MOLECULAR ENGINEERING OF NANOCOMPOSITE POLYPROPYLENE FOR INCREASED RESISTANCE TO SLOW CRACK GROWTH AND MECHANICAL PROPERTIES

Ms.Chanintra Phongphour

A thesis Submitted in Partial Fulfillment of The Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma

and Case Western Reserve University

1997

ISBN 974-636-176-7

Thesis Title : Molecular Engineering of Nanocomposite Polypropylene

for Increased Resistance to Slow Crack Growth and

Mechanical Properties.

By : Ms. Chanintra Phongphour

Program : Polymer Science

Thesis Advisors : Assoc. Prof. Steven D. Hudson

Assoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Assoc. Prof. Steven D. Hudson)

tren De Heaton

(Assoc. Prof. Anuvat Sirivat)

(Assoc. Prof. Kanchana Trakulcoo)

ABSTRACT

952004 : POLYMER SCIENCE PROGRAM

KEY WORD : POLYPROPYLENE / NANOCOMPOSITE /MONTMORILLONITE /

SLOW CRACK GROWTH / MECHANICAL PROPERTIES

CHANINTRA PHONGPHOUR: MOLECULAR ENGINEERING

OF NANOCOMPOSITE POLYPROPYLENE FOR INCREASED

RESISTANCE TO SLOW CRACK GROWTH AND

MECHANICAL PROPERTIES. THESIS ADVISORS: ASSOC. PROF.

STEVEN D. HUDSON AND ASSOC: PROF. ANUVAT SIRIVAT

67 pp. ISBN 974-636-176-7

Nanoscale composites of polypropylene with modified silicate clay have been synthesized. Maleic anhydride -modified polypropylene has been grafted onto functionalized silicate nanoparticles. X-Ray Diffraction and Transmission Electron Microscopy results revealed that modified silicate layers were finely dispersed in these polymeric matrices. The nanocomposites were found to be superior in strength and modulus relative to the unmodified PP. The resistance to slow crack growth was measured by a notched tensile test under a constant load. The time to failure increased from about 4320 min to 30000 min for the nanocomposite of 10 wt.% content.

บทคัดย่อ

ชนินทรา พงษ์พัว : การปรับปรุงทางวิศวกรรมสันฐานวิทยาของนาโนคอมโพสิท โพลีโพรพิลีน เพื่อเพิ่มความด้านทานต่อการเกิดรอยแยกและการศึกษาคุณสมบัติ เชิงกล (Molecular Engineering of Nanocomposite Polypropylene for Increased Resistance to Slow Crack growth and Mechanical Properties) อ.ที่ปรึกษา : รศ.ดร.สตีเวน ฮัดสัน (Assoc. Prof. Steven D. Hudson) และ รศ.ดร.อนุวัฒน์ ศิริวัฒน์ 67 หน้า ISBN 974-636-176-7

โพลีโพรพิลีนได้ถูกนำมาใช้งานอย่างกว้างขวางในเชิงอุตสาหกรรม เมื่อใช้งาน ในระยะเวลานานจะมีการเกิดรอยแยกหรือการเสื่อมสภาพ ทำให้อายุการใช้งานสั้นลง ดังนั้นการ ศึกษานี้มีวัตถุประสงค์เพื่อปรับปรุงอายุการใช้งานของโพลีโพรพิลีน โดยการเพิ่มความด้านทาน ต่อการเกิดรอยแยก เป็นการปรับปรุงโครงสร้างจุลภาคของโพลีโพรพิลีน ดังนั้นนาโนคอมโพสิท โพลีโพรพิลีนได้ถูกสังเคราะห์ขึ้นด้วยการเติมซิลิเกตที่ปรับสภาพผิว ด้วยสารต่อเชื่อม 3-อะมิโนโพรพิลิใดเมทิลเอทอกซี่ไซเลน ที่นำมาเชื่อมต่อกับมาเลอิก แอนไฮไดรด์ โมดิฟายด์โพลีโพรพิลีนแล้วจึงมาเติมลงในโพลีโพรพิลีน

การวิเคราะห์ด้วยเครื่องเอกซเรย์และกล้องจุลทรรศ์อิเลกตรอน พบว่า ซิลิเกต ชนิดที่ผ่านการปรับสภาพผิวแล้ว เมื่อนำมาเติมลงในโพลีโพรพิลีน จะมีการกระจายตัวอย่างดี จาก การศึกษาสมบัติทางกลของนาโนคอมโพสิทโพลีโพรพิลีน พบว่ามีค่าการทนต่อแรงดึงและแรงกด เพิ่มขึ้นมาก เมื่อเปรียบเทียบกับ โพลีโพรพิลีน และจากการศึกษาคุณสมบัติในด้านความด้านทาน ต่อการเกิดรอยแยก (slow crack growth) พบว่า นาโนคอมโพสิทโพลีโพรพิลีน ที่ทำการเติม ด้วยซิลิเกตที่เชื่อมต่อกับมาเลอิก แอนไฮไดรด์ โมดิฟายด์โพลีโพรพิลีน ในปริมาณ 10 เปอร์เซนต์ โดยน้ำหนัก พบว่ามีค่าความด้านทานต่อการเกิดรอยแยกเพิ่มขึ้นมาก

ACKNOWLEDGMENTS

I would like to express my gratitude to the National Petrochemical Company (NPC) for giving a scholarship during the academic year. I would like to give thanks to all the professors who gave me the valuable knowledge in the Polymer Science Program at the Petroleum and Petrochemical College, Chulalongkorn University.

I would like to express my sincere gratitude to my advisor, Associate Professor Steven D. Hudson of Case Western Reserve University, Cleveland, Ohio, USA for his valuable suggestions and originating this thesis work. I would like to give special thanks to my co-advisor, Associate Professor Anuvat Sirivat who gave guidance, directions and helpful suggestions in this work, and for proof - reading of the thesis. My thanks are also extended to all of the staff of the Petroleum and Petrochemical College for their help in my thesis work.

Finally, I wish to express my deepest gratitude to my parents for their eternal love, understanding and generous encouragement.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title Page	i
	Abstract	iii
		111
	Acknowledgments	V
	Table of Contents	vi
	List of Figures	ix
I	INTRODUCTION	1
	1.1 Background	1
	1.2 Slow Crack Growth	3
	1.3 Montmorillonite (Kunipia F)	5
	1.4 Silane Coupling Agents	7
	1.5 Literature Survey	9
	1.6 Objectives	10
II	METHODOLOGY	11
	2.1 Materials	11
	2.2 Experimental Procedures	12
	2.2.1 Nanocomposite Preparation	12
	2.2.2 Mechanical Properties Testing	13
	2.3 Mechanical Properties Testing Techniques	14
	2.3.1 Tensile Testing	14
	2.3.2 Flexural Testing	15

CHAPTER		PAGE
	2.3.3 Impact Testing	15
	2.3.4 Slow Crack Growth Testing (SCG)	16
	2.4 Characterization Techniques	18
	2.4.1 X-ray Diffraction Spectroscopy (XRD)	18
	2.4.2 Diffuse Reflectance Infrared	
	Spectroscopy (DRIFT)	18
	2.4.3 Differential Scanning Calorimetry (DSC)	18
	2.4.4 Transmission Electron Microscopy (TEM)	18
III	RESULTS AND DISCUSSION	19
	3.1 The characterization of Aminosilane Grafted	
	onto the Silicate Clay	19
	3.1.1 The XRD Characterization of Amino-	
	silane Grafted onto the Silicate Clay	19
	3.1.2 Grafting Conditions	21
	3.2 The Characterization of the Grafting MAPP	
	to the Modified Silicate Clay	24
	3.2.1 DRIFT Results	24
	3.2.2 XRD Result	26
	3.2.3 TEM Result	27
	3.2.4 DSC Rresults	28
	3.3 Mechanical Properties Testing	30
	3.3.1 Effect of Filler Content	30
	3.3.2 Effect of Clay Content	36
	3.3.3 Effect of Silane Concentration	42

CHAPTER		PAGE
	3.3.4 Slow Crack Growth Testing Results	48
IV	CONCLUSIONS	51
	REFERENCES	53
	APPENDIX	55
	CURRICULUM VITAE	67

LIST OF FIGURES

FIGUR	RE	PAGE
1.1	Tie chains	3
1.2	Interrelationships of polymer filler and mechanical	
	stress in composites	8
2.1	Chemical structure of 3-aminopropyl simethylethoxysilane	11
2.2	The sketches of SCG specimen	16
2.3	Test fixture and speecimen configuration for the constant	
	load tensile test	17
3.1	The X-ray diffractogram of silicate and modified silicate	
	clay	19
3.2	The intercalating behavior of montmorillonite	20
3.3	The influence of stirring time on the grafting condition	21
3.4	The influence of drying time on grafting condition	22
3.5	The influence of silane concentration on the grafting	
	condition	23
3.6	DRIFT spectra of MAPP and MAPP grafted with	
	modified silicate clay	25
3.7	The influence of reaction time on DRIFT spectra	
	of MAPP grafted with modified silicate clay	25
3.8	X-ray diffraction curves of MAPP and modified silicate clay	26
3.9	TEM micrograph of 10% modified silicate clay in MAPP	27
3.10	The degree of crystallinity of nanocomposite as the	
	effect of filler content	29

FIGURE	PAGE
3.11 The melting temperature of nanocomposite as the	
effect of filler content	29
3.12 (a) The dependence of tensile modulus on filler content	33
3.12 (b) The dependence of tensile strength on filler content	33
3.13 (a) The dependence of flexural modulus on filler content	34
3.13 (b) The dependence of flexural strength on filler content	34
3.14 The dependence of impact strength on filler content	36
3.15 (a) The dependence of tensile modulus on clay content	40
3.15 (b) The dependence of tensile strength on clay content	40
3.16 (a) The dependence of flexural modulus on clay content	41
3.16 (b) The dependence of flexural strength on clay content	41
3.17 The dependence of impact strength on clay content	42
3.18 (a) The dependence of tensile modulus on silane	
concentration	46
3.18 (b) The dependence of tensile strength on silane	
concentration	46
3.19 (a) The dependence of flexural modulus on silane	
concentration	47
3.19 (b) The dependence of flexural strength on silane	
concentration	47
3.20 The dependence of impact strength on silane concentration	48
3.21 The slow crack growth behavior of modified polypropylene	: 49