CHAPTER V

ON PREDICTION OPTIMIZATION METHODS

Multiple classifier systems are composed of the following components [52]: (1)
coverage optimization strategy, that generate a mutually complementary classifiers that can
be combined to achieve optimal accuracy, assuming that it has a fixed prediction combination
function; (2) prediction optimization strategy, that inputs a fixed set of carefully designed
and highly specialized classifiers, and we obtain a solution of an optimal combination of
their decisions. is also possible to apply the prediction optimization methods to classifiers
generated with the aim of coverage optimization.

This chapter addresses the problem in prediction optimization methods, giving that
the aim of coverage optimization method presented in chapter 3 is satisfied. ~ After a
comprehensive introduction on several least square methods, we introduce the gradient descent
approach to tune the parameter of ridge regressor, which is more reliable and computation
attractive than traditional methods in prediction optimization of multiple classifier systems.
Ensemble selection criteria in the form of diversity is also considered for improving the
classification accuracy in a way that we can precondition the prediction optimization matrix
by letting only the good ensemble components to be computed.

51 Introduction

From Chapter 2, we have seen that the problem of prediction optimization in MCS can
be considered as a variance reduction technique in Monte Carlo Methods, so called antithetic-
common variates. However, it is difficult to justify in practice whether the type of variates
(antithetic or common variates) between a pair of ensemble members is satisfied the optimal
condition of antithetic-common variates or not. In case of simple majority voting, we always
prefer antithetic variates, since the variance of the classification output of the MCS can be
reduced. The situation becomes harder in case of optimal linear combining, since the sign
of the combining weights can be either positive or negative. This way, both antithetic and
common variates can be used as one of the good variance reduction choices as long as we can
assign the proper combining weights to the variates. In the situations that there are too many
variates (ensemble member, ) that we can not fully assign the proper combining weights,
we might not prefer variates that can harm the variance reduction process. Particularly, the
unwanted variate is sometime called harmful collinearity member.

One of the approaches to improving the collinearity problems is to prune the harmful
collinearity members, which was first studied by Hashsem [78], In particular, Hashem used
the BKW collinearity diagnostics [82] to select the harmful collinearity members. Particularly,
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the harmful collinearity detection method can be considered as one of the feature selection
techniques. This is consistently with the recent definition, which it is considered that multiple
classifier systems can also be regarded as feature extractors [83], Thus, Hashem’s proposed
method is not the only approach that can be used to overcome the harmful collinearity
problem. Recently, there are many fitness functions and ensemble selection methods that
are applied for selecting a candidate classifier subset from the generating multiple classifiers
[84-86],

Alternatively, further improvements on the harmful collinearity problems are in the
directions of the principal components and ridge regression estimators. These methods are
biased-regression method known in the statistical community for more than thirty years. In
fact, they are commonly used in statistics to control bias-variance tradeoff in predictions. The
main contribution on the classification accuracy improvement is come from the capabilities
of these methods to suppress (prevent) insignificant ensemble components from contributing
to prediction combining.

52 Prediction Optimization Methods

Five different combining methods are briefly discussed here. The majority and the
antithetic regression methods are directly related to the antithetic and common variates in
variance reduction methods, simple least square method is a simple method suggested for
MCS in Reference [78], since each individual member decision matrix is not of full column
rank, the solution of simple least square method always becomes ill-condition. In fact, this
method do not consider the correlations between ensemble members, while the correlation
based least square method do. Note that correlation based regression method still exhibits
few ill-condition effects. To compensate the remained ill-condition effects, the principal
component method was used for the pseudo inverse operation. In particular, the computation
of pseudo inverse is based on single Value Decomposition (SVD), where any singular valued
less than a tolerance are treated as zero. Finally, instead of using principal component
method for ridge regression method, we use gradient ridge parameter estimation to overcome
the remained ill-condition effects. The reason for proposing the ridge regression method
with gradient parameter estimation is that the SVD computation is computational expensive.
All five different combining methods are compared for 3-class SAR ATR problem.

521  Majority Method

The classifier ensemble uses the simple majority decisions to make the final classifica-
tion output. It is always used as a baseline method, especially due to its effectiveness when
all classifiers are independent to each other.
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522 Traditional Least Square Methods

It is widely accepted that the optimal weight combination rule [78,87] is closely related
to the standard linear regression model. In our assumption, the elements of our desired
output vector Y should be linear functions of all outputs in the ensemble members, X:

Y = xr. (5.1)

In the training phase, the training output responses D and the training output responses X
can be written in matrix form as

D =xr, (5.2)
where D is an X g matrix of the training output responses ( is the number of training
samples, ¢ is the number of classes), the Xi(i = I,...,r) are  Xg matrices of outputs
of the zth ensemble members, X is an X qr matrix whose columns are the Xi, the
ry(i=1.. r)areq Xg matrix of weight parameters of the i-th ensemble members, and

r= 12 53)
rr

IS an gr X ¢ matrix whose rows are the ;.
The optimal combination-weights estimated by least squares method can be obtained

f= (XtX) 1XtD, (54)

If the above model is assumed to have a constant term, one of the Xi’s, usually the first,
will be assumed to be the column vector of g ones. The inclusion of the constant term helps
in correcting for (possible) biased in the ensemble members.

Literally, the term (XTX) 1XT is the pseudo inverse of X, if X TX is nonsingular.
In the case that X is not of full column rank, this solution becomes ill-condition. In that
case this optimization problem can be solved by either using suboptimal methods [87], i.e.,
sequential approach or singular value decomposition approach, or use dummy augmentation
to make X a full column rank in a higher dimensional space and then solve the problem.
As proposed in Reference [88], the harmful collinearities can also be pruned out by the
genetic-based algorithm. In addition, this optimization problem can also be solved using
suboptimal methods [87], i.e., sequential approach or singular value decomposition approach.
Another possibility of solving the ill-conditioned combination-weights is by detecting the
presence of collinearities and pruning the harmful collinearity members [78].

In the events that ensemble members were often trained independently or sequentially,
it seems appropriately to use one of the above approaches. Anyway, all of the above optimal
weight combination schemes do not consider the correlations between ensemble members.
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This is why the harmful collinearity selection approach is preferred to be used with the
above weight combination schemes. However, there are several weaknesses of the pruning
approaches [78] that make them less desirable to be used with the above weight combination
schemes. First, the algorithms is not only greedy but also limited by the ability or the cost
of acquiring extra data for validation. Second it is possible that the selection algorithm may
allow dropping too many ensemble components before their diverse information (knowledge)
will be accounted. In other words, dropping ensemble members often introduced biased to
the combination weights estimation.

Part of this problem arises from its inefficient weight optimization method. To be
more elaborated, the following stages for implementing the harmful collinearity selection
algorithm will be described. The first stage is the weight optimization method, while the rest
of the stages are related to the detection of the presence of collinearities and the harmful
collinearity component pruning. Indeed, the normal regression equation presented in the first
stage is based on the independency of the ensemble members. This is the major problem
since the weights will be inaccurately optimized if the ensemble members are correlated.
This way, the false detection of the harmful collinear ensemble components may be caused
from this inaccurately optimization.

Recently, further improvements on the harmful collinearity problems are in the
directions of the principal components and ridge regression estimators. Next, we will present
several least square methods aimed at tackle the harmful collinearity problem, especially
one of the early methods, called antithetic regression method, proposed to compensate the
correlation problem.

523  Antithetic Regression Method

The idea of regression method of antithetic variates is first discussed in Reference [89].
It is based on making allowances for various causes of variation in the data (correlated output
observations). The introduced correlations among the output observations arise because the
observation outputs are influenced by certain concomitant conditions of the experiment (e.g.,
linear transformation or perhaps the multiple description transform coding approach in our
case). When the influential effect of concomitant variables are observed and determined,
we can then smooth out its effects from the output observations, thus leaving only those
information which are not due to the concomitant conditions.

In the context of correlated observations, concomitant numbers are purposely used
as the relative measures for characterizing correlation among experiments. Concomitant
numbers can be valued 1 or 0 for the purpose of data classification into strata or categories.
In this case, this method is known as the analysis of variance. In mixed case, when some
but not all of concomitant numbers are restricted to the values 0 and L One has what is
called the analysis of covariance. For the simplicity purpose, we follow the assumption used
in Reference [89], where the concomitant numbers are known with values 0 or 1

Instead of using linear model as (5.2), Hammersley and Handscomb [89] proposed that
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a vector, whose elements are the estimation values of antithetic estimators, can be represented
by reparameterization of unknown estimands with a concomitant vector (matrix). It is not
interesting to see that we reuse the same cross-valiation data in (5.2) by substituting cross-
validation output response D in the least squares equation at the training phase of the
prediction optimization. A first step toward the improvement of (5.2) to harmful collinearity
problems is by extending the basic least squares estimation to the case where there are
correlation among outputs.
Let recall (5.2)

D = xss. (55)

Solving (5.2) by the method of maximum likelihood [90, page 621] leads to optimal
combination-weight matrix

OLs=(X A~ X j-'x"D, (5.6)

where V d is the covariance matrix of D, where the size of VD is X .

Note that this regression method still exhibits few ill-condition effects. To compensate
the remained ill-condition effects, the principal component method was used for the pseudo
inverse operation. In particular, the computation of pseudo inverse is based on single Value
Decomposition (SVD), where any singular valued less than a tolerance are treated as zero.

524  Ridge Regression

Recently, the further improvements for the collinearity problems are in the directions of
the principal components and ridge regression estimators (there is also some discussions [90]
that ridge regression is equivalent to principal component estimator). In the ridge regression
approach, instead of diagnosing which ensemble components are harmful, a further step
toward the improvement of (5.2) is to introduce the biased parameter (or equivalently called
ridge parameter) to the traditional regression algorithm, and use it to derive optimal weight
combining rules. In this case, ensemble component selection and combination-weights
estimation are performed simultaneously through ridge estimation.

The ridge estimator for the linear model, denoted by rR is defined by

fR= (x*vyx +drylx*vylD, (5.7)

where T is some positive definite matrix (very often T is chosen to be equal to identity
matrix in practical applications).

Beyond the equivalency to the antithetic regression with principal component method,
ridge estimator is also equivalent to a new least square method, so called the covariance
shaping least square estimator, where it is interpreted and inspired from the framework of
quantum signal processing [91], with little manipulation, we can derive the covariance of
the ridge estimate r# as

Rr = (1 +5{X*VyxyIT)-\X*VDID + (5T)'L. 59)
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This way, when we decide to do the estimation based on the minimization of the (weighted)
total error variance in the observations subject to a constraint defined by the above covariance,
we can control the dynamic range and spectral shape of the covariance of the estimation
error. This is a biased estimator directed at improving the performance of the traditional
least squares estimator at low to moderate signal-to-noise (SNR). It should be noted that
least squares estimation at low to moderate SNR can be viewed as the situation where base
classifiers are weakly trained.

In most of related applications [92], the ridge parameter 53 chosen by cross- validation,
in which some part of the training sample is held back and the value that best predicts
this held-back data is our estimate, while there is nothing wrong with this grid search in
low dimensions, getting the right scale for the parameter (or the interval of the grid search)
might turn out to be a difficult task. The ridge regression literature discusses a plethora of
methods to estimate  from the training data. At least it is a good idea to use them first to
get the correct scale for the parameter followed by cross-validation, especially for the merit
of faster search (computations). This chapter discusses one of the methods and point out its
relevant to harmful collinearity problem.

Moreover, it is possible to extend the optimal combining-weight method based on the
concept of harmful collinearity suppression as in (5.6) by also constraining on the covariance
of the estimation error. It is also possible to get the correct constraint covariance R as in
(5.8)) and use it to solve with the covariance shaping least square estimator,

5241  Gradient Ridge Parameter Estimation

The parameter is sometimes called the “ridge parameter. In fact, it is used for
demonstrating on how much the least squares coefficient shrunk toward 0. As argued in
Reference [92], the ridge parameter can be chosen by either choosing it a priori or estimating,
One of the estimating methods is proposed by Hoerl, Kennard and Baldwin (HKB) [92], If
r is the number of ensemble components and s the number of training samples, the HKB
estimator is originally derived from

2
6= I“:‘)T (59)

Let r denote the ordinary least squares estimator of r and

d-xf)7(d-xf
£2= ( T ) (5.10)
—r—1
Is the estimator of a2. Let ) denote the ridge estimate of r at 6 = 5'. At the tth
iteration,

5= IR fR(" 1)’ (511
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with eo = fgp. In fact, the new “sensible” ridge parameter 5t is chosen such that the
difference between successive is as small as possible. In this case, the criterion function
for choosing an appropriate value of ridge parameter can be defined by

p= St-St-1, (5.12)

often p is chosen to be equal to 10-4 in practical applications. In other words, p is used as
the stopping criterion for the ridge parameter estimation.

Evidently, the parameters s and p can be used indirectly to tackle harmful collinearities
among all ensemble components. For example, if the true value of the ridge parameter is
equal to 0, it is an indicator that all ensemble component are independent to each other, or an
ordinary least square estimator is preferred. The larger the value of the ridge parameter, the
more the collinearity components are suppressed. In this case, the predictors will not play any
role at all in classification resulting in a total useless classifier. Instead of using the harmful
collinearity identification criterion [78] to rule out the harmful collinearity components, ridge
estimator tries to suppress ensemble components with serious collinearity.

5242  Connection with Principal Component Method

The optimal weight combination rules of (5.7) and Equation (5.9)- (5.12) can be
considered as one of the solutions of the linear model of (2.10). Specifically, let the

Pihm (m = 1,.., r) are g X q matrix of weight parameters of the 771th ensemble members,
and
Prii

L
. fiR
IS an qr X q matrix whose rows are the pn.m, and the X;(i = 1, ...,r) are ¢-dimensional
vectors of outputs of the 7-th ensemble members, x* is an 1 X qr matrix whose columns
are the X-, then with cm= 2r.m, / (X, pm) = X-, the final decision output function F(x)
will be equal to X fr.

To explore on how the role of ridge parameter suppresses the components with serious
collinearity, suppose that we transform the ridge equation in (5.7) using the matrix of
eigenvectors as in the principal component method. For the purpose of illustration, we can
represent (5.7) in another matrix form by making an assumption that the matrix V d in (5.7)
is equal to identity matrix. Hence, (5.7) becomes

(XtX+8|) m =X1D (5.14)
Transforming the ridge equations in (5.14), we obtain

(A+(5T)tr = ZtD, (5.15)
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where 7= pear, Z= XP, P denotes the orthogonal matrix of eigenvectors of the
con-glation matrix XTX, and ZTZ = A.

Then, we can obtain eigenvalues for the coefficient matrix in the ridge equations as
Aj + 5. Thus, if Amin indicates a serious collinearity, we simply add the constant so that
this is no longer the case. It follows that the | th component of 7. is estimated hy

= ATTO” <516)

where 7, is the least squares estimate of 7, We can see that the factor will be close to
1, if A is large relative to . On the other hand, when the value of A is small relative to
6, this factor will be close to 0. In this case, - rj will also be closed to 0, which will be an
indicator that the harmful collinearity components are suppressed.

53 Discussion on Prediction Optimization Methods

Recall that there are several weaknesses of the pruning approaches based on the harmful
collinearity detection proposed in Reference [78]. This is from the reason that the ordinary
least square method used in the method are very unstable for computing combining-weights,
giving the harmful collinearity detection far from successes. Thus, one should look for some
remedial solutions that is attractive in the sense that it will not depend on the ordinary least
square estimates.

There are several remedial solutions for solving the harmful collinearities, which
are applicable to both fix and optimal weight combination rules. The first remedial
solutions for fixed combining rule, called regression method of correlated variates, was
proposed by Hammersley and Handscomb [89, pages 19, 23, 66] and Aitken (see details
in References [90, page 78], [93, page 221]). The method is a more advanced way to
take advantage of several correlated ensemble components by eschewing the unconcerned
correlation based combination rules to a concerned one. It should be noted that the method
can be considered as the generalization of the fix combination rule (equal weight combination
rule) to the heteroscedastic case, where the heteroscedastic situation is the situation that
observations of members do not have equal covariance matrices.

To the best of our knowledge, we have learned that these regression (least squares)
methods [89]- [94] are as untried as they are new to the ensemble learning community. The
methods based on regression methods of correlated variates seem to be a highly promising
means for examining the mechanism of ensemble learning, especially underlying the linear
transformations of data. Recently, the advanced concept of combining method, called feature
based decision aggregation architecture [95] is proposed in the MCS community. In fact, it
can be considered as a variant method of system identifications by regression methods [96],
Consequently, any improvement in the least squares techniques [92,97] can be of interest to
the optimal combining-weights techniques.
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Note that it might be too early to claim that this approach is better than other two-stage
combination-weights estimation schemes. The schemes that exploit some forms of feature
selection procedures at the output stage of the multiple classifiers before the prediction
optimization.  One of the explanations for recommending the use of ridge regression
with estimated ridge parameter is inspired from arguments regarding to the classification
performance between generative and discriminative classifiers. Over the arguments between
generative and discriminative classifiers, there are several compelling reasons for using
discriminative rather than generative classifiers, one of which, succinctly articulated by
Vapnik [32] is that

“One should solve the problem (classification) directly and never solve
a more general problem as an intermediate step (such as modeling posteriori
probability). ”

At this point in the discussion, it seems to be reasonable to modify the Vapnik’s statement
(above) to

“One should solve the biased least squares estimation problem directly and
never solve a more general problem as an intermediate step (such as diagnosing
harmful collinearity or computing diversity).”

Note that these regression methods aim at reducing the harmful collinearity problem,
but their estimation still exhibits few ill-condition effects. To further compensate the
remained ill-condition effects, the accuracy can be improved by promoting the diversity
among the selected classifier members that tend to error in different subareas of the instance
space. The main reason is that positively correlated classifiers only slightly reduce the added
error, uncorrelated classifiers reduce the added error by a factor of 1/L, and negatively
correlated classifiers reduce the error even further. This is indeed the physical meaning of
the antithetic and common variates of variance reduction technique in Monte Carlo methods.

In fact, several researcher considers multiple classifier systems as feature extractors [83]
and the needs for ensemble selection [84—86]. Next, we discuss several fitness functions
that can be used to compensate the remained ill-condition effects left from estimates. Here,
the search strategy for ensemble selection is by ranking for the best group of classifier
members. Moreover, more advanced strategies inspired from general feature selection
techniques [84,85] can also be applied to ensemble selection.

54  Diversity Measures

There are several statistics to assess the similarity of two classifier outputs. These
statistics can be derived from the ratios between various quantities of occurrences of the
correct/incorrect types of outputs. The pairwise diversity measures of the similarity of two
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classifier outputs used in this work are borrowed from Reference [86], and shown as follows.

The Q Statistics
The level and sign of dependency between a pair of classifiers with binary outputs are

defined by
NnN@- NOIND
QY ~ MND+ NmN D’ G47)

where Nn is the number of occurrences both classifiers are correct, N is the number
of accurrences both classifiers are incorrect, and TWL and N'w the number of occurrences
when hoth classifiers make different decision and either one of them is incorrect.

Note that all measures listed below are the pairwise diversity measures. For set of
more than two classifiers, the mean value of the pairwise measure is considered to be the
measure value for that set, that is

Qav — P> (5.18)
( >izljzirt
here, L is the total number of predictors used in the ensemble. The smallest measure value
will indicate the best subset of member classifiers.

The Correlation measure p
The correlation between two binary classifier outputs using occurrence frequency of
the quantity measures as in the Q Statistics derivation, or

NnN°e - y0Ljyl0

PiJ = AIGVL+ VIOGVEL+ MOPVEHNI(ND+ NG (519)

The disagreement measure

This measure is defined as the ratio between the number of occurrences on which both
classifiers make different decision and either one of them is incorrect to the total number of
decisions. This can be

107 Nn+ NOE Nm+NW 520

The double-fault measure D
This measure is defined as the ratio between the number of occurrences when both
classifiers make incorrect decisions. This can also be represented as

Dij=N + VO T (5.21)
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55 Experimental Results

In this experiment setting, the available training data were divided into two parts.
The first part is used for coverage optimization, and the second is used for prediction
optimization. In particular, 1621 and 135 samples were randomly selected for the first and
second parts, respectively. Here, we used one-fold cross-validation to obtain the least square
estimates. We constructed 9 classifiers for the 3-class ATR problem by using the MC-LDB
algorithms. Next, we combined the classifier outputs using the ridge estimation scheme with
gradient ridge parameter estimation as the prediction optimization method and compared the
recognition accuracy with the other methods.

As presented in Table 5.1, we observe that the performance of our prediction opti-
mization method seems to be comparable with the majority and the principal component
approaches. Our proposed method is better than the simple majority method at the small
target window (32x32), and slightly less accurate than the simple averaging and the principal
component approaches at the large target windows. One of the reasons for our moderate
performance should lie on the fact that the estimated ridge parameter might be adjusted to
0 too aggressively. Thus, some of the informative decisions might be suppressed uninten-
tionally by the algorithm. Another reason lies on the disadvantage of the weight combining
scheme. Previous work [66] had shown that optimizing the combining weights can lead
to overfitting while an unweighted voting scheme is generally resilient to the problems of
overfitting. The third reason is that the prediction optimization should be avoid if the base
classifiers are (almost) overtrained [98], which was the case in this experiment setting.

Practically, we can resolve this problem by reducing the number of samples used at
the coverage optimization level and increasing the number of samples for combining-weights
estimation at the prediction optimization level; or using the k cross-validation. It should be
mentioned that one of the advantages of our proposed method over the principal component
method is that the computation complexity in our proposed method is less expensive than
the principal component method.

We previously experienced with the optimal weight combining rules without diversity
measures. To compare the performance of optimal weight combining rules with diversity
measures, we used diversity measures to select 7 best diverse classifiers from 9 classifiers. Our
baseline weight combining rules were majority and other least square methods implemented
on classifiers trained by 9 descriptions without the use of diversity measures. From our
experiments with Q statistics. Figure 5.1 shows the high, low, and variance values of
recognition accuracy evaluated over a range of numbers of coefficients per description at
different window sizes. We can see that several methods show the robustness of weight
combining rules in term of numbers of coefficients per description. For example, majority
rules with/without the use of Q statistics, principal component based antithetic regression
with the use Q statistics, and ridge regression with/without the use of Q statistics, were
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Figure 5.1: Comparison of different combining methods with Q diversity measure at various
window sizes with the overall percentage normalization to unity, a) 32 x32, h) 48x48,
¢) 64x64, and d) 80x80. 9dsJSdaj means that all 9 descriptions are used with majority
combining. DiV-Maj means that 7 descriptions are selected by using Q statistics. After
selection, they are integrated by majority combining. LS, Prin, and Ridge are represented
for traditional least square regressor, antithetic regressor with principal component approach,
and ridge regressor with ridge parameter estimation, respectively. Note that each graph is
plotted the high, low, upper-half standard deviation, and lower-half standard deviation of the
recognition accuracy derived from various number of coefficients per descriptions.
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among the methods that are robustness in terms of numbers of coefficients per description.

We summary several good weight combining rules based on their performance in
Figure 5.2. From Figure 5.2(b), the principal component methods with/without the use
of Q statistics outperform the majority methods with/without the use of Q statistics in
terms of low and variance of recognition accuracy. As detailed in Table 5.2, we present the
experimental results with respect to the window sizes and the optimal numbers of coefficients
per description.

From the experimental results, we found that the best performance of the recognition
accuracy is 99.71 percent, while most of the MCS methods presented here were able to
achieve 99.63 percent, which is close to the best performance. In fact, the principal
component approach with the use of disagreement measure slightly outperformed other
methods (its highest recognition accuracy reached the best performance). One of the reasons
for better performance of the principal component approach is that we used singular value
decomposition to implement the pseudo inverse in (5.6). However, ridge regression is still a
good alternative for computing optimal weight combining rule, since we made no use of the
highly computation principal component method. Furthermore, we found that simple least
square method were least stable as we expected. Thus, its uses for selecting the component
neural networks proposed in Reference [78] should be performed with caution.

In summary, the assumption that the diversity measures are necessary for evaluating
the potential candidates of the generating multiple classifier members is valid. For majority
combining method, the reason that all classifier components of generated form MD-LDB are
independent is partial correct, since there are still dependence left in the selected candidates
for our MD-LDB. As a result, it is still required to do the computation for the optimal
combining-weights, and this fact is supported by our experiments.

56  Conclusions

This chapter compares several least square estimation techniques and discusses the
singularity of the ensemble output matrix that contributes to the ill-conditioned effect (or
harmful collinearity problem) in multiple classifier systems. Inspiring from the early least
square methods that proposed to overcome the correlated variates estimates, we study several
least square methods that can be used to alleviate the harmful collinearity problem. In
several methods, it is necessary to use ensemble selection for improving the accuracy.

The main results of this chapter can be summarized as follows:

* The majority, and principal component hased ridge regression methods with/without
diversity measures give the comparable best performance.

* The antithetic regressor exactly outperforms the ordinary least square estimators. Thus,
the use of ordinary least square estimate in the original harmful collinearity detection

should be performed with more precautions.
* The disagreement measure  consistently gives the best performance at the large
window sizes.
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Table 5.1: Comparison of different least square methods in overall percentage of images
correctly recognized as a function of image sizes.

Methods / Image size
MC-LDB with simple Majority
MC-LDB with Principal Component
MC-LDB with Ridge Regression

32x32  48x48 64x64 80x80
84.69 9853 99.34 9949
94.95 98.83 99.49 99.63
9451 97.44 9875 99.19
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Figure 5.2: Comparison of various methods for medium and high recognition accuracy with
the overall percentage normalization to unity. Note that each graph is plotted the high, low,
upper-half standard deviation, and lower-half standard deviation of the recognition accuracy

derived from various number of coefficients per descriptions,

a) Medium recognition

accuracy, h) High recognition accuracy. Medium recognition accuracy means the prediction
optimization method that has its mean and standard of deviation of the recognition accuracy
in the middle range in term of the number of coefficients per description. This is similar to

high recognition accuracy as well.
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Table 5.2: Comparison of different least square methods using various diversity measures.
These are the best performances in overall percentage regarding to the optimal numbers of
coefficients per description

Method ~ Window Diversity measures
Size All g D 5 F
32x32  93.63 93.26 93.26 9421 93.26
Majority 48x48 9897 98.97 989 98.68 98.75
64x64  99.41 99,56 99.34 9941 99.34
80x80 99.63 99.63 99.63 99.71 99.63
32x32 4359 6125 474 50.04 474
Simple LS~ 48x48 95.6 8198 844 80.73 75.09
64x64  63.74 8322 8322 8322 83.22
80x80 430 83.08 83.08 83.08 83.08
32x32 7319  8L1 8Ll 8315 8Ll
Principal 48x48  98.83 989 98.75 98.68 98.83
Component  64x64 9949 9956 99.34 9949 99.34

80X80 99.63 99.63 99.63 99.71 99.63
32x32 9451 9473 9473 9429 9473
Ridge 48x48  97.44 981 981 9773 978

Regression  64x64  98.75 98.68 98.97 98.68 98.97
80x80 99.19 99.12 99.12 99.19 99.12
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Ensemble selection is not necessary for the covariance-based least square estimate.
At small window sizes, our proposed ridge estimation is performed very well. In fact,
it is also robust to the variation of the numbers of coefficients per description (see
Figure 5.1).
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