
CHAPTER I I .

Feynman's Path In teg ra ls

The best places to  fin d  out about path in te g ra ls  is  in  
(A)

Feynman's paper . Our approach is  not to use path in te g ra ls  as a 

way o f a r r iv in g  at quantum mechanics, although Feynman has used th is

po in t in  h is  book w ith  Hibbs . We assume knowledge of
( 12)quantum mechanics and deduce the path in te g ra ls  formalism from i t .  

This gets US in to  the subject q u ick ly .

I I .1 D efin ing the Path In te g ra ls .

The wave function  of a n o n - re la t iv is t ic  spin less p a r t ic le  in  

one dimension evolves according to  Schroedinger' ร equation

(H O

-  + (ÏÏ2 -)

k  or Green’ s function

(  H -  ^ G ' c W i  -  - ' t l s c V M  t o - ’ )

in  operator no ta tion . In  coordinate space th is  is  w r itte n  fo r  the 

propagator as

> V j K ’ \ )  "  - it' $c 5 c Jt -V)

(-) e lb.
ร ิt

H = T + V = ÿ  + V

Our in te re s t is  in  the propagator 

which s a tis f ie s  the equation

A
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£= and k  are re la ted by

=  ( x b I ^ O t , น ' )  I >  • o n -5)

.—t I -
Knowing ^ c bvà) means having a so lu tion  to  the time dependent 

Schroedinger 'ร equation in  the sense tha t i f  is  the s ta te

of the system at the time 1 , given by

Y i ï  =  c' d fcOo (1 .4 )

is  the state at the time îy . For the time independent H an operator 

so lu tion  of Eq. O'*?) can immediately be w ritte n  . as

 ̂ “  k  ^ o

where is  the step fun c tion . Since j-j is  assumed to be time

independent we can, w ithout loss of g e n e ra lity  5 take o  and 

Then fo r  t  y  0 we can

< < > ’■«1; * )  =  < * b | >  ^  ' i n * ]  I > * >  ®  £)

where the argument i^ =  0 has been d e le te d .

The path in te g ra ls  a rise  from the fa c t tha t

/  -  (  t ^ y 1 . Ü M )

G^ , , , •เ^ =  © ‘ V u

L e ttin g  c\ ;» / <̂  y ie lds
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>พ ) ^  iO
- 9  £t -*vV n - 9  (Y-yvV n

( IT '10)

w ith  the products in  the bracket taken N times. Now ve make use of 

a fundamental fa c t about the exponential of two operators, namely

— 9  (T"I\0/M  
e

-™ 7w  -  9 v/n
( £ •  'I )

This can be proved e a s ily  and in  a power series expansion the

c o e ffie n t of the term is
NA

/ I  =

In  subsequent m anipulation we assume that the term is  v e i l

behaved, tha t is  stays bounded when applied to s ta tes , and so on. For 

reasonable p o ten tia ls  th is  assumption is  ju s t is f ie d .  More is  said on 

th is  top ic  in  the appendix A .

VJhat we are now a rr iv in g  fo r  is  to replace the term

- 9 ( r t v V N
€

N

by the term

- 7S/n

■ -9 T /N -9 V /^ ๅ

*  ‘  ]  •
C ff- '■»

For re a l numbers ( ra the r than operators ) j th is  replacement is  a

* ะ Ar1 expression is  conveniently generated by looking a t de riva tive  
of o p  ( PT/n)  <2>j? c -  9  Ct* V )/M -) O ĵ ( ^ v/ m ) .
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re fle c tio n  of a fundamental fa c t about the exponentia l. For operators 

a b i t  of care is  requ ired , and the t r ic k  is  to express the d iffe rence  

of Eqs. ( ïï . 'O  an d CE‘ '"/Ois a pecu lia r way ;

-'hT/N
e c

-'T'T/rj -'T'VAj (T-tvVN ใ โ C T tv )/ m M -1
€ L ‘  J L 5 J

£ e 1
-•*  Cr-tvVfs»-]

1 SL

I
•^t/ n -  -PV/VJ า

*  J

N-l - 'M /m - 'A fr - tv V r t
-  «

] •
( T / 4 0

Eq. ( J lV )  is  an id e n t ity .  I t  contains N terns, each of which has 

the fa c to r - “OT/im") o p  ^-'?''V/M^ — ç>P ÉTiVyfg which by

E q .(T r.'0  is  of order . Hence in  the l im it  the d iffe rence

is  zero. In  appendix A , mention is  made fo r various f in e r  po in ts in  

the estim ate.

Ue have the re fo re  ju s t is f ie d  the replacement o f Eq. (T.ltO  by

=  1เ' ” า < ^ T/N •โ,> /fJ|  I * / >

M ^  ^ ( X . ijO
From here, g e ttin g  the path in te g ra ls  is  ju s t a few easy steps. The 

id e n tity  opera tor, in  the form

5 ว่ ■ ’ >*>••• > “ ->•
O M O

is  inserted between each terms in  the product in  Eq. (Of 115O , y ie ld in g
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7̂ 'T/ki -<7,v/nK ( ' b l > v , + )  =  ÿ v  y \ . ,  t t '  O j „  1 1*
j , °  C T  • พ )

fo r  convenient we have taken y 0 , The m u lt ip lic a t io n

operator V  is  diagonal in  coordinate space so tha t

e>|> = ( - -> V fx p /N ^  . ( I  . I f )

-*T/g
Next we requ ire  coordinate space m atrix elements of £ between 

states <^ I and [ f  y ,  and to  obtain these we in se rt a complete set of

momentum states

1 = y  ? I y > y  <y> |

w ith

= —i l   £>p f  -  I /-ti\
1 v '

This requires

a r - i o

< ^ ร |  € I f >  -  ^ ใ 9 O l  « I ? y K  ' H O

-  พ  o K -  ๆ ^ น ' ) e > f  ( » r  C s ‘ f V t ■ไ)

n r « p o )
This is  the gaussian in te g ra tio n  . The general formula is

^ ๆ  ( j  ■= (  ?  ) k  * (  ๖ •* H r ' * 0
-Co
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More d e t i a l s  of t h i s  form ula i s  c o n ta in e d  in  app en d ix  B. U sine
Eq. ( j  .it) , Eq. Cs. •?®) becomes

v/iM ๅ & -  VnN (  S - f  ■)* 
<? 9’ fc;

y  (ธ :-Jp

Eqs. ( I . 'O  and (โ!.^') are inserted in to  Eq. O r*1̂  to  y ie ld

|Vvvi 1 . ■ น  X Y r t  f\l
Nj -*>«> j J N-l

. A

Î .  ^  1

* N  ( . X ; , , -  x , ' ) V f>3')
N

Nov? le t  £  -  N — and combine the exponentia ls in  Eq. {TT-Jh}") ^

Eq. ( T T '^ i s  the path in te g ra ls  expression fo r  the propagator. A few 
words are in  order , however, on vh}7 th is  is  ca lled  a " path in te g ra ls  " 

or " sum over h is to r ie s  " .

Imagine tha t the po in ts X̂ -J Xj  ̂XJ 1 ----า are connecte^

by lin e s . Then we have a broken lines  path from to  ■/b . The sum

in  the exponential of Eq. ( ir.iiA can  be in tegra ted as a Rieraann sum 

of a ce rta in  in te g ra l along tha t path:

N-l
f
y -v

M
a. 6 c ’ ’พ ํ' ฯ ' , 4 " 6 ' " ‘ ร ' ]

j J  XfrV
*ldi  J

2
V f > o ] X z .

( E . J S )
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The integrand in  Eq.(I[,Sf') is  wel l  known in  c la ss ica l mechanics. I t  

is  ju s t the lagrangian

L ^  J_ X(t)] 
2 . è-1 J

Vc * (0 ) ( 2 T  ' ม )

of the c la s s ic a l system which when quantized has the ham ilton ian 

Eq. O r ■^) . Furthermore, the action

ร  =  J  X  $ J z ( i f - w

is  no less prominant an object in  c lass ica l mechanics. The argument
r s cin  Eq. (T ■<̂ ) is  thus L— , w ith  ^  evaluated along the broken lin e

path connecting *A■)*!■>—  ■) '*1,’

The in te g ra l over the q u a n tit is  ’ร ) '* } - } '• -  •> * N can ke 

in te rp re ted  as summing over a l l  possible broken l in e  paths connecting 

and Xj_1 and Eq. ■ พ ) has become

๔  2  e ๆ ’  1  ร [  ไ ]  > o r - 8ง
©vet tf'fi ’̂’’ -J
ys>Hi*S f\eV*i '<^’\e * ๒ -

where c! is  ca lled normalized constant and defined to  be

d (31. พ )

from Eq. (โ[ .พ ) .  A f in a l cosmetic expression on Eq. £ปีโ•พ') is  to  be

K  < > 1to  ^ )  &  L x r " l  » > f >  I  i  S t  x m ไ ใ  1 ( E . V )
-*A

w ritte n  as
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where the notation 7^3''.leans the mathematical measure of the
6 0

in te g ra tio n  va riab le  *(?■) . Me c a ll th is  expression M Feynman's path 

in te g ra tion

I I . 2 Gaussian In teg ra tion

The simplest path in te g ra ls  are those in  which a l l  the 

vs rib le s  appear up to the second degree in  the exponent. In  quantum 

mechanics th is  corresponds to a case in  which the action  involves 

the path w ?)up to and inc lud ing the second order.

To i l lu s t r a te  how the method work in  such a case, consider 3 

p a r t ic le  whose Lagrangian has the form

■+ W z )■*><■ + ccr)xa + J ( z )  X + efTO* 1 Per)

(IT . 3*0
The action is  the in te g ra l of th is  fun c tion  w ith  respect to the time 

between two end po in ts . We wish to determine

^  ^ ' )  = ^ JM . XCÔ) <2->p ร  ^  J i  $ X, *1  J z \  > ( H . K )
(K c  z> J

the in te g ra l is  ever a l l  paths which go from ไ to  ( x t ) 0 •

Of course J i t  is  possible to carry cut th is  in te g ra l over 

a l l  paths in  the way which was f i r s t  described in  section 1.1. 3ut we 

s h a ll not go through th is  tedious c a lc u la tio n , since vie can determine 

the most important ch a ra c te ris tics  o f the propagator in  the fo llo w in g  

manner.

Let be the classical, path between the specified  end
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points . This is  the path which is  an extremum fo r  the action ร  . ]ท 

the no tation ไ'.'e have been usine

ธ .  C i . V )cl ร  i  ^ 1 (7') ( it  • ''ร '))

We can represent xc?) in  tcrmsof X Cr) and a new v a r ib le  >>(?):

xco = * (f) ■+ , ( X - H )

That is  to  say, instead of de fin ing  a po in t on the path by i t s  distance

xf?) from an a rb ita ry  coordinate ax is , we measure the devia tion  x f 7)

from the ca lss ica l path X ,(l).c I

At each z  the va riab le  X(2") and x^f 7') d i f f e r  by the constant 

( ?) . Therefore, c le a r ly , S x _ — d y e . fo r  each s p e c ific  po int ?£ 

in  the subdiv is ion of tim e. In  general, we may say SB T ) £  J

The in te g ra l fo r  the action can be w ritte n

ร xcr> \  ’  ธ  £ Xc, ( o  -r >/ 7 7' ^ (J . 'W O

This canvea s ily  shownthat ve can vrrite

><r,l  *  + ^ [  k 7 ) x V  T k n x 1 j i ?  .

O r- -* * )

The in te g ra ls  over a l l  paths does not depend upon the c la ss ica l path, 

so tha t the propagator can be w ritte n
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K  < > .^ ไ) ^ £>p ) 1 ร  c * ^ }

*  ^ L * r ô ) c v ^ i  I  ̂ A m ^ ' l  f  น ^  > '*  + d ( ? ) \ ‘} J

C I - ท )

Since a l l  paths X ( r )  s ta r t frcm and re tu rn  to the po in t x < " 0 - 0 ,  

the in te g ra ls  over a l l  paths can be a function  of t in e  at the end 

p o in ts . This means tha t the propagator can be w r itte n  as

H C AïVo = F น ,o  ร ' * ’ ^  .

So th a t is  determined except fo r  a function  of i-  .

(9) (3)
I t  fo llow s from the works of Van Vleck and P auli

;a l problem, Eq. (Tp • ~bl^ can also be W it te n  as

[ - ร ่ โ ^  \  S > ; J ’ f  e Y  \ i  5 ^ ไ ' ( I - M )

th a t fo r  the lo c a l problem, Eq. (pp'^fc^can also be W it te n  as

And in  V\ dimensions coordinate space th is  formula is  generalized 

to  be

i  ร  C » i*o j (IT น ๙)

V7here 'fcll') is  the r̂‘~ dimensional coordinate space va riab le . A d e ta ils  

o f the eva luations of th is  re s u lt w i l l  appear in  appendix c .

However, the propagator of Eqs . (ไแ น ^) or ( X น0) are s a t if ie d  

fo r  the system which contain the lo c a l p o te n tia l on ly. They cannot 

be used fo r  the nonlocal p o te n tia l.
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I I . 3 A pp lica tion  to  the Local Problems.

I t  is  of in te re s t to  examine some simple problems of the 

quadratic Lagrangian system. The simplest one is  o f the free  p a r t ic le , 

the Lagrangian of th is  system is  given by

X . = 1  X  . ( IE . ‘ท')

By the rou tine  c a lcu la tio n  o f the c la s s ic a l s o lu tio n  X C O  of the 

equation o f motion of th is  system , the action fun c tio n  can be 

evaluated to  be

■ ( IT -M l

Using Van V le ck -P a u li1 ร re su lts  in  Eq. (TT’ M ) , the propagator

becomes

K  (  ^->L) - 'พ า า
ร TTt' K t

L'พา

ร tat ( ’ ร . - * o (£ •■ พ )

Another problem is  o f the free  e lectron moving in  two dimensions 

under the in fluence of a constant magnetic f ie ld  which presented in  

perpendicular d ire c tio n  to  the plane of e le c tro n ic  motion. The 

Lagrangian of such a system, w ith  the symmetric gauge o f the magnetic 

f ie ld ,  À * = (ะ'' เ ^ > S’ i s given to be

where S i.

VV)
5

X

eB
me

+ ' ๆ )  + ( ^ - 7 ^ )  -
5 the cyc lo tron frequency.

( 1 3 )

(TE ทO

Applying H am ilton 'ร theorem to th is  lagrangian in  both d irec tions



and evaluate the c la ss ica l so lu tions X (O and y  m  fo r t 'ie 

corresponding equations. The action function  can be calcu lated to be

ร  0, =

( n  ’ 4S)4 ^  c **Yb .

Using Van V leck-P au li' ร re s u lt in  Eq. or • ^ ) ,  the propagator becomes

K ( « M  = VV| ] s~2.i~ 1
£>K< k t  j _ S^'V) (-szt/ci') 1

X €> r, ' Ü  [  - f  “ ■* [ c W > J + ( V v Y

+ •“ - (  * b V * ไ ]  1  -

The la s t problem we w i l l  study here is  of the simple harmonic 

o s c il la to r  . The lagrangian of th is  system is

o U  « y - ๙ , 1-ๆ . ( I ' M )

The c la s s ic a l action  func tion  of th is  problem can be evaluated 

system atica lly  and i t  becomes

ร e1 Vo c-o
ร- ‘ร'''* ̂  )

Using Van V leck -P au li’ ร re s u lt in  Eq. , the propagator becomes

* t2 "  - î V , ]

( T  . ท )

012934
'1 10:2 9 ‘7fc7il



k  O  •>(ะ»') •=
V o  C o

gif' i k  «biVi L CO) f •)
Vj

X c > p\ ระ^L-----  f » ( J )  x f l  - ; > v  1)
(7  L  7  k  M  b  A J ]

0 T .+ O
In  next section we w i l l  take a tten tio n  on the problem which 

contain nonlocal p o te n tia l. The simplest one is  known as the nonlocal 

harmonic o s c il la to r .

I I .A  Nonlocal Harmonic O s c illa to r.

Path in te g ra l theory o f the nonlocal harmonic o s c i l la to r  was
(14)f i r s t  done by Bezalc  ̂ . The Lagrangian is  given by

l  = «  5ร พ
f t
^ X C r 'i -  X cA ")j  A 7 ^TT .5 0  j
o

and i t s  corresponding action  func tion  S L*<V }]is

ร  t  -
) ร * ' ' ' ' , * - ^ * $ [

y. fry  — xfû") ^  .

o r ,51)
And the path in te g ra l expression fo r the propagator is  w r itte n  to  be

เ ^ * = ^ # 0 L * c o ]  e ,>p^

^  ^  [ X h )  -  x c o ]  ไ . ( T  .

O a  J
T T

(15) (10)As is  shown by Bezak and Sa-yakanit tha t th is

propagator cannot be w ritte n  in  the form of £qs. (j£  ■พ') 01- £EUfô) ,

But th is  problem takes the Lagrangian in  quadratic form, so tha t i t
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can be w ritte n  in  the form of Eq. C l ■*>& ) . However, fo llow ing  

Papadopoulos' ร idea we can transform the nonlocal problem in to  the 

loca l one and Eqs. ( I  ■'พ') and CtT-'lt)') are s a tis fy .

At f i r s t  step towards our a tten tio n  we express the action 

function  appear in  Eq. by

In se rtin g  th is  action  fun c tio n  in to  the expression of the propagator 

in  Eq. £ir -5^) , our path in te g ra l takes the form

He can generate the path in te g ra tio n  through the averaging by a lin e a r 

exponential fu n c tio n a l in vo lv in g  an a u x ilia ry  random force ^  

independent o f the time T . More e x p lic ite ly  we have

The propagator o f Eq. ^T j.r> i)is of the force harmonic o s c il la to r  and th is

o r . « )

V i ”
-  i l  _  P ” *

น,^
c I ■ร»')

where ,

(IT

(16 )  (17 )
. So tha t the propagator of thecan be found in  the l i te ra tu r e
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nonlocal harmonic o s c il la to r  is  obtained a fte r  in s e rtin g  the propagator 

fo r the force harmonic o s c il la to r  in to  Eq. and performing the

F -  in te g ra tio n . The propagator becomes

าทท
SJi.'fcf 3 จ>\r* ( v>{yA)

'  I ’  <"ef c*'0 [ j C l - 5»)
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