechies filters for computing discrete wavelet packet
transform into three decomposition levels. On the implementation of the MDC, we created
8 redundant versions of the wavelet packet decomposition functions for each of the data
subset. We computed and selected LDB for each transform version of each data subset,
following the same procedure presented in chapter 3. We then sorted the selected LDB
and create 8 descriptions, also following the same procedure presented in chapter 3. We
evaluated the MCS methods using various numbers of MDB (from 29 to 33) for training
the SVM-ECOC. However, the number of MDB used here is 33. We found that the more
number of MDB used, the more recognition accuracy increased. Note that the SVMs with
radial basis function (rbf) kernel were used in this evaluation. In fact, the kernel widths of
32, 40, 48, and 56 were used in these experiment settings.

Intuitively, the numbers of base classifiers used in both proposed multiple classifier
systems should be comparable. For example, when comparing the generalized code
concatenation schemes as in these experiment settings, we can use the (15,7) BCH output
code for 7-class code matrix together with (7,4) exhaustive output code for 4-class code
matrix. For the classical concatenation scheme, the multiple classifier system can be
implemented by using (15,7) BCH output code for 7-class code matrix for encoding the
4 description data subsets. This way, the number of the base classifiers is thus become
nec — 15 X 4 = 60. For generalized concatenation scheme, we apply the procedure
presented in Subsection 4.3.3 using (7,4) exhaustive output code matrix to encode 4 super-
class partitions of each multiple descriptions (all of the 8 descriptions). In detail, information
bit 10 is mapped by 8-repetition outer code *4.”, and information bits (il,:.) are mapped to
encoded bits (il, 12 il, *2*1)*&i\, *2 by outer code . Thus, the first row information
bits (i0,i1) is used to encode 4 super-class partitions of classes. The second row information
bits (i0,i2) is also used to encode another 4 super-class partitions of classes. This repeats
for the other row sequentially as well. As a consequence, the number of the base classifiers
is thus become rigc = 7 X 8 = 56. However, one may avoid the ambiguous decision usually
occurred when the number of the classifiers is even. In the following experimental results,
we thus summarize the MCS classification accuracy based on their best performance.

As shown in Figure 4.15, the MDC classical code concatenation scheme gives better
performance than the single SVM-ECOC methods and the generalized code concatenation
scheme. As shown in Table 4.3, the experimental results of the MCS methods using the



Table 4.3: The performance of generalized code concatenation method based on MDC
and SVM-ECOC for Satimage data set. Comparison of difference methods is in overall
percentage of patterns correctly recognized.

Methods / Boosting  Random  Random SVM-ECOC SVM-ECOC ccc  GCC
Data Set Subspaces  Tree  (original) (LDB)  (LDB) (LDB)
Satimage  91.89 92.19 92.24 91.2 90.5 913 901

kernel width of 40 is presented. It should be noted that the results in the table is the
best classification performance with 8 and 3 descriptions of the classical and generalized
schemes, respectively. The proposed methods provide comparable results compared with
the state-of-the art MCS methods.

The reason why the classical code concatenation scheme outperformed the generalized
scheme lies on the fact that in theory the minimum distance of the former scheme is larger than
the latter scheme. This comes from the fact that when we use 4 descriptions of (15,7) BCH
output code matrix in the classical scheme, the minimum distance is dcc —dadb = 4 X8 = 32,
On the other hand, when we evaluate the generalized scheme with 8 descriptions with (7,4)
exhaustive output code matrix, the minimum distance is dgc = 4 X4 = 16 (the minimum
between superclass codewords is 4 for each (7,4) exhaustive output subcode, and this label
is protected with an outer code (*1*2 with distance 4). Moreover, the column separation
of the subcode is less separated, so there may be more correlation among classifiers trained
by the generalized scheme than the classical scheme. From the above explanation, we can
see why the classical scheme is outperformed the generalized scheme when the number of
classes for the classification problem is small. However, when the number of classes for the
classification problem is increased (greater than 8), the difference between both classification
performance should be negligible, and at some point the performance of the generalized
scheme should be outperformed the classical scheme. For example, when the number of
classes is 16, the minimum distances of both schemes become 28 and 16, respectively. In
particular, we then end up using (15,16) BCH output code matrix for classical scheme (the
minimum distance becomes 7), and (15,8) BCH output code matrix for encoding superclass
(the minimum distance becomes 8) with the protection of 2-repetition outer code (for the
comparable number of base classifiers, we have to reduce the number of descriptions to 4
instead of 8). It is in this context that we are continuing in investigation the generalized
scheme for a large classification problem.

4422 Bagged Ensembles of SYM-ECOC

In this experiment, a collection of N bootstrapped samples with  elements, generated
by choosing at random examples in the training set, according to a uniform probability
distribution.  We also created 8 description data subsets. We also conducted a series
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Table 44: The performance of generalized code concatenation method based on Bagged
ensembles of SVM-ECOC for Satimage data set. Comparison of difference methods is in
overall percentage of patterns correctly recognized.

Methods / Boosting  Random  Random SVM-ECOC BSVM-ECOC  BSVM-ECOC
Data Set Subspaces  Tree  (original)  (CCC:original) ~ (GCC:original)
Satimage  91.89 92.19 92.24 91.2 91.22 89.91

of experiments in a similar way to the generalized concatenation scheme with multiple
description coding.  As presented in Table 4.4, our proposed method has comparable
results compared with the state-of-the art MCS methods, similarly, the classical scheme is
outperformed the generalized scheme using the Bagging approach.

45 Conclusions

There are three broad approaches to MCS. One is based on combining strong learners.
The second approaches is based on combining weak learners. The last approach is based on
modular nets and hybrids. Giving that the aim of coverage optimization method presented
in Chapter 3 is satisfied. Our proposed method learns an ensemble of classifiers that are
biased to have high precision (as opposed to, for example, boosting, where the ensemble
members are biased to ignore portions of the instance space).

Our proposed methods for coverage construction of multiple classifier systems are
developed and applied to the public MSTAR database and the UCI repository data set.
The main task of these methods is to construct multiple classifier systems based on two
extensions of the ECOC approach: (1) classical code concatenation and (2) generalized code
concatenation so that the highest classification performance is attained. An evaluation of the
proposed methods on the classification of two public data sets provides additional proofs of
the prospect of the improvement of our proposed multiple classifier systems,
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Figure 4.14: Percent of recognition accuracy of the classical code concatenation method

based on MDC and SVM-ECOC for 3-class MSTAR data set. Each recognition accuracy is
plotted as a function of image size and number of descriptions used.
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Figure 4.15: Percent of recognition accuracy of all of the code concatenation methods for
Satimage data set. Each recognition accuracy is plotted as a function of image size and
number of descriptions used, a) kernel width 32. b) kernel width 40. c) kernel width 48,

d) kernel width 56.
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