CHAPTER V
Discussion and Conclusion.

In this thesis we have calculated exactly the propagator for
the two dimensional electronic systam under the influence of the
constant magnetic field, the external time varying foipce field and the
nonlocal harmonic oscillator potential as shown in chapter IIl. The
method of calculation we use here follows Stratonovich by transforming
the nonlocal:problem into the local one and we have also used the 2x2
matrix introduced by Papadopoulos for handing the magnetization of the
harmonically bound charge. The main lresults are given in EQs. .(.Hr.anG.lt.

(STE8) ? (1*3) (nr.30).

Up to this stage we then discuss our results by the viay to
apply it into the system of an electronic motion in two dimensions
under the constant magnetic field which presented in perpendicular
direction to the plane of motion and in the presence of the random
potential and generally in the external force field.As mentioned above,
we use the nonlocal harmonic oscillator for calculating the propagator
which, follov?ing Sa-yakanit's work \" is corresponding to the zeroth-
order of approximation which is done by the method of cumulant
expansion. To carry out the path integral for the propagator

for the higher order of approximation, we follow Feynman*

method by using Edward's model of random potential which its action

function is defined as
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where the paraneter denoting the weakness of tlie scattering
potential which is explicitly written here to Indicate the dimensions

involved and j5 denoting the density of the scattering centers.

In[ 'fO -IYt)] denotes the correlation function, defined as
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where V | ] correspond to the scattering potential which may be

the screened Coulomb potential,
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or the gaussian potential 2
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for the two dimensional system. The infinite orders of approximation

for the propagator becomes
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when o[1 *=<mt-'fsol/Cvhich is found in Eg. "HT.3) and the average

over 0 5</-« -7~ ) is defined as
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Approximating Fqg. (I/.£) by the first cumulant, we get
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To obtained K (*1*0 we have to find and the average

« Sa-yakanit have shorn that the average <”b] A8CY>
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can be expressed solely in terms of the following averages ~ y 1y

and y tz}N ¢ Such averages can be obtained from the character-
istic functional of /2->" From Feynman and Hibbs the

characteristic functional can be expressed as
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where s”*and 1 found in Eq.(lU-r* «d £ .53) -fespfdtivel®. - Ue can

differentiate the expression in Eq. (v<&') with respect to H(r) to obtain
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where the symbol ’ implies that after the differentiating, we must
-0

set = o . Continuing the differentiation, we get
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Following this schemeand using the Fourier transforn of

k( "7 >-n "we will get A/MAYA)

Starting from this expression, Eq. (V.*?) , a number of physical
guantities can be studied . For instance , the density of states can
“l
be obtained by taking the trace of K U‘\L) and then performing the

Fourier transform according to the standard f*rmula
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where Tr denotes the trace

Finally, it is interesting to note that the problem presented
here is quite similar to the recent problem treated by Klinert 23)
on the path integral for the second derivative lagrangian which can be
compared to the nonlocal harmonic oscillator presented in this work

when both terms are translationally invariant.
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