
C H A P T E R  V I

B A Y E S I A N  A N D  I N C R E M E N T A L  L E A R N I N G  
F R A M E W O R K S

In statistical regression estim ation, there are two parameters that contribute to the 
generalization. Bias is the first parameter, w hich is characterized as a m easure o f  a 
predictor’s ability to generalize correctly to a test set once trained. T he secon d  parameter is 
variance, w hich  can be characterized as a m easure o f  the extent to w hich  the sam e results 
w ould have been obtained if  a different set o f  training data w ere used.

This chapter presents a new  neural network architecture that can im prove the gen­
eralization o f  the nonparam etric regression (and also  classification ) error by exploiting the 
concept o f  m ultiresolution analysis. The new  network architecture can also  be called as 
multiresolution committee o f  networks, w here it is very natural for im age analysis. After 
a com prehen sive introduction on Bayesian averaging fram ew ork, w e point out several sim ­
ilarities betw een w avelet representation and Bayesian averaging fram ework. This results in 
the architecture that exp lo its the intuitive idea w hy the feature set o f  the m ultiresolution  
com m ittee o f  netw orks can be split into several tim e-frequency populations (subsets), where  
they are considered  to be associated with the com binations o f  the sm oothness and edge  
characteristics in case  o f  im ages.

Finally, the essential idea for building a co llection  o f  transform netw orks is by exploiting  
the interpolation pow er o f  the neural networks. This chapter provides a p roo f that the linear 
com bination o f  individual network w eights o f  a co llection  o f  transform  networks is a m ore  
generalized representation for m ultiple classifier system s than other sim p le m ethods, e.g., 
constant or w eighted  sam ple m ean o f  the w eights. M oreover, the analogy betw een incremental 
learning and m ultiresolution learning m ethod is used for our thoroughly d iscussion o f  the 
new  neural netw ork architecture.

6.1 Introduction
It is know n that neural networks are powerful tools for handling problem s o f  large 

dim ension. A dditionally, There are m any studies reported the ability o f  neural networks to 
approxim ate nonlinear functions [99, 100], Particularly, neural netw orks are w idely used as 
a universal approxim ator for classification , prediction, and regression. One o f  the interesting  
properties o f  neural netw ork is its low  bias on approxim ation. The main reason underlying  
the low  bias approxim ation o f  neural network approxim ation is that they are constructing  
predictors from  a very large class o f  functions. T hese c lasses o f  functions are com plete in
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the sense that every  su fficien tly  sm ooth  function o f  the inputs can b e w ell approxim ated by 
one o f  the functions in the class. For instance, every su fficien tly  sm ooth  function can be 
w ell approxim ated by a sin gle hidden layer feed-forw ard network. H ow ever, the price for 
achieving a sm all bias is large variance, s in c e  neural netw orks are low  b iased  classifiers, 
the key to increasing accuracy is in reducing the variance w hile keeping the bias low .

As also  suggested  by Haykin [29], i f  w e are w illing to purposely increase bias very 
little, it is p ossib le  to elim inate variance or reduce it sign ificantly, w hich  then im proves 
the generalization. O ne o f  the m ethods to em b edd ed  bias in the netw ork is by building 
network with so m e prio r knowledge. For exam ple, bias is designed  and em bedded in the 
network architecture in the design o f  constrained network architecture using w eight sharing 
and local receptive fields. In other words, bias m ay take the form  o f  prior know ledge built 
into the netw ork design. The prior know ledge built into the neural netw ork design using 
local receptive fields is that an im age is tw o-dim ensional and has a strong local structure. 
M oreover, these properties are a lso  preserved in the w avelet transform  o f  an im age.

Finally, w avelets are also  know n to be better function estim ators than classical nonpara- 
metric estim ators as a result o f  their better local accuracy and faster con vergen ce 1101]. As 
m entioned in [102], at the coarser resolution the bias o f  the w avele t estim ator increases, while  
the variance decreases. If m ultiple low  biased estim ators based  on w avelet representation  
are used for the estim ation, the only  com pon ent left for U S  to taking care o f  is the rem ained  
variance, w hich  can be reduced by com bin ing o f  the estim ators.

6.2 Local Discriminant Basis Neural Network Ensembles
In this chapter, the possib ility  o f  using an orthonorm al basis to train a collection o f  

artificial neural netw orks (A N N S) in a face  recognition task is d iscu ssed . This orthonormal 
basis is se lected  from  a dictionary o f  orthonormal bases consisting o f  w avelet packets. 
Our proposed m ethod takes advantage o f  the fact that the dim ensionality  o f  the pattern 
recognition problem  at hand is reduced, but the important inform ation is still contained, and 
at the sam e tim e, so m e correlations betw een neighboring inputs are included. Furthermore, 
the perform ance o f  our proposed network sch em e is im proved over a single neural network  
as a result o f  m ultiple classifier system s.

As d iscu ssed  before, there are a num ber o f  different w ays o f  creating en sem b les o f  
neural networks: varying the set o f  initial random w eights, varying the top o logy, or varying 
the data, etc. As m entioned in [23], varying the data is m ore effec tive  than varying the set o f  
initial conditions. R ecently, the classification  accuracy o f  test data is im proved if  a collection  
o f  netw orks is trained by a preprocessing set o f  data based on a fu ll decom position  tree using 
m ultiresolution analysis technique. Such m ethod is called  wavelet packet consensual neural 
network (W PCNN) [87], H ow ever, W PCNN is not effic ien t in term s o f  com putation since  
the new  versions o f  the preprocessed data used to trained an en sem b le  o f  netw orks are still 
the sam e d im ension  as the original data. Com pared to sin gle neural netw orks, W PCNN are
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m ore com putationally  exp en sive  sin ce  m ore com putation is needed  not on ly  from  the im age 
decom position  using full w avelet packet decom position  tree, but a lso  the longer training time 
o f  m ultiple neural netw orks.

The LDBNNE sch em e proposed in this dissertation is an alternative netw ork architecture 
to avoid the shortcom ings o f  conventional back-propagation netw ork and W PCNN. In the 
LDBNNE, a co llectio n  o f  slightly w eaker learners is constructed using a set o f  neural 
networks, and a set o f  subbands se lected  by local discrim inant basis (LDB) algorithm . Each 
neural network is resp on sib le to learn on the sam e set o f  training data, but under different 
subband im ages. After all netw orks have been trained, their outputs are com bin ed  by sim ple  
averaging or w eighted  averaging. A major d im ensionality  reduction using LDB enables 
each network to reduce the training tim e, and at the sam e tim e, avoid  the network being  
overtrained. Furtherm ore, our proposed m ethod is exp ected  to perform  better than a single 
network b ecau se i f  each  subband contains inform ation with en ough discrim inant power, each  
netw ork should  find an accep tab le decision  boundary o f  the pattern recognition problem  at 
hand. Finally, by sim p le averaging or w eighted averaging o f  all decision  boundaries o f  the 
set o f  neural netw orks, the classification  error o f  the test data is exp ected  to be reduced by 
the result o f  averaging.

Figure 6.1 displays the com bin ing strategy betw een  LDB and neural netw ork ensem bles. 
As illustrated, N  netw orks are trained by N  training sets o f  subband im ages. For each  
network, its training sets X j are created from  the projection o f  the original im age onto one o f  
the m ost discrim inant basis vector chosen  by the local discrim inant b ases algorithm  presented  
in Chapter 3. T he final decision  is m ade from  the plurality o f  all netw orks’ decision.

W e exp ect that a better generalization should occur, i f  w e  incorporate w avelets with  
neural netw orks in the nonparam etric estim ation task, such as in classification . We also  
exp ect that the predictor’s variance shou ld be reduced sign ificantly  w hile the bias term  
rem ains sm all. In particular, w hen w e replicate training sets from  the original im ages and 
use them  to construct N  predictors, it is possib le  that a new  predictor constructed from the 
plurality vo te  o f  N  predictors’ outputs should produce variance that is going to be closed to 
zero. From this point forward, X j w ill b e  called  the most discriminant subband image. In 
the next section , w e analyze LDBNNE that can be v iew ed  as m ultiresolution com m ittee o f  
networks, esp ecia lly  in the context o f  Bayesian m odel averaging fram ew ork. A s a result, the 
class o f  a co llection  o f  transform networks can be

6.3 Multiresolution Committee of Networks : Bayesian Model Averaging 
Framework

Here, w e w ould  like to em p hasize that Local D iscrim inant Bases Neural N etw ork  
E nsem bles (LDBNNE) can a lso  be interpreted as a com m ittee o f  netw orks, naturally arisen 
from  the fram ew ork o f  traditional Bayesian averaging [33, 103], A ssu m e that a statistical 
m odel a llow s the in ference about the variable y  in the form  o f  the predictive probability
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t  t ________________

Plurality vote of networks’ outputs

1 st most discriminant 2 nd most discriminant 
subband image subband image subband image

Figure 6.1 : A co llection  o f  neural networks trained by N  m ost discrim inant subband im ages.
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density P ( y /พ ) , w here พ  is a vector o f  m odel param eters. Furtherm ore, let’s assum e that 
w e have a data set D w hich  contains inform ation about the param eter vector พ  in form o f  
the probability density  p (■ พ/D ). W e then obtain

P(y/D) = J  P(y/พ)p (พ/D)dw. (6.1)
As know n before, there are several training procedures [23] that can be used for 

constructing an en sem b le  o f  classifiers. For exam ple, training each  en sem b le  classifier 
starting from  different random  initial w eight configurations. This w ay, w e w ill typically  
discover several different single, non-equivalent m inim a. A nother approach is called  bagging, 
w hich let each  en sem b le  classifier be trained w ith a different data set in order to get the 
uncorrelated predictions betw een  individual classifiers. M ixture o f  experts is one o f the 
approach to en sem b le  classifiers with m otivation that w e design a system  in w hich different 
classifiers are responsib le for m odeling different regions in input space. LDBNNE, random  
w eights initialization, and bagging training procedures a llow  U S  to approxim ate the posterior 
distribution o f  the w eights using a set o f  Gaussians, one centered  on each  local minim um , 
in w hich  w e assu m e that there is neglig ib le overlap b etw een  G aussians [33], H ence, w e can 
represent the posterior distribution o f  the w eights as

P(พ / D) = พ / D)

= ^ P ( พ/ทแ, D)P(rm/D),
i

(6.2)

(6 .3)

w here rrii denotes on e o f  the non-equivalent m inim a and all o f  its sym m etric equivalents. 
From (6 .1) and (6 .3 ), w e  then get the posterior distribution o f  the outputs by integration over 
the w eight space :

P(y/D) = j  p (y เ พ ) p ( พ / D)dw (6.4)

== '^2 / P ( m i /D )  [  P(y / พ ) p ( พ / rrii, D)dw (6 .5)
i r ‘

=  '^2 / P ( m i / D ) P ( y / m i ,D ) ,  (6.6)

where r  1 denoted  the region o f  w eight space surrounding the i th local m inim um . From (6.6), 
w e see  that the posterior distribution o f  the output is ju st a linear com bin ation  o f  the posterior 
distribution o f  the outputs m ade by each  o f  the netw orks corresponding to distinct local 
m inim a, w eighted  by the posterior probability o f  that solution.

The ab ove result can b e further extended to a com bination  o f  different m odel H j.  
N ote that, here, different m odels m ean networks w ith different sim plicities, i.e., num bers o f  
hidden nodes, num ber o f  hidden w eights, or

P(y/D) = Y / P(H,/D)P(y/HJ,D). (6.7)
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From (6 .6) and (6 .7 ), w e  can easily  obtain other quantities such  as the m ean output 
predicted by the com m ittee  w ith respect to distinct local m inim a or m odels, w hich can be 
given by

y = Y l  P(mi / D)Vh (6.8)
and

V =  ^ Z p {Hj/D)yj , (6.9)

where Ui and Uj are the corresponding network prediction averaged over the Ith local 
m inim um  and j th m odels, respectively . Intuitively, a m ore accurate m odel for m ean output 
can be provided if  w e  com b in e (6 .8) and (6 .9), w hich  can be given  by

ÿ  =  ^ 2 ' ^ 2 p {Hj/D)P(mi/D)yi j . (6.10)
j i

In other w ords, a m ore accurate m odel should be com p osed  by a set o f  different 
subm odels, w here each  sub m od el can further be com p osed  as either a sin gle Gaussian or a 
G aussian m ixture distribution. W e know n that classification  is c lo se ly  related to regression. 
As previously d iscussed , the generalization error is related to the bias/variance d ilem m a [104], 
where en sem b le  bias is the degree to w hich  the averaged output o f  the com m ittee  o f  networks 
diverges from  the true target function, and variance is the degree to w hich  the com m ittee  
m em bers disagree. G enerally, a low  error requires both a low  bias and variance. One 
o f  the potential approach is to com bin e m ultiple low  biased classifiers in a w ay that the 
rem ained variance is reduced, leading to better generalization im provem ent. In other words, 
the candidate m em bers o f  a com m ittee o f  networks should be learners with rather strong 
discrim inant pow er — i.e., a co llection  o f  classifiers com p osed  o f  the learners with high 
classification  accuracy w ill produce better results than random  classification  accuracy.

At this point, w e  have show n that the preference criteria for selectin g  candidate m em bers 
o f  an en sem b le  c lassifier are that each m em ber shou ld have low  bias, different sim plicities, 
and a m ixture G aussian distribution. C oincidentally, after inspecting the properties and 
applications o f  the tim e—frequency representation (w avelets), w e  found that those criteria are 
usually met. First, the coarsest resolution subband o f  data set generated from  the discriminant 
tim e—frequency transform  are consistent with the discrim inatory features in a classification  
problem , so  the predicted classification  functions trained by the coarsest subbands trend to 
have low  bias.

Second  and m ore im portantly, the obtained reso lu tion-sp ecific  subband o f  data exploit 
the intuitive idea that the feature subsets o f  network en sem b les shou ld  be split into several 
population, w here they are considered to be associated  w ith the com binations o f  the 
sm oothness and ed ge characteristics in case o f  im ages. In fact, the cares resolution subband  
o f  data is the feature subsets that usually represents inform ation regarding on texture, 
where detail reso lu tion -sp ecific  subbands play som e im portant roles on capturing edges and 
other inform ation regarding o f  the high discrim inative frequency com pon ents. This way.
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different feature sub sets trend to be independent b ecause they are capturing different feature 
characteristics. This w ay, the rem ained variance can be easily  reduced by sim ple averaging 
such as in the Bayesian averaging fram ework.

S in ce different sizes o f  subbands can be generated by w avelet (packet) decom posi­
tion, so  different network sim plicities (h ypotheses) are generated through the use o f  local 
discrim inant bases algorithm . Evidently, each subband o f  data is derived from  a specific  
basis in a w ay that is very sim ilar to a G aussian m ixture. It is a lso  easy  to see  that the 
analogy betw een  w avelet reconstruction and Bayesian averaging can be used as a thorough 
explanation for the need  o f  the new  neural network architecture. In other words, w avelet 
representation preserves the properties o f  G aussian m ixture. Furtherm ore, the exploitation  
o f  w avelet transform  for feature extraction is preferred b ecau se dim ensionality  reduction is 
achieved  due to the subsam pling functions im plem ented in the transform . Finally, it should  
be noted that there are several researches focu sed  on the unification o f  w avelet transform, 
radial basis function and Gaussian mixture.

N ext, one o f  the explanations on how  to construct a m ultiresolution com m ittee o f  
networks is explained . In fact, w e can use the fo llow ing  p roof to describe the m echnism  o f  
the Bayesian averaging m inim a in (6 .3).

6.4 A Collection o f T ransform  N etw orks
Let fk  denote the activation function o f  layer k  and Uk(x) the vector o f  outputs from  

the node o f  layer k  g iven  X  as input to the w h ole  network. Let Wk,i denote the matrix o f  
w eights o f  the con n ection s leading from  layer k  to layer l (thus l > k). Wk,i will be the 
zero matrix for d isconn ected  layers. For the sake o f  sim plicity, the notions k  and l are used  
for this chapter only . The reader should not con fu se  these notations w ith those presented in 
the previous sections.

D efin ition  6.1 A Transform N etw ork (TN) is a pair (G ,A f) , where J \f is a feedforward  
netw ork satisfying the above conditions, and g G Ç has its corresponding reversible inverse 
transform  ฐ - 1 , which A (g )  and A ig ~ x) are given as the m atrix representation associated 
with g and  ฐ - 1 , respectively.
L em m a 6.1 The ou tpu t o f  a T N ( G , J \ f )  is invariant under the linear transform  o f  G  on the 
input layer o f  M .
P roof W e start by indexing the layers o f  M  by 1 ,2 ,  . . . , L  on the understanding that 
layer 1 is the input layer and the output layers are those w ith the h ighest indices.

Let consider tw o (m ost discrim inant subband) netw ork inputs X \  and Xj w hich are 
related by tw o linear transform s ฐ! , gj  G G ■ Suppose that A j  is the matrix representation  
associated with the j th  linear transform applied to original input X .  Let layer 1 b e  the input 
layer, and layer L  be the final output layer, then p ( j )  be the statem ent

Vl (x  1) = VL{Xj). (6.11)



95

W e now  prove P ( j )  for j  G w ith ou t loss o f  generality, w e  assum e that
พ 1,1 — พ'7 w here พ 1 1 denotes matrix o f  trained w eights associated  with the j th linear 
transform, and l > k. Let assum e P ( 2 ) , . . . ,  p(j)  are true, w e then prove for the ( j  +  l ) th 
1 inear transform  G Q from

yi(afi) =  f i  (พ 1,2 Xi) . (6 . 1 2 )
After applying the m ultiresolution w eight transfer [105], w e  obtain

y i(® i)  =  / l  ( 4 i  (ฐ ''1)พ'ใ1 , 2  z )  - ( 6 . 1 3)

Sim ilarly, w e  can obtain

y i( x j+ i)  =  / 1 (*4j+1 (ฐ - 1 ) พ / 2 1 x ) . (6.14)

H ence y i ( x i )  =  y i( x j+ i)  is true, if  the ( j  4- l ) th network can b e trained such  that

A j+1 ( ฐ - 1) W f y  = A 1( g - ^ w l  2. (6 .15)

If w e m ultiply both sides by  A j+i(g ),  w e then obtain

A j + 1  (g )A j+ 1 ( ฐ - 1) พ ร 1 =  A j+ 1 (ฐ M 1 (ฐ-- 1) ห/!112. (6 .16)

In the case o f  m ultiresolution analysis, it is easily  to verify that A j+i ( ฐ )A j + i( ฐ - 1 ) =  / ,  
where /  is an identity matrix. In this case, w e w ill obtain

w { £  =  A j+ 1 (g)A  1 ( ฐ - 1) พ 1 12. (6 .17)

Furthermore, this result can be easily  generalized to l > 1

พ ร 1 = A j + 1 (ฐ )A 1 ( ฐ - 1) พ / 1,. (6 .18)

Since y i ( x j )  =  y i ( £ j + i )  w hen w e im pose the fo llow ing  constraint

Wfcï1 =  Aj+1 (ฐ)A 1 (ฐ - 1 )พ / ,  for k = 1 and l > 1

-  I *  / o r  k j >  1. (6J9>

Thus, w e can generalize the above statem ent for j  G 1 , . . . ,  K  — 1 and all the output

.๗*1) = /riE[:ô Wij<๗*1))
= h  (e (:ô ฟ*/-11)) <6 20>
=  2 /L ( i+ l) .

This con clu d es the p roof that the output o f  a T N (Ç ,J \f)  is invariant under the linear 
transform o f  Ç on the input layer o f  J \f . In other words, con cep ts (h ypotheses) o f  two 
networks are equivalent if  the inputs o f  these two netw orks are both underlying the reversible 
linear transform condition  and the necessary condition defined  in (6 .20 ). □
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The reason underlying the w eight transfer is that w e can form ulize this idea through 
the m ultiresolution analysis fram ew ork — i.e., If the tw o linear transform  g i,Ç j e  G are 
related to each  other through the m ultiresolution analysis fram ew ork, then w e can construct 
a co llection  o f  the netw orks in w hich the overall perform ance can be benefited  from the 
interpolation pow er o f  the training neural networks. In LDBNNE system , w e usually address 
</i as the m ost discrim inant transform basis, and g j , j  =  1 , . . . ,  K  are the subsequent power 
discrim inant transform  basis.

In practice, each  w i j 1 is perturbed by sm all error and very c lo sed  to A j + 1  (g )A  1  (<7- 1 ) พ i l  
in different w ays due to the random w eight initialization and its learning local m inim a. Thus, 
the above Lem m a can be easily  further extended to a com bination  o f  different hypotheses 
m odels H j.  By using a 2-tuple set { {H i ,  พ 1 เ ) , ..., (H j , พ i 1),.. . , {H K , พ £1) }  to approxi­
mating the posterior distribution o f  the outputs, a new  input classification  w ill be a weighted  
average o f  K  netw ork classification  outputs as show n in (6 .10 ), w here { I T 1,..., Wj^i} 
is a set o f  transferred w eights o f  K  networks generated by the LDBNNE. This way, the 
im provem ent o f  the generalization error is then fo llow ed  n icely  from  the bias/variance [104] 
or bias/spread dilem m a.

Furthermore, it is easy  to show  that LDBNNE is a generalized  case o f  com m ittee o f  
networks than other sim ple m ethods, such as constant or w eighted  sam ple m ean o f  the 
w eights m ethod [108].

C orollary 6.1 Suppose that the hypothesis space o f each network trained by Xj is large 
enough. Then either constant or weighted sample mean o f  the weights is one o f the special 
case o f  LDBNNE.

P roof Here, w e  im post a stronger constraint for a trivial case, w hich  is that each input to 
the nodes o f  the first hidden layer o f  the base network are converges to the neighborhood  
o f  a local m inim um . If the hypothesis space o f  each  netw ork trained by Xj is large enough. 
In other w ords, w e can find พ 11 from  (6 .20) that g ives \W £ i — w i l l  <  Ci, where พ is 
either constant or w eighted  sam ple m ean o f  the w eights, and Cj is a sm all positive value. □

6.5 Relation to Increm en tal Learning F ram ew ork
It is w ell know n that the generalization error o f  classifier is a result o f  appropriate 

network design; a rather sm all network size can m ake the netw ork learn in com p lete solutions, 
w hile an unnecessarily  large size m ay lead the network learn only the sp ec ific  training sam ples 
and noise, w h e n  the netw ork is called overtrained i f  the s ize  o f  the netw ork is too large to 
classify  correctly input data w hich  w ere not included in its training set.

A typical approaches for good network design involves build ing prior know ledge into 
the netw ork structure [29], H ow ever, there are no w ell defined  rules yet for building prior 
inform ation into neural network design. C onventionally , there are so m e ad-hoc procedures 
that are know n to y ie ld  useful results, especia lly  w hen applied directly to im age pixel values.
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As proposed by the ad-hoc procedures so  far, the netw ork can be designed  to include prior 
inform ation by using a com bination  o f  tw o techniques: (1) constraining interconnection  
w eights by the use o f  w eight sharing and (2) restricting the netw ork architecture through 
the use o f  loca l conn ections. On the contrary, another recent study [105] illustrates that 
a good netw ork design can be obtained by increm ental netw ork grow ing using relative 
prior k n ow ledge transferred from  low er approxim ation subbands. The m ethod is called 
muhiresolution learning m ethod, w hich  is aim ed for designing netw ork in a m ore system atic  
w ay. After conducting literature survey, w e found that m ultiresolution learning m ethod is 
not only a good  network design procedure but its interpretation is raised naturally in the 
increm ental learning fram ework.

The ideas o f  increm ental learning is develop ed  for learning the new  information  
w ithout forgetting previously  acquired know ledge. As pointed out by G rossberg [106], the 
stability/plasticity d ilem m a describes the fundam ental problem s in learning new  information 
by stating that som e inform ation m ay have to be lost to learn new  inform ation, as learning 
new pattern w ill tend to overw rite form erly acquired know ledge.

Increm ental learning has been referred to as diverse con cep ts as increm ental network  
growing and pruning, on -lin e  learning, or relearning o f  form erly m isc lassified  instances. 
Furthermore, various other terms, such as constructive learning, life lon g  learning, and 
evolutionary learning have a lso  been used to im ply learning new  inform ation. In general, 
good increm ental learning algorithm, generates new  decision  clusters in response to new  
patterns that are su fficien tly  different from  previously seen  instances. Instead o f  generating  
new cluster nodes for each  previously unseen  (or su fficien tly  different) instance, the algorithm  
in [ 107 ] generate m ultiple new  “w eak classifiers” for previously unseen  portions o f  the feature 
space. By com bin ing the outputs o f  w eak  classifiers, the goal o f  new  inform ation learning 
or increm ental learning is achieved .

In increm ental learning, new  inform ation can be increm entally  updated at different 
levels. There are tw o increm ental learning approaches that are investigated here. For the first 
approach, new  inform ation is updated at the hidden layers, w h ile  new  inform ation is updated 
at the output leve ls  in the secon d  approach. The process o f  increm ental learning at hidden 
layer level is by grow ing the num ber o f  hidden nodes for each  new  inform ation. We aware 
that the original m ultiresolution learning m ethod [105] is an approach w here the incremental 
learning is corresponding to the first approach o f  the increm ental learning. H ow ever, the new  
inform ation increm entally  learned by m ultiresolution learning m ethod are different from the 
original definition o f  the increm ental learning. In conventional definition, new  information  
is com e from  previously  unseen (or sufficiently  different) instance, w h ile  in multiresolution  
learning m ethod, the new  inform ation is com e from  the finer subband input data, w hich has 
larger dim ension than the transform ed input data.

The essential idea underlying the original m ultiresolution learning algorithm  concept is 
based on the m ultiresolution w eight transfer m ethod [105], T o im plem ent w eight transfer, 
a constraint is im posed  such  that the inputs to the nodes o f  the first hidden layer o f  the
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network trained by X ; _  1  be identical to the corresponding inputs o f  the nod es o f  the network 
trained by X(, w here X;_! is the detail subband o f  X; at the I th finer resolution level. On 
the im plem entation , w e first train neural network with the low er approxim ation subband  
and then transfer these w eights to the current resolution subband network. N ext, w e use 
the current resolution input data to train the current resolution network. This process can 
be im plem ented  until reaching the original resolution or term inated at the desired resolution  
level. The reason for training in this w ay is that the netw ork trained by the inform ation from  
low er resolution level (L L , L H , H L , H H ]  in case o f  im age) is not a lw ays m eaningful; this 
is due to the fact that in m ost cases only som e o f  the four subband im ages contain significant 
portion o f  the content o f  the original im age.

As addressed before, the Learn++ algorithm  [107] generates m ultiple new  “w eak  
classifiers” for previously  unseen portions o f  the feature space. In other words, this 
algorithm  is the secon d  type o f  the increm ental learning algorithm s that updated the new  
inform ation at the output levels; it is in this context that w e generalize the concept o f  the 
second  type o f  the increm ental learning approach to the original m ultiresolution incremental 
learning m ethod. C oincidentally , our LDBNNE can b e fitted into the seco n d  type o f  the 
increm ental learning algorithm , in w hich  additional (new ) inform ation is updated at the 
output level. In LDBNNE system  based on the best adapted bases algorithm , input data 
is com p osed  o f  h ighly discrim inative input data (usually  the low er approxim ation subband  
data) and their subsequent discrim inant detail input data (detail subband data).

As proven in [101 ],w hen signal is broken up into several frequency bands called  
subbands, the subband sam ple is uncorrelated at sca les differing by m ore than 1, and 
has arbitrarily sm all correlation at sca les differing by 1. Benefiting from  such work, the 
co llection  o f  transform  netw orks obtained from  LDBNNE can be effic ien tly  com bined by the 
majority averaging m ethod, i f  m ost o f  the se lected  subbands are at sca les differing from one 
another m ore than 1. This is from  the fact that different feature sub sets for the collection o f  
transform netw orks are trend to be independent. A dditionally, w e  can generate a network to 
approxim ate an increm ental network grow ing by training additional detail subband network, 
separately (or in parallel) from  the coarsest resolution network.

Intuitively, learning in the original m ultiresolution learning m ethod is increm entally  
updated after the w eights o f  the coarser subband netw ork are transferred to the next finer 
resolution network, and the new  hidden nodes are added to this finer resolution network. 
In fact, this increm ental learning procedure is perform ed every tim e the hidden layer nodes 
are growing. On the contrary, increm ental learning in LDBNNE is perform ed every time the 
new  classification  netw ork is en sem b led  to the co llection  o f  transform networks.

In sum m ary, our new  m ultiresolution learning m ethod is suitably fitted to the in­
crem ental learning setting, inspiring from  the increm ental learning m ethod [107] that have 
dem onstrated m ajor perform ance im provem ent. By incorporating the m ultiresolution learning  
concept w ith an idea o f  classifier en sem bles, w e can construct a new  network architecture 
that perform s rather w ell in practice. Due to the exploitation o f  the en sem b le  o f  classifiers,
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the m ore the new  transform  netw orks are included, the better generalization error o f  the 
proposed m ethod. This w ay, it is even  trended to be c lo se  to the best generalization error 
for the problem  in hand.

6.6 E xperim en ta l Results
W e did a series o f  experim ents on part o f  Y ale face database to evaluate our proposed  

m ethod. W e m odified  the 13-class classification  problem  into a 4 -c la ss  classification  problem  
where the goal w as to separate Subject A, B, c from  the other 10 c la sses (in other words, w e 
defined the rem aining 10 c la sses as the U nknow n Subject). S p ecifica lly , the original Yale 
face database o f  143 faces consists o f  13 subjects. There are 11 fa ces  per subject, one for 
each o f  the fo llow ing  facial expressions or configurations: center-light, w ith glasses, happy, 
left-light, with no g lasses, normal, right-light, sad, sleep y , surprised, and w ink. In order 
to evaluate the generalization ability o f  our proposed classifier, a larger sam ple sets were 
created from  the available faces. Sp ecifically , four m ore faces per subject w ere created by 
zoom in g in and cropping on the original im ages. As a conseq uence, the total num ber o f  
faces b eco m es 143 X 4 = 572. E xam ples o f  som e faces from  the Y ale face  database are 
show n in Figure 6.2.

For the sim p licity  o f  sim ulation, all faces w ere norm alized and sca led  down to the 
sm aller s ize  o f  32 x3 2 . From our m odified database, a set o f  72 random ly p icked faces was 
used as training sam ples, w hile another set o f  500 faces w as used  to test the generalization  
ability o f  the netw orks. The Sym m let filters with h {n )  =  [0, 0, -0 .0 7 0 7 , 0 .3536 , 0 .8485 , 
0 .3536 , -0 .0 7 0 7 , 0, 0] and g(n) = [0 .0152 , -0 .3 6 8 7 , -0 .0 7 5 8 , 0 .8 5 8 6 , -0 .3 6 8 7 , -0 .0758 , 
0 .0152 ] w ere used in the LDB algorithm. The first 10 m ost discrim inant subbands (MDSB) 
are obtained for the set o f  training faces w ith 4 resolution levels. In fact, the preferred set 
o f  the m ost discrim inant subbands is particularly obtained by the loca l discrim inant bases 
algorithm  proposed by Saito [55], As show n in Figure 6.3, w e  have the M DSB indexed from  
1 to 10, in w hich  1 indicates the first M DSB that has the highest discrim inant cost. Then, w e  
trained each network using 5 and 3 hidden units w ith one o f  the reso lu tion -sp ecific  subbands 
selected  from  the 10 MDSB, respectively.

The perform ance o f  our proposed m ethod is com pared with tw o other methods; 
conventional backpropagation and W PCNN m ethods. Both m ethods w ere inputted with face  
at the original resolution. The reason for US to include W PCNN as the baseline method  
is that W PCNN also  used the concept o f  en sem b le o f  transform  netw orks with w avelet 
packet transform s. In W PCNN, the num ber o f  networks for the en sem b le  w as four, which  
corresponded to the num ber o f  levels  in the full w avelet packet transform . W e also  set the 
num ber o f  resolution used in our proposed m ethod equal to four.

Four sets o f  training sam ples created by full w avelet packet transform w ere used  
to train tw o versions o f  m ultiple classifier system s with one hidden layer in each  neural 
network. T he num ber o f  hidden nodes used in these tw o netw orks w ere 5 and 3 hidden
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Figure 6.2  The Y ale face database.

Figure 6.3 The first 10 m ost discrim inant subbands.
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units, respectively . For com paring the suboptim al and equal w eighting m ethods o f  WPCNN  
with our proposed m ethod, ten experim ents for each m ethod w ere perform ed. The average 
accuracy o f  W PCNN and our m ethods are show n in Figure 6.4.

T est accuracy, the num ber o f  iterations, and the com putation tim e (a lso  in ratio with 
respect to the proposed  m ethod and others) are reported in atu (addition tim e unit) in 
Table 6.1. N ote that the com putational com plexity  o f  all m ethods are ca lcu lated  using the 
form ula o f  atu g iven  in A ppendix B. From the experim ental results, it can be seen  that 
the LDBNNE m ethods outperform ed both the W PCNN m ethods and conventional back- 
propagation netw ork in term s o f  the classification  accuracy o f  training and test data. For the 
issue o f  com putational com p lex ity , one o f  the arithm etic operations o f  W PCNN and LDBNNE 
based on the tw o-ch an nel filter bank com putation are com parable, but the com putations 
in training transform  netw orks are far m ore different. In particular, the com putation o f  
W PCNN is perform ed in tw o parts: the w avelet packet transform  part, and the neural network 
en sem bles part. The form er com putation is for com putating the full tree w avelet packet 
transform o f  the 72 training im ages and 4 im ages created from  the test im age. The latter 
com putation is the learning com putation operations o f  the four networks.

In LDBNNE, the first com putation is equal to the form er com putation in WPCNN. 
After M DSB o f  the training im ages is found, the test im age is d ecom p osed  corresponding  
to the se lected  subbands. At this decom position  stage, the com putation is usually  negligible  
w hen it is com pared to the decom position  o f  the training im ages. The latter com putation  
o f  LDBNNE is the learning com putation operations o f  sm aller transform networks. From  
the experim ental results, the com putation com p lex ity  o f  the LDBNNE is less than all other 
m ethods in the order o f  m agnitude. The reason regarding to the reduction in com plexity  
is that the com bination  o f  all the num bers o f  conn ection  w eights o f  transform networks is 
far less than the num ber o f  conn ection  w eights o f  the netw ork trained by high dim ensional 
training set at the original size. M oreover, w e can avoid the overtraining in LDBNNE, since  
the s ize  o f  the each  transform network is sm aller than the netw ork trained by training set 
at the original size. In com parison, the LDBNNE requires about 2 7 0 .6  m illion operations 
(m ultiplications and additions). In contrast, the W PCNN and back-propagation networks 
require m ore than 16,087 and 3574  m illion operations, respectively . As a result, the proposed  
m ethod outperform ed both the W PCNN and conventional back-propagation m ethods in terms 
o f  the classification  accuracy o f  test data, convergence speed , and com putational com plexity.

6.7 Conclusions
The LDBNNE architecture is based on a com bination m odel o f  loca l discrim inant basis 

algorithm  and neural netw ork en sem bles. The LDNNE takes advantage o f  the fact that 
a co llection  o f  neural networks could be learned in parallel leading to a major reduction  
in learning tim es. M oreover, the learning tim es can also  be im proved b ecau se subband  
im ages obtained by this sch em e can be done in an adaptive w ay  (resulting from  the best
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Figure 6.4: A verage recognition accuracy o f  the LDBNNE. The upper curves represent 
training results and the low er curves test results.

Table 6.1: The perform ance o f  m ultiresolution com m ittee o f  netw orks in overall percentage.

M ethod Test
A ccuracy

N um ber  
o f  Iters.

T im e
( x i o 6 atus)

Ratio

LDBNNE [21] 
4 netw orks 93.30 800 270.60 1.00

LDBNNE  
10 netw orks 92.43 800 542.58 2.01

W PCNN  
10 netw orks 91 .37 1800 16087.36 59 .45

BP 90.97 1600 3574.31 13.21
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discrim inant bases se lection  algorithm ) depending on the im age classifica tion  characteristics, 
and at the sam e tim e, the dim ensionalities o f  the subband im ages are o ften  m uch less than the 
dim ensionality  o f  the original im ages. For the generalization ability o f  netw ork ensem bles, 
it can be im proved b ecau se an en sem b le o f  several good  classifiers cou ld  be converted to 
be the best classifier.

LDBNNE is a m ethod that not only reduce the generalization error but also: 
o reduce overfitting in each  classifier; 
o reduce training tim es for the individual classifiers; and 
o reduce the correlation am ong the classifiers.

M ore analytical study is d iscussed  for our special type o f  m ultiple classifier system s, 
especia lly  on how  the ab ove conditions can be achieved . In particular, the LDBNNE algorithm  
can be considered  as a Bayesian com m ittee networks. W e a lso  d iscuss on its relation to 
increm ental learning, w here additional (new ) inform ation is updated at the output level. For 
the com p leten ess o f  the discussion, w e finally provide a p roof on a co llectio n  o f  transform  
networks that can b e used as a supporting idea on how  constant or w eighted  sam ple mean 
o f  the w eights can b e considered as one o f  the special cases o f  LDBNNE.

From the experim ents, the results obtained sh ow ed  that the LDBNNE outperform ed  
w avelet packet parallel consensual and conventional neural netw orks in terms o f  both  
classification  accuracy and com putation com plexity . Furtherm ore, it is not necessary that 
using as m any subbands as p ossib le  can produce an optim al classifier. This is because  
networks in the en sem b le  m ay produce som e classification  outputs that are correlated to 
each other that w ould  increase the generalization error. In order to rem edy this problem , 
the algorithm  suggested  in ch ap ter  4 can be included to im prove the overall generalization
error.


	CHAPTER VI BAYESIAN AND INCREMENTAL LEARNING FRAMEWORKS
	6.1 Introduction
	6.2 Local Discriminant Basis Neural Network Ensembles
	6.3 Multiresolution Committee of Networks : Bayesian Model Averaging Framework
	6.4 A Collection of Transform Networks
	6.5 Relation to Incremental Learning Framework
	6.6 Experimental Results
	6.7 Conclusions


