การพัฒนาเฮกสเปสเทคนิคเพื่อใช้วิเคราะห์

สารอินทรีย์กึ่งระเหยบางตัวในน้ำ

นางสาว สุจินดา โรจนศักดิ์โสธร

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภาควิชาเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2531

ISBN 974-569-591-2

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

016922 i19409962

THE DEVELOPMENT OF HEADSPACE TECHNIQUE FOR ANALYSIS OF SOME SEMIVOLATILE ORGANIC COMPOUNDS IN WATER

Miss Sujinda Rojanasaksothorn

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Department of Chemistry

Graduate School

Chulalongkorn University

1988

ISBN 974-569-591-2

Copyright of the Graduate School, Chulalongkorn University

The Development of Headspace Technique for Thesis Title Analysis of Some Semivolatile Organic Compounds in Water By Miss Sujinda Rojanasaksothorn Department Chemistry Thesis Advisor Dr. Sittichai Leepipatpiboon Accepted by the Graduate School, Chulalongkorn University in Partial Parifillment of the Requirement for the Master's Degree. Lanon Vajnashaya ... Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph.D.) Thesis Committee Macn Amorasit ... Chairman (Associate Professor Maen Amorasit) Sir Varothae Member (Associate Professor Siri Varothai, Ph.D.) Similared Promorange Member (Associate Professor Sunibhond Pummangura, Ph.D.) S. the Learning of the - Member

Copyright of the Graduate School, Chulalongkorn University

(Dr. Sittichai Leepipatpiboon)

สุจินดา โรจนศักดิ์โสธร : การพัฒนาเฮคสเปสเทคนิคเพื่อใช้วิเคราะห์สารอินทรีย์กึ่งระเทย บางตัวในน้ำ (THE DEVELOPMENT OF HEADSPACE TECHNIQUE FOR ANALYSIS OF SOME SEMIVOLATILE ORGANIC COMPOUNDS IN WATER) อ.ที่ปรึกษา : คร.สิทธิชัย ลีพิพัฒณ์ไพบูลย์, 128 หน้า.

เฮดสเปสเทคนิคถูกพัฒนาขึ้นมาเพื่อใช้ในการวิเคราะห์สารอินทรีย์กึ่งระเหยในน้ำ เช่น เอทิลเบนซึน คลอโรเบนซึน 1,2—ไคคลอโรเบนซึน 1,3—ไคคลอโรเบนซึน และ 1,4—ไคคลอโรเบนซึน โคยทำการศึกษาปัจจัยต่าง ๆ ที่มีผลต่อเซนซิติวิตี้ (sensitivity) และประสิทธิภาพของการสกัด (percent recovery) ได้แก่ เวลาที่ระบบเข้าสู่สมคุลย์ อุเหมูมิ อัตราส่วนของปริมาตรน้ำต่ออากาศ ปริมาตรของเฮคสเปสแก็สที่ใช้ในการวิเคราะห์ และการเติมเกลือโซเคียมคลอไรค์ และเกลือโซเคียม-ขัลเฟต ผลการศึกษาพบว่าการใช้อุณหภูมิ 45.0°C เป็นเวลา 30 นาที่ ด้วยอัตราส่วนน้ำต่ออากาศ 25:35 ปริมาตรของเฮคสเปสแก๊ส 2.00 ลูกบาศก์มิลลิลิตร และใช้เกลือโซเคียมซัลเฟต 10.00 กรัม เป็นสภาวะที่เหมาะสมที่สุดของการวิเคราะห์โคยเฮคสเปสเทคนิค ซึ่งสามารถที่จะนำมาใช้กับการ วิเคราะห์สารอินทรีย์กึ่งระเทยนี้ในตัวอย่างน้ำ เทคนิคนี้สามารถตรวจวัคสารประเภทนี้ในตัวอย่างน้ำได้ ต่ำถึง 1.00 ส่วนในพันล้านส่วน (ppb) โคยมีประสิทธิภาพการสกัคสารอินทรีย์ก็งระเหยนี้อยู่ในช่วง 53.30-91.51 % และมีค่าเบี่ยงเบนมาตรฐานสัมพันธ์ (%RSD) ระหว่าง 0.77-10.62 % นอกจากนี้ ยังได้ศึกษาความถูกต้องในการวิเคราะห์ด้วยเทคนิคนี้ โดยวิธีเอ็กซ์เทอร์นัลสแตนคารค์ไดเซชั่น (external standardization method) และวิธีสแตนคารค์แอคคิชั่น (standard addition method) พบว่าเปอร์เซ็นต์ของความผิดพลาดนั้นน้อยกว่า 11.63 % จากการเก็บตัวอย่างน้ำทิ้งจาก สระน้ำภายในจุฬาลงกรณ์มหาวิทยาลัย 3 แห่ง มาตรวจวิเคราะห์ค้วยเทคนิคนี้ พบว่าตัวอย่างน้ำทิ้งที่เก็บ จากสระน้ำหลังดึกเคมี 2 มีปริมาณคลอโรเบนชีนอยู่ 0.06 ส่วนในพันล้านส่วน

ภาควิชา	เคมี
สาขาวิชา	เคมีวิเคราะห์
	2531

ลายมือชื่อผลิต <u>ผุงหลา โรลหลักล์ โรรร</u> ลายมือชื่ออาจารย์ที่ปราษา SUJINDA ROJANASAKSOTHORN: THE DEVELOPMENT OF HEADSPACE TECHNIQUE FOR ANALYSIS OF SOME SEMIVOLATILE ORGANIC COMPOUNDS IN WATER.

THESIS ADVISOR: SITTICHAI LEEPIPATPIBOON, Ph.D. 128 PP.

A headspace technique has been developed for the determination of semivolatile organic compounds i.e., ethylbenzene, chlorobenzene, 1,2dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene in water samples. The various factors having the effect on sensitivity and percent recovery, i.e., equilibration time, temperature, phase ratio, injection volume, and salting out with NaCl and anhydrous Na_2SO_4 were studied and evaluated. The temperature of 45.0 °C, equilibration time of 30 min, the liquid to gas phase ratio of 25:35, 2.00 mL of injection volume, and salting out with $10.00~\mathrm{g}$ of anhydrous $\mathrm{Na_2SO_4}$ were chosen as an optimum headspace analysis condition for the analysis of the semivolatile organic compounds in water samples. The detection limit of this technique was less than 1.00 ppb $(\mu g/L)$ for all studied compounds and the percent recoveries of semivolatile organic compounds were in the ranges of 53.30-91.51 % with 0.77-10.62 % %RSD. The accuracy of this technique was also studied by two different methods, i.e., external standardization and standard addition methods and the %errors found were less than 11.63 % at the ppb level of concentration. In addition, the wastewater samples collected from three pools in Chulalongkorn University were analyzed and one of them collected from the pool behind Chemistry Building 2 seemed to have chlorobenzene and its content in the water sample was 0.60 ppb.

ภาควิชา	เคมี	4 4 99	->	1 ~ .
สาขาวิชา .	เคมีวิเคราะห์		1	
ปีการศึกษา	2531	 ลายมือชื่ออาจาร	ย์ที่ปรึกษา .	andie ?

ACKNOWLEDGEMENTS

The author is grateful to her advisor Dr. Sittichai Leepipatpiboon, for his guidance and assistance throughout the course of this research. She is grateful to Associate Professor Virul Mangclaviraj, the Director of the Scientific and Technological Research Equipment Center (STREC) of Chulalongkorn University for his permission of using the gas chromatograph in the STREC. Thanks are due to Miss Sunee Panittharasith, Mrs. Sunan Rungsrikansong, Miss Kritaya Suparnpongs, and her friends at the STREC for their help and encouragement. She would like to thank the thesis committee for their comments. Finally, she would like to express her deepest gratitude to her dear parents, her sisters and her brother in law, for their help, encouragement, and understanding throughout the entire study.

CONTENTS

	PAGE
ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	хi
LIST OF FIGURES	xiv
CHAPTER 1: INTRODUCTION	1
Historical	4
CHAPTER 2: THEORY	11
2.1 Basic Theory of Headspace Analysis	11
2.2 Sensitivity of Headspace Analysis Technique	16
2.3 Method of Increasing the Analytical Sensitivity of	
Headspace Analysis Technique	18
2.3.1 Temperature	18
2.3.2 Phase Ratio	19
2.3.3 Injection Volume	20
2.3.4 Salting Out Effect	22
CHAPTER 3 : EXPERIMENTAL	23
3.1 Apparatus	23
3.2 Chemicals	24
3.2.1 The Standard of Semivolatile Organic Compounds	24
3.2.2 Organic Solvent	24
3.2.3 Anhydrous Sodium Sulfate and Sodium Chloride	25

			PAGE
	3.2.4	Double Distilled Water	25
3.3	The Pr	eparation of the Standard Solutions	26
	3.3.1	The 2000.00 ppm Single Component Standard	
		Solution of Ethylbenzene, Chlorobenzene,	
		1,2-Dichlorobenzene, 1,3-Dichlorobenzene and	
		1,4-Dichlorcbenzene in Carbon Disulfide	26
	3.3.2	The Standard Mixture Solution of	
		Ethylbenzene, Chlorobenzene, 1,2-Dichlorobenzene,	
		1,3-Dichlorobenzene and 1,4-Dichlorobenzene in	
		Carbon Disulfide	23
	3.3.3	The Single Component Standard Solution of	
		Ethylbenzene, Chlorobenzene, 1,2-Dichlorobenzene,	
		1,3-Dichlorobenzene and 1,4-Dichlorobenzene	
		in Methanol	27
	3.3.4	The Standard Mixture Solution of	
		Ethylbenzene, Chlorobenzene, 1,2-Dichlorobenzene,	
		1,3-Dichlorobenzene and 1,4-Dichlorobenzene	
		in Methanol	2
	3.3.5	The 500.00 ppb Single Component Standard	
		Solutions of Ethylbenzene, Chlorobenzene,	
		1,2-Dichlorobenzene, 1,3-Dichlorobenzene	
		and 1,4-Dichlorobenzene in Water	2 ?
	3.3.6	The 50.00 ppb Single Component Standard	
		Solutions of Ethylbenzene, Chlorobenzene,	
		1,2-Dichlorobenzene, 1,3-Dichlorobenzene	
		and 1.4-Dichlorobenzene in Water	2

				PAGE
	3.3.7	The 500.0	00 ppb Standard Mixture Solution of	
		Ethylben	zene, Chlorobenzene, 1,2-Dichlorobenzene,	
		1,3-Dich	lorobenzene and 1,4-Dichlorobenzene	
		in Water		29
	3.3.8	The 50.00	ppb Standard Mixture Solution of	
		Ethylben	zene, Chlorobenzene, 1,2-Dichlorobenzene,	
		1,3-Dich	lorobenzene and 1,4-Dichlorobenzene	
		in Water		29
3.4	Gas Ch	romatogra	phic Conditions	30
3.5	The St	udy the o	f Various Parameters on the Sensitivity	
	of Hea	dspace te	chnique	32
	3.5.1	Equilibra	ation Time	32
	3.5.2	Temperati	ure	33
	3.5.3	Liquid to	o Gas Phase Ratio	34
	3.5.4	Injection	n Volume	35
	3.5.5	Salting	Out Effect	36
3.6	Quanti	tative He	adspace Analysis	38
	3.6.1	The Exte	rnal Standardization Method	38
		3.6.1.1	When The Distribution Coefficient, K,	
			of the Interested Compounds Is	
			Known	38
		3.6.1.2	When The Distribution Coefficient, K,	
			of the Interested Compounds Is Not	
			known	39
	3.6.2	The Metho	d of Standard Addition	40
3.7	The De	terminati	on of Equilibrium Concentration of	
	the In	terested	Compound in Gas Phase	41

	PAGE	
3.8 The Procedure for Checking the Accuracy of Headspace		
Analysis Technique	45	
3.8.1 The Quantitative Headspace Analysis by External		
Standardization Method	45	
3.8.2 The Quantitative Headspace Analysis by		
Standard Addition Method	46	
CHAPTER 4 RESULTS AND DISCUSSION	51	
4.1 The Study of Equilibration Time	51	
4.2 The Study of Temperature	57	
4.3 The Study of Liquid to Gas phase Ratio	62	
4.4 The Study of Injection Volume	69	
4.5 Salting Out Effect in Single Component Solution	72	
4.6 The Salting Out Effect in Mixture Solution	77	
4.7 Minimum of Detectable Level (MDL)	85	
4.8 The Accuracy of Headspace Analysis	86	
4.9 The Determination of Semivolatile Organic compound		
in Real Water Samples	90	
CHAPTER 5 : CONCLUSION	97	
REFERENCES	100	
APPENDIX A	109	
APPENDIX B	110	
VITA	11i	

LIST OF TABLES

TABLE		PAGE
3.1	The result of the purities of semivolatile standard	
	chemicals used in the headspace study	25
3.2	The gas chromatographic conditions used in the study	
	of single component solution	30
3.3	The gas chromatographic condition used in the study	
	of standard mixture solution	31
4.1	The results of the effect of equilibration time on the	
	peak area of ethylbenzene	52
4.2	The results of the effect of equilibration time on the	
	peak area of chlorobenzene	53
4.3	The results of the effect of equilibration time on the	
	peak area of 1,3-dichlorobenzene	54
4.4	The results of the effect of equilibration time on the	
	peak area of 1,4-dichlorobenzene	55
4.5	The results of the effect of equilibration time on the	
	peak area of 1,2-dichlorobenzene	56
4.6	The effect of temperature on the distribution coefficient	
	and the equilibrium concentration each semivolatile	
	organic compound in gas phase	٢9
4.7	The effect of temperature on the sensitivity of each	
	semivolatile organic compound	ь0
4.8	The effect of liquid to gas phase ratio on	
	the equilibrium concentration in the gas phase and	
	the distribution coefficient of each semivolatile	

TABLE		PAGE
	organic compound	63
4.9	The effect of liquid to gas phase ratio on the	
	sensitivity of each semivolatile organic compound	65
4.10	The results of the effect of injection volume on	
	the peak area and the sensitivity of each semivolatile	
	organic compound	70
4.11	The results of salting Out effect on percent recovery of	
	each semivolatile organic compound in single component	
	solution: (a) 50 ppb standard solution	73
	(b) 500 ppb standard solution	75
4.12	The results of salting Out effect on percent recovery	
	of each semivolatile organic compound in mixture	
	solution : (a) 50 ppb standard solution	78
,	(b) 500 ppb standard solution	80
4.13	The percent recovery of each semivolatile organic compound	l
	at two concentration levels of 50 ppb and 500 ppb	83
4.14	The percent recovery of each semivolatile organic compound	l
	in the single component solution and the mixture solution.	. 84
4.15	The optimum headspace analysis condition used in the	
	investigation of the accuracy and analyses of the real	
	water samples	85
4.16	The minimum detectable level of each semivolatile	
	organic compound in aqueous solution	86
4.17	The results of the analysis of synthetic unknown	
	solution by standard addition method	87
4.18	The results of the analysis of synthetic unknown	
	solution by external standardization method	87

TABLE		PAGE
4.19	The comparison of the price of materials used in the	
	developmented headspace technique and the headspace	
	sampler	89

LIST OF FIGURES

FIGURE		PAGE
3.1	The calibration curve of ethylbenzene in	
	carbon disulfide	42
3.2	The calibration curve of chlorobenzene in	
	carbon disulfide	43
3.3	The calibration curve of 1,2-dichlorobenzene in	
	carbon disulfide	43
3.4	The calibration curve of 1,3-dichlorobenzene in	
	carbon disulfide	44
3.5	The calibration curve of 1,4-dichlorobenzene in	
	carbon disulfide	44
3.6	The absolute calibration curve of ethylbenzene in	
	aqueous solution	47
3.7	The absolute calibration curve of chlorobenzene in	
	aqueous solution	43
3.8	The absolute calibration curve of 1,3-dichlorobenzene	
	in aqueous solution	43
3.9	The absolute calibration curve of 1,4-dichlorobenzene	
	in aqueous solution	49
3.10	The absolute calibration curve of 1,2-dichlorobenzene	
	in aqueous solution	50
4.1	The effect of equilibration time on the peak area of	
	ethylbenzene	52
4.2	The effect of equilibration time on the peak area of	

FIGURE		PAGE
	chlorobenzene	53
4.3	The effect of equilibration time on the peak area of	
	1,3-dichlorobenzene	54
4.4	The effect of equilibration time on the peak area of	
	1,4-dichlorobenzene	55
4.5	The effect of equilibration time on the peak area of	
	1,2-dichlorobenzene	56
4.6	The effect of temperature on the distribution	
	coefficient of each semivolatile organic compound	61
4.7	The effect of temperature on the sensitivity	
	of each semivolatile organic compound	61
4.8	The distribution coefficient of each semivolatile	
	organic compound versus liquid to gas phase ratio	64
4.9	The effect of liquid to gas phase ratio on the	
	sensitivity of ethylbenzene	€6
4.10	The effect of liquid to gas phase ratio on the	
	sensitivity of chlorobenzene	66
4.11	The effect of liquid to gas, phase ratio on the	
	sensitivity of 1,3-dichlorobenzene	67
4.12	The effect of liquid to gas phase ratio on the	
	sensitivity of 1,4-dichlorobenzene	67
4.13	The effect of liquid to gas phase ratio on the	
	sensitivity of 1,2-dichlorobenzene	68
4.14	The relationship between the peak area of each	
	semivolatile organic compound and injection volume	71
4.15	The effect of injection volume on the sensitivity	
	of each semivolatile organic compound	71

.

FIGURE		PAGE
4.16(a)	The effect of salting out on percent recovery of	
	each semivolatile organic compound at 50 ppb in	
	single component solution	74
4.16(b)	The effect of salting out on percent recovery of	
	each semivolatile organic compound at 500 ppb in	
	single component solution	76
4.17(a)	The effect of salting out on the percent recovery of	
	each semivolatile organic compound at 50 ppb in	
	mixture solution	79
4.17(b)	The effect of salting out on the percent recovery of	
	each semivolatile organic compound at 500 ppb in	
	mixture solution	81
4.18	The gas chromatogram of standard mixture in aqueous	
	solution	92
4.19	The gas chromatogram of a real sample #1	93
4.20	The gas chromatogram of a real sample #2	94
4.21	The gas chromatogram of a real sample #3:	
	(a) unspiked sample (b) spiked sample	95
4.22	The gas chromatogram of (a) real sample #3,	
	(h) standard mixture in aqueous solution	96