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Chapter 1

Introduction

Nowadays, the physics of nonlinear composites has attracted much atten-
tion because of their applications in engineering and physics [1, 2, 3]. The opti-
cal composite materials, one type of nonlinear composites, play important roles
in developing photonic devices [4], laser [5], and optoelectronic technologies [6].
Therefore, it is useful to study the electric field response of strongly nonlinear

composite.

The effective response of nonlinear dielectric composites obey a local electric

— — — — —2 =
displacement - field (D — FE) relation of the form D = ¢FE + X‘E ‘ E. The

strongly nonlinear behavior occurs when the second term (x ’E}rﬁ) is much
larger than the first term (sﬁ), then the electric displacement can be written
in terms of D — X ’ET? Because the boundary-value problem of strongly
nonlinear media is extremely difficult to solve. As the nonlinearity appears as
the leading form of the behavior rather than correction to a predominant linear
response, the conventional perturbation method fail. Nevertheless, substantial
progress has been made with the aid of various approximate analytical methods

and numerical methods over the past few years [7-14].

Blumenfeld and Bergman [7, 8] developed a small contrast expansion for the
effective dielectric response of strongly nonlinear composites. Ponte Castaneda
9, 10] proposed a general variational procedure for establishing optimal bounds
and estimates for the electric response of nonlinear composites in terms of the

effective behavior of linear composites with identical structure. In 1992, Yu and



Gu [11] used the perturbation method to obtain the effective nonlinear coefficient
for a small concentration of spherical inclusions embedded in a host medium but

this method can not be used for strongly nonlinear composites.

The variational method (variational energy method) has been applied to
various fields in science and engineering, as examples, such method has been ap-
plied to boundary-value problems in electrostatics, magnetostatics, and electric
conduction. This method is suitable not only for weakly nonlinear composites but
also for strongly nonlinear composites. Moreover, in 1994-95, Yu and Gu [12, 13]
adopted a simple variational method to study the composite which consists of two
different nonlinear media. In an attempt to extend the validity of the dilute-limit
expression to larger volume fraction, Yu and Lee [14] used a self-consistency con-
dition and Bruggeman-type effective medium approximation (EMA) for strongly

nonlinear composites.

Recently, Janthon [15] applied the variational method to study the effective
response of linear and nonlinear dielectric composites of spherical inclusions in
the dilute limit. Next, Chaiprapa [16] applied the variational method to study
the effective response of linear and nonlinear cylindrical dielectric composites and
obtained the effective nonlinear coefficient (y.) for arbitrary inclusion packing

fractions.

Furthermore, Yu and Yuen {17] applied the decoupling technique to strongly
nonlinear composites of spherical inclusions in the dilute inclusion packing fraction
by using the single inclusion model. They obtained an approximate results for the
effective response which are compared with those of the variational approach.
However, their results have a limit on the practical application because the single
inclusion model is unsuitable in the determination on Y. of the composites for

arbitrary inclusion packing fractions.

In this research, the work of Yu and Yuen [17] is extended to arbitrary inclu-
sion packing fractions. The effective medium theory (EMT) proposed by Hashin
[18] is applied for theoretical modeling and studying the electric field response of



strongly nonlinear spherical dielectric composites. Then, the effective nonlinear
coefficients (x.) of the composites are determined for arbitrary inclusion packing
fractions by using the decoupling technique. Our results based on the EMT and
the work of Yu and Yuen are compared. Moreover, our results are also compared
with those obtained by the variational method of which the results are reliable
for arbitrary inclusion packing fractions, in order to determine the validity and

reliability of the decoupling technique.

In Chapter 2, the details of the variational method and the decoupling tech-
nique are presented. In Chapter 3, the effective medium theory (EMT) was pro-
posed by Hashin in studying of effective conductivities of two-phase composite
materials is reviewed. In Chapter 4, the simple variational method is applied in
solving electrostatic boundary value-problem of the strongly nonlinear composites
and the effective nonlinear coefficients (. ) are determined. In Chapter 5, the same
problems as calculated in chapter 4 are now determined by using the decoupling
technique. Then both results are compared, in order to determine the validity
and reliability of the decoupling technique. The last chapter is conclusions of this

research.



Chapter 11

Theoretical Background

In this chapter, the response of dielectric composites in an external electric
field will be investigated. The methods which will be applied to study effective
dielectric properties of nonlinear composites are the variational method and the
decoupling technique. The details of both methods will be presented and applied to
determine the nonlinear coefficients of nonlinear dielectric composites in Chapters

4 and 5.

2.1 Polarization

When a dielectric material is placed in an electric field, a slight displacement of
the negative and positive charges of the dielectric’s atoms or molecules occur and
they behave like very small dipoles. The dielectric is said to be polarized when the
dipoles exist. For example, a polarized atom of a dielectric material is represented
by an electric dipole, i.e., a positive point charge (nucleus) and-a negative charge
representing the electrons, the two charges being separated by a small distance.
When the atom is unpolarized, the cloud surrounds the nucleus symmetrically,
as in Fig. (2.1), and the dipole moment is zero. When an external electric field
ﬁ is applied, the electron cloud becomes slightly displaced or asymmetrical, as
in Fig. (2.2), and the atom is polarized having a tiny dipole moment p’, which
points in the same direction as E. Typically, this dipole moment is approximately
proportional to the field

7 =aE, (2.1)



where « is atomic polarizability. Therefore, when the dielectric is polarized, a con-
—
venient measure of this effect is called polarization <P> which is dipole moment

per unit volume [19].

Positive
nucleus

’ Negatively
charged cloud

Figure 2.1: An unpolarized atom.

Figure 2.2: A polarized atom.

2.2 Dielectric Media

2.2.1 Linear Dielectrics

Consider. the relation between electric displacement (1_5) and polarization (1_5)
_4® =1 5
D:€0E+P, (22)
where ¢ is called the permittivity of free space.

H
Generally, the dielectric materials in which P is proportional (in magnitude)
— —
and parallel (in direction) to E, are said to be linear and isotropic. In case of E

— —
is not too strong, the dependence of P on E can be written as

P =coXE, (2.3)



where Y’ is called the electric susceptibility which depends on the microscopic

structure of the medium.

— — — —
If P and E are related by Eq. (2.3), then the relation between D and E
can be obtained by substituting Eq. (2.3) into Eq. (2.2) to give

— —
D = (1+X/)50E

where € = g¢(1 + %) is called the permittivity of the material and

Therefore, the electric displacement is linearly proportional to the electric

field in linear dielectric media.

2.2.2 Nonlinear Dielectrics

At large field intensities of about 10° V/m or higher, deviation of relation (2.3)
becomes noticeable [20], the non-linear effects of the materials are occurred. They
arise from the interaction of the external electric fields E’), with the molecular
dipole moment, which rotates those dipole and creates a polarization field P.
The polarization field is linearity dependant on the magnitude of the external
fields so long as they are small, this linearity eventually breaks down and higher
order terms are needed to describe the polarization field. The polarization in this

case are given by [21]

2
P\ sox’ﬁ Heox'® ’]_E’> E+ eox' Y ‘E’) EHON, (2.5)

where x', ¥'® and y/® are the nonlinear first, third and fifth order electric sus-

ceptibilities, respectively.
é
It must be noted that the series development of P contains only odd powers
— — —
of E/, because a reversal of the direction of E lead to reversal of direction of P,

- = —

P(E)=—-P(—E). (2.6)



If the polarization is nonlinear in the field strength, the dependence of the

dielectric displacement D on the field strength will also be nonlinear,

— — —12 =
D:5E+X‘E E+..

where € and y are called the linear and nonlinear coefficients, respectively.

The electric displacement 1—5 and ‘electric field E relation of the form
— — i S
D:5E+X'E‘ E, (2.7)

2
will be considered. From Eq. (2.7), x ‘—E—>‘ < ¢ is the case of weakly nonlinear

—2
dielectrics and strongly nenlinear behavior occurs when x ‘ E ‘ > ¢ in which the
electric displacement can be written as

2

= o e
D:X'E E. (2.8)

This equation indicates that the electric displacement is proportional to the
electric field to the third power and will be used to describe strongly nonlinear

composites in this research

2.2.3 Strongly Nonlinear Dielectric Composites

Consider a two-phase .composite [22] with strongly nonlinear property which con-
sists of two dielectrics with nonlinear coefficients y; and y., as shown in Fig.

24.

This composite is replaced by a homogeneous and isotropic medium of ef-
fective nonlinear coefficient (), which is an unknown to be specified later. Fig.
2.4 shows the model, the composite that represents the original one and called the

effective strongly nonlinear composite.

The effective nonlinear coefficient (x.) is defined such that the energy in-

tegral of the original composite has to be equal to the energy of the effective



Figure 2.4: The effective strongly nonlinear composite.

nonlinear composite. That is

o / DBy (2.9)

H
where FE is a uniform applied electric field and V' is the composite volume.

2.3 Basic Equations in Electrostatics

2.3.1 Laplace’s Equation

We now consider the Maxwell equations in electrostatics of dielectric media [23]:
- —
V-D =ps (2.10)

and

- =
VxE=0o0 E=-Vo, (2.11)



where p¢, ¢ are free charge density and electric potential, respectively.

Replacing Eq. (2.4) into Eq. (2.10), gives

—

V- (cE) = p;. (2.12)

Substituting E from Eq. (2.11), Eq. (2.12) is replaced by

VipLts L (2.13)
g

If py = 0 in some region of the media, then Eq. (2.13) becomes

V2 =0. (2.14)

Eq. (2.14) is called Laplace’s equation and replaced the basic equations in

linear dielectric media.

2.3.2 Nonlinear Partial Differential Equations

In case of nonlinear dielectric media, Eq. (2.7) is substituted into the Maxwell

equation (2.10), for the case of py = 0, hence

— — —12 =
V~(5E+X’E\ E)=0. (2.15)
— —
From E = —V ¢, we get
—_
V- (5V@+X‘V<p) V) =0. (2.16)
2
For strongly nonlinear dielectric media (¥ ’ﬁ‘ > ), then Eq. (2.16) be-

comes

X{Vgo‘ V) =0. (2.17)

Egs. (2.16) and (2.17) are the basic equations in nonlinear dielectric me-
dia and they are nonlinear partial differential equations which can not be solved
exactly. According to the complication of these equations, several methods are
applied, these include Perturbation Method [11], Variational Method [12, 13, 14,
15, 16, 24, 25] and Decoupling Techniques [17, 26, 27|, but the suitable methods

depend on the nature of each problem.



10
2.3.3 Boundary conditions

The boundary conditions are essential to specify in solving for electric potentials
%

in the composite. The first boundary condition on E at the interface between dif-

ferent media, any surface separating two regions, is that the tangential component

of E at any surface is continuous [28],
— =
Elt - EQ[, (218)

— — —

where F1; and FE o are the tangential components of £ in media 1 and 2 eval-
H

uated at the interface, respectively. The second, the normal component of D is

continuous at the interface,

=L e
Dln — D2n7 (219)

— — —
where D1, and D, are the normal components of D in media 1 and 2 evaluated

at the interface, respectively.

These boundary conditions will be used to determine ¢ and E in media 1

and 2 of the two-phase composite in Chapters 3 and 4.

2.4 Variational Method

Variational method (or variational energy method) has been applied to various
fields in science and engineering.- As examples, such method has been applied to
boundary-value problems in electrostatics, magnetostatics, and electric conduc-
tion. In previous works, Janthon [15] applied the variational method to study the
bulk effective response of linear and nonlinear dielectric composites of spherical
inclusions in the dilute limit. Recently, Chaiprapa [16] applied the variational
method to study the bulk effective response of linear and nonlinear cylindrical
dielectric composites and obtained the effective nonlinear coefficient (y.) for ar-
bitrary inclusion packing fractions. According to the importance of variational

method; consequently, in this section, the variational method of nonlinear dielec-



11

tric composites will be reviewed and applied to determine the effective nonlinear

coefficient in Chapter 4.

Consider a class of nonlinear dielectric composites that obey a displacement-

_>2

— — —
field response of the form D = e¢E + x|E| E where the linear and nonlinear

H
coefficients are € and Yy, respectively. The governing equations V - D =0 and

? % E = 0 lead to the following nonlinear partial differential equation,
— — — 2 o
V - @) V@) + x@ V@) Vo@) =0, (2.20)

as shown in Eq. (2.20), where o(z) is the electric potential and E = —6@. To-
gether with the boundary conditions of the continuity of the tangential component
of E and the normal component, of D on the interface. Eq. (2.20) forms a nonlin-
ear partial differential equation that cannot be solved exactly. Nevertheless, one

can invoke the variational principle by minimizing the energy functional [15, 16],

wigl = 5 f sl |[Fe@ a5 [0 [Foto)

\% %4

4

v, (2.21)

with respect to an arbitrary variation dp(z) away from the solution of Eq. (2.20),
provide that d¢ vanishes at the interface. For convenience in subsequent discus-
sion, we denote the linear and nonlinear parts of the energy functional by Ws[p]

and Wy[yp], respectively,

Waly = [ <) [Fota)| v, (2.22)
and
Wile) = x(@) |V eta)| av. (223)

so that Wp] = $Wa[p] + Wale]. When the minimum condition is satisfied by

the solution @, then the effective energy function Eq. (2.21) can be obtained,

W =3 [c@]Vow| av+§ [ 1@ |[Fow

\%4 \%4

4

dv. (2.24)

It is important to choose a proper trial potential function ¢, evaluate the
integral in Eq. (2.21), minimize it with respect to ¢, and generate explicit formulas

for the effective linear and nonlinear coefficients in Chapter 4.
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2.5 Decoupling Technique

In this section, the review of the decoupling technique originally developed by
Stroud and Wood [27] is presented and will be employed to study the effective re-
sponse of strongly nonlinear composites in Chapter 5. Consider a class of strongly
nonlinear composites which obeys electric displacement-field relation of the form
D = X ‘Er E. The nonlinear coefficient x takes on different values in materials

1 and 2 described by x1 and y», respectively. The governing equations for electric

- — - —
displacement V- D = 0 and V x E = 0 lead to the following differential equation,

Vo(z)] =0, (2.25)

which is special case of Eq. (2.16) for the first term is negligible. It is convenient
to avoid the complication in solving Eq. (2.25) by using decoupling technique.
The effective strongly nonlinear dielectric composite which was defined in Fig. 2.4

with the effective nonlinear coefficient (y.) given by Eq. (2.9), will be considered.

When a trial electric field £ (x) is used to generate an approximate formula
for the effective nonlinear coefficient (x.) of Eq. (2.9),
—
CEV = | x@)|E@) av. (2.26)
v

or

Y=l | G B ] B

J N -
v1X1 <E1 > U2X2 <E2 >

+ :
Eq Eg

4
V]

(2.27)

wherew; = V1 /V and vy = V4 /V are volume packing fractions of materials 1 and
2, respectively. Let <E§> represents the spatial average of trial electric fields to

the fourth power in materials a = 1 and 2,
- 1 - 4
<E;’;> — —/ ‘E(x)’ dv, a=1, 2. (2.28)
Vo Jv,

where V, is the volume of o component. Since E(az) can not be solved exactly,

Yu, Hui and Lee [26] used linear field ﬁ(m) to give an estimate of the effective
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nonlinear coefficient. From Eq. (2.27), we obtain

14 T4
U1X1<E1> U2X2<E2>
2.29

EE T B (2.29)

Xe =

ﬁ
where F,(x), o = 1, 2 is the solution of the linear composite satisfy the same

boundary conditions and the same microstructure. For the linear response
D(z) =e(x)E (2), (2.30)

where e(z) is the linear coefficient described by £; and e in materials 1 and 2,
respectively. The effective linear coefficient of the composite (e.) can be derived

in similar to Eq. (2.27). The result is

g = ﬂlv/‘f(l‘)
= ﬂlv[/‘ﬁgl(m)‘E')l(x)rdv-k/v;?z(ff)‘52@)‘2(“/]7

V1€1 <E12> VoE9 <E§>
= 2.31
B3 B (231)

2

E(x) dv,

where F; and FEj are electric fields in materials 1 and 2, respectively, and ( ) is

i 2
Ea(a:)‘ AV, a=1,2.

1
the volume spatial average with (E2) = — [
Vo g

We invoke the decoupling approximation [27] by ignoring the fluctuations of

the local electric fields,

(B2 (B = (Ha) (B3 ¥ (2.32)
or (E2) is approximated by
(EXy=N(E2)?, (2.33)
and also
(B3 = (E2)*. (2.34)
Now, Eq.(2.29) is replaced by using Eqgs. (2.33) and (2.34), hence

_uixa <E12>2 V2X2 <E22>2
X@ Eal Eal *

(2.35)
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To obtain the mean square of the electric field (E?), the derivative of Eq.

Oge .. : :
(2.31) is evaluated for i, which immediately gives

851

2y _ 1 0% o
(E}) = o Ej, (2.36)

1

Oee ,
Similarly for the derivative Bi of Eq. (2.31), we obtain
€2

140s¢

2NIY 4
(E2) = o (2.37)

Comparing Eqgs. (2.31) and (2.35), X, x2 and y; are written in terms of &,

g9 and ;. We refer to the previous work of Yu, Hui and Lee [26]:

e XeEga (238)
e =\ X (B, (2.39)
ET (2 <E§> A (240)

According to the microstructure of the linear dielectric composites, . can

be written as a function of its constituent properties,
ge = Fe1,€9,v9), (2.41)

for strongly nonlinear composites, Yu et. al. [26] replaced the linear coefficients
from Egs. (2.38), (2.39) and (2.40) into Eq. (2.41), then y. may be expressed in

the form

Xe = F(x1 (E7), x2 (E3),v)/ E;. (2.42)

Note that the effective linear coefficient (.) and effective nonlinear coeffi-

cient (x.) are independent of the external electric field (E)()) :

Egs. (2.41) and (2.42) imply that with the established results from the linear
dielectric composite, the established effective linear coefficient y, is obtained. This
approach gives results with are in good agreement with numerical simulations [26].
Consequently, the deviation of effective linear coefficient will be given in Chapter

3 in order to determine the effective nonlinear coefficient in Chapter 5.



Chapter 111

Effective Linear Coeflicient

The effective medium theory (EMT) was proposed by Hashin [18] in studying
the effective conductivities of two-phase composite materials. In his work, the

lower and upper bounds of the effective linear conductivities are determined.

According to the similarities of basic equations for electric conduction and
electrostatics for dielectric media, Hashin theory can be applied to determine the
effective dielectric constants (or linear coefficient) of linear dielectric composites,
and therefore will be reviewed in this chapter. Then further studies extend to
nonlinear dielectric composites based on the EMT incorporation with the varia-
tional method and decoupling technique to obtain the effective nonlinear coefficient

which will be given in Chapters 4 and 5.

3.1 Effective Medium Model

To consider the response of-a linear dielectric composite when-a uniform exter-
nal electric field (ﬁo) is applied.” Let the composite be composed of spherical
inclusions randomly distributed in a dielectric medium with different linear coef-
ficients. The theoretical model proposed by Hashin called effective medium treat-

ment (EMT) [18] will be applied to determine the effective dielectric constant.

In the EMT, the composite is considered to be composed of spherical cells.
Each cell contains only one of the inclusions which is surrounded by the medium.

The linear coefficients of the inclusion and the medium are €5 and £, respectively.
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o3
The ratio of the inclusion volume to the cell volume is 7 In this model, only a
representative cell is considered (see Fig. 3.1), while the other cells are replaced by

a homogeneous medium which has the effective linear coefficient ¢, to be specified.

_— _—
T AN
E,=EZ
_— B
A
_ > i Z
_
_
B

Figure 3.1: A representative cell is composed of a spherical inclusion of radius
a having linear coefficient &, surrounded by a concentric shell of radius b having

nonlinear coefficient €.

3.2 Electric Potentials

To determine the electric potentials in the cell, according to Eq. (2.14), the basic
equation of linear dielectric media is Laplace equation in spherical coordinate,
which is

Vi =0, (3.1)

where ¢ is the electric potential.

In general, the solution of Eq. (3.1) depends on variables =, § and ¢. In
this theoretical model as shown in Fig. 3.1, the external uniform electric field is
applied in the z — axts, then the potential has azimuthal symmetry depending on

variables r and 0.

The solution of Laplace equation in this case is [2§]

o(r,0) = Z[Anr” + B,r~ "] P, (cosh), (3.2)

n=0
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where P, (cos @) is called Legendre polynomials.
From the boundary conditions:
e At the inclusion center (r = 0), the electric potential is finite, then B, = 0.

e Very long distance from the inclusion (r — oo), the electric potential of

Eq. (3.2) becomes — FEqyr cos 6.

In cooperation between the boundary conditions and the Legendre polyno-

mials n = 1, the electric potentials have the simple forms

@o(r,0) = Arcosf, 0 <r<a (3.3)
C

1(r,0) =(Br + ﬁ) cosf, a<r<b (3.4)
D

we(r,8) = (—Eor+ ﬁ) cosf, b<r <oo (3.5)

where ¢, and ¢, are the electric potentials in the inclusion and the shell region,

respectively. ¢, is the electric potential in effective medium.

The constants A, B, C'and D in Eqgs. (3.3)-(3.5) can be determined by using

this boundary conditions at the inclusion and the outer cell surfaces:

ﬁ
e the tangential component of £ is continuous (E1; = Fy;), then the electric

potential is also continuous,

Po(r=a,0)= o (r=a;9)

C
A:B+$, (3.6)
and
o1(r =15,0) = p.(r =b,0)
C D

B+§ :—E0+b—3, (37)

e the normal component of D is continuous (D1, = Doy, or e9Fy, = £1E4,,),
hence

] |

__0¢
=2 or Or

r=a=— €1 87" ’r:m



2C
8214:51(3——3), (3 8)
and
1 87’ r=b e 87” r=b
2C 2D
€1<B — b—3) = —5€(E0 -+ ﬁ) (39)
Replacing Eq. (3.6) in Eq. (3.8), we obtain
—xC
€9 + 2¢4
where x = g
€9 — &1

Substituting Eq. (3.10) into Egs. (3.7) and (3.9), then we obtain

1 T D

AR N (311)
2 9. 2e.D
—81(6—3 13 5)0 = —66E0 ~ b3 . (312)

From Eqs. (3.11)-(3.12), the constants C, and D are obtained, which are

usable in solving for another constants:

S —9xEy
A = [2(1 — c’) 4= ﬁ(Qc’ aF 1)] + QK[(Q + C') + ﬁ(l _ C,)]a (3.13)
b- qLUCARIL (3.14)

2(1—¢)+ B2+ D] +26[2+)+B(1—0)])

£ 3k(6.— 1)a>Ey
AE: 2(1 — )+ 62 +1)] + 2:[(2+ )+ 601 — )] (3.15)

3
Wherec’:a—,ﬁzg—Qandﬁ;:E.
b3 &1 &1

From Egs. (3.13)-(3.15), A, B, and C are still given in terms of k = ce

€1

called relative effective linear coefficient which is the unknown has to be specified.

The effective linear coefficient (e.) is defined as [18]

<z_)’> — e, <E’> (3.16)

where ( ) is the volume average.
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The effective linear coefficient term <B> of Eq. (3.16) may be written as

the sum over inclusion and host medium, so Eq. (3.16) becomes
ge (E,) = 1269 <E§2)> + v161 <E§1)> , (3.17)

where the subscript z represents the electric field component in z — azis, <E§1)>
is the volume average of the electric field in the host medium only, and <E§2)>
is the volume average of the electric field over the inclusion, vy is the inclusion

packing fraction and vy = 1 — vs.
. . . H H ~ . .
With the boundary eondition £ = Ey = Eyz, it is true that [31]

(E.) = Fy, (3.18)

hence

vs (EP) 4 v, (BV) = B, (3.19)
<E§1)> in Eq. (3.17) is eliminated by using Eq. (3.19), then
eeEy=¢e1Ey+ va(€a— €1) <E§2)> : (3.20)
This equation indicates that if we know <E§2)> , €. can be calculated.
Calculating <E§2)> for this problem, we get
(EP) = —A. (3.21)
From Eqs. (3.13), (3.20) and (3.21), the solution & is given by

9up (8= 1)K

A AL | 3.22
I RATahee+ Dl e o sy O
3
Where/f:%,ﬁzgandc’:a—
€1 €1 b3

. . . . € . .
The relative effective linear coefficient </$ = —e> is a function of parameter
€1
3
/

=

restriction of ¢’ is

which is the ratio of the inclusion volume to cell volume in Fig. 3.1. The

c<d <1, (3.23)
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where ¢ is the inclusion packing fraction limiting the maximum cell volume. ¢ =1
is for b = a or the case of inclusion embedded in the effective medium without

surrounding host medium phase 1.

In this research, the effective linear coefficient (e.) will be determined for

special cases of ¢ =1 and ¢ = ¢ (inclusion packing fraction).

3.3 Effective Linear Coefficient

The composite is categorized into three cases. First, inclusions of material 2
embedded in material 1. Second, inclusions of material 1 embedded in material 2.

The last, two interdispersed materials.

3.3.1 Inclusions of Material 2 Embedded in Material 1

Refer to Fig. 3.1, it shows the theoretical model for the composite with dielectric

inclusions of phase 2 of linear coefficient e5 embedded in phase 1 material of linear
3

. . . . . a .
coefficient £;. We now determine the effective linear coefficient for ¢ = — which

b3
is equal to the packing fraction of inclusions (¢’ = v,).

From Eq. (3.22), we replace ¢ = vy,
2[(24v2) +B(1—wvy) |k = [(25)ve+B(1 +50v3) |k —[2(1—va) +B(1+2v5)] = 0. (3.24)

The - solution of ‘x has two real roots of opposite sign, a negative root gives a
negative €. which is physically meaningless. Only a positive root is considered,

which is
e (248) 28— Dy
& 2t A 20— B (3:25)

K =

€2
where § = — .
€1

The effective linear coefficient can now be determined by rearranging Eq.



21

(3.25), which gives

v
ce=ce1 |1+ ——— |- (3.26)

E9 — &1 3
3.3.2 Inclusions of Material 1 Embedded in Material 2

In contrary to subsection 3.3.1, we consider inclusions of material 1 with linear
coefficient £; embedded in medium of linear coefficient e, . In this case, . is
similar to that of Eq. (3.22) with interchanging between e and €1, vy and vy,

hence
91 (B — 1)k
2(0—¢)+ B2+ D] +26[2+¢)+5(1—7)])

€ Sif a . 3" .
where k = =, =" and ¢ = = For ¢’ is minimum equal to the volume packing
€2 €2

fraction of inclusion (¢’ = vy), then Eq. (3.27) becomes

K=1+

(3.27)

P, = By (3.28)

Sf=—=aL0 3
3.3.3 Two Interdispersed Materials

Now we consider composites consisting of two interdispersed materials phases 1
and 2. The theoretical model is-that an inclusion with linear coefficient e (or £1)
is embedded in an effective medium with effective linear coefficient .. This is the

case ¢ =1 in Fig. 3.1.

For ¢ = 1, Eq. (3.22) becomes

(B — 1)k

da e

(3.29)

Ee 5
Substituting kK = — and § = —2, we get
&1 €1

—262 £ 26,61 — EoEg — 202EE] — VaEeE1 + 209EcEs + VaEeEr + £c1 = 0. (3.30)
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By using the relation between the packing fraction of inclusion (vy) and the

packing fraction of host medium (vy) with v; + v = 1, then Eq. (3.30) becomes

—2(vl+vg)€g+2<€e€1 —€e82—2(1—01)ec1—126c814 2008 E0+ (1 — ) ecea+(v1+02)E169 = 0,
(3.31)

2 Ee ) = 0. (3.32)

€9 + 2e,

€1 — Ee
€1+ 2¢,

Ua( )+ v (

Symmetrically, we may consider the phase 1 material is embedded in the

effective medium.

For ¢ =1, Eq. (3.27) becomes

E1/7>5¢€¢
€1 + 2¢,

€2 S fe
€9 + 2e,

+ 1y ) =0. (3.33)

U1<
It is observed that Eq. (3.32) is exactly the same as Eq. (3.33) which

explains the symmetrically dispersed of materials 1 and 2.

3.4 Results

The schematic plot of the effective linear coefficients (s.) calculated from Egs.
(3.26), (3.28), (3.32) and (3.33) against the packing fraction of inclusion (vy), are

shown in Fig. 3.2 for the case of e5 ) €.



23

Eq. (3.26)

Egs. (3.32) or (3.33)

Figure 3.2: Bounds of the effective nonlinear coefficients.

Figure 3.2 shows the lower and upper bounds of the effective linear coeffi-
cients obtained from Eqgs. (3.26) and (3.28), respectively. The curves representing
Egs. (3.32) and (3.33) coincide and lie between the two bounds.



Chapter IV

Effective Nonlinear Coeflicient by
Variational Method

In this Chapter, the studying has been extended to strongly nonlinear di-
electric composites by employing the effective medium treatment (EMT) and the
variational method in solving the electrostatic boundary value problem. Then
the effective nonlinear coefficient () including the lower and upper bounds are

determined.

4.1 Effective Medium Model

To consider the response of a nonlinear dielectric composite when a uniform ex-
é

ternal electric field (E 0) is applied. We assume that the composite is composed

of two components: inclusions and dielectric medium, which exhibit different non-

linear coefficients. The inclusions are randomly distributed in dielectric medium.

By using EMT, the composite is considered to be composed of spherical
cells. Each cell contains only one of the inclusions which is surrounded by the
medium. The nonlinear coefficients of the inclusion and the medium are y, and

3
a
X1, respectively. The ratio of the inclusion volume to the cell volume is —. In

b3
this model, only a representative cell is considered (see Fig. 4.1), while the other
cells are replaced by a homogeneous medium which has the effective nonlinear

coefficient . to be specified.
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e _—
= A
E,=Ez
_— _
A
> Z
_—— - 5
—_—
_

V4
Y
Figure 4.1: A representative cell is composed of a spherical inclusion of radius a

having linear coefficient ys surrounded by a concentric shell of radius b having

nonlinear coefficient ;.

4.2 Effective Nonlinear Coefficient

To obtain the effective nonlinear coefficient of strongly nonlinear composite, three
cases of composite materials are considered. First, inclusions of material 2 embed-
ded in material 1. Second, inclusions of material 1 embedded in material 2. The

last, two interdispersed materials.

4.2.1 Inclusions of Material 2 Embedded in Material 1

First, we consider the material with inclusions of strongly nonlinear of material
2 embedded in material 1. The theoretical model is shown in Fig. 4.1. To
determine the electric potentials in the cell and the effective medium which obey
the complicated nonlinear differential Eq. (2.16), the variational method which is

explained in section 2.4 will be applied.

We use simple trial potentials:

pa(r,0) = —cEgrcosf, 0<r<a (4.1)

3
o1(r,0) = —Eo(fr — ga_2> cosf, a<r<b (4.2)
r

b3
e(r,0) = —Eo(r — dﬁ) cosf, b<r<oo (4.3)



26

which were chosen by Yu [24] to predict the strongly nonlinear response of dilute

composites with reasonably good results.

The continuity of the potentials at the inclusion and the outer cell surface

(r = b) are used to determine the relation of constants ¢, f, g and d in Eqgs. (4.1)-
(4.3). We get

c=[f~g, (4.4)

d=1—f+gc, (4.5)

a3

where ¢ = R
We reduce four constants into two variational parameters which are f and
g. The other parameters ¢ and d, are related to f and g as shown in Eqs. (4.4)

and (4.5).

To determine the two variational parameters f and g with the trial potentials
in Egs. (4.1)-(4.3), the energy functional of Eq. (2.21) is used. For strongly
nonlinear composites, the first term of Eq. (2.21) is neglected. Therefore, the

energy functional is

1 A 4 = 4 — 4
Wiel = 31 [ x e Fef a [l Fea@f v+ [ @ [Foo)| v,
V1 v Ve
(4.6)
where Wy is the surface energy term which is
v
W= Xedﬁan (4.7)

as pointed out by Bergman {1].

In order to obtain the energy functional W], we first determine the poten-

tial gradients from Eqgs. (4.1)-(4.3),

— ~

Vs = —cEylcosdr —sin 0], (4.8)
2 3 3 -

Vo = —Eo[(f+%)cos9?—(f—g%)sin&&], (4.9)

- 3 3

Ve = —Eo[(1+ 2;‘[—3{)) cosOr — (1 — %) Sin@é\]- (4.10)
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8)-(4. 10) are substituted into Eq. (4.6), we obtain
b3 36 a® 36a° f2¢?
4y 4y 2 2 7
8a9fg 3 A 8(112 4 (13 8b12d4
TBWRS Bﬁg BT U R Gy
8d®  360°d* P N 36b3d? N 8b3d? N 8b3d4) ]
BRO  5RS  R* | GRS | SRS | 5RO

b
+53 —dx.Ey, (4.11)

- (4
1
1

4
where the composite volume is assumed to be §7TR3. For R > b, Eq. (4.11) is

reduced to
Wlel = iE4[(__f4 f4+ 356 10;3]0292 36562?];23 : 5R3f ’
_85622% + 553594 E;;;,:)m 0 2—304)(2 +(1— f{_z
+3§z;§z2 { 8;;{;3 e 8565%624)%] zb%?» N (4.12)

3

Without loss of generality, Fy is set equal to 1, Eq. (4.12) with vy = 2—3 is

16 36 8 8
Wie] = Zﬁ[(le — flog + ——f292’02 + —fQSU2 + 59402 f29 UQ
8 36 8
——fg V5= =9 Bxa + Evaxs + (1 +4d + €d2 + 5d3
8 ot
—dY v + = .. 4.13
Sy )Xel + X (4.13)

The constants ¢ and d from Eq. (4.13) are eliminated by using Eqgs. (4.4)
and (4.5). Minimization of W [p] with respect to-the variational parameters f and

g gives the following equations:

%—‘j{ = fP—a— fPu+ ?fg%z + 2g;U2 +(f — 9)°yvs — ?fg%%
—%g?’vg’ — ?1’(1 — f+gv) — gx(l — f+gw)’ — gw(l — [+ gv)?
— 0 (4.14)
and
ow

8 6 8 18 6
En = €f2902 + gfg%Q + 59302 +xvy — (f — 9)°yvs — ngQUS - 5f92v3
8, , I8 6 , 8 ,

—597v2 + - ava(l = f 4 gua) + cava(l = f 4 gva)” 4 cava(l = f + gva)

= 0, (4.15)
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where z = X¢ and Yy = X2
X1 X1
In fact, the functions of %—V}/ = 0 and %—W = 0 in Egs. (4.14) and (4.15)
g

have three roots of f and g which yield the functions extremum. Two roots are
complex number which give physically meaningless y.. Only real root of f and g

will be used.

3

To solve Egs. (4.14) and (4.15) for f and g, ¢ = Z—3 or inclusion to cell
volume is set equal to the inclusion packing fraction. One more condition is given

to specify the unknown .. This is the self-consistency condition [18] given by
(BEY = v (BMW) + 0, (EDP)) (4.16)

where subscript z is the electric field component in z-axis. <E§2)> and <E§1)>
are the volume average of the electric field within the inclusion and host medium,

respectively.

Eqgs. (4.8)-(4.10) are used to calculate <E’,§1)> : <E§2)> and <E§€)>. We get

e (4.17)
(E®) = cEy, (4.18)
(EP)Y = E. (4.19)

By substituting Eqs. (4.17)-(4.19) into Eq. (4.16), we obtain
f=1+vg. (4.20)

From Egs.(4.14), (4.15) and (4.20), we can solve for f, g and x. as in terms of

y = Xg and vy which are parameters to specify the effective nonlinear coefficient
X1
Xe- Because of the complication x. can not be solved in a closed form. To keep off

the complication, x. is determined for specific values of y = X2 and vy. So, the
X1

relative effective nonlinear coefficient (&) as a function of the inclusion packing
X1

fraction (ve) and the relative nonlinear coefficient &> is obtained:
X1

Xe X2
e — Pluy, 22). 4.21
X1 ( ? Xl) ( )
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In this work, the inclusion packing fraction (vs) is varied from the dilute limit
(v2 = 0) to the ideal maximum packing fraction v, = 1. The parameter X2 s
been set equal to 10, 100, 1000, 0.1, 0.01, and 0.001. The relative effective norfllinear
coefficients (&) are determined for arbitrary inclusion packing fractions by using

X1
a Mathematica program (see appendix C).

4.2.2 Inclusions of Material 1 Embedded in Material 2

In contrary to subsection 4.2.1 with the theoretical model Fig. 4.1, we now con-
sider the strongly nenlinear dielectric inclusions having nonlinear coefficient y;
embedded in the medium of strongly nonlinear coefficient xs. The calculation of
relative nonlinear coefficient <&> is resemblant to the mathematical process in

X1
subsection 4.2.1

The relative effective nonlinear coefficient (&) is obtained as a function
X2

of inclusion packing fraction v; and the relative nonlinear coefficient XU For the
X2

purpose of reporting in the same figure of those given in subsection 4.2.1, we write

the relative effective nonlinear coefficient as these results

Xe / X2
= = F'(v9, =), 4.22
X1 b X1) ( )

where vy is replaced by v9 =1 — ;.

The parameter y = X2 has been set equal to 10, 100, 1000, 0.1, 0.01, and
X1

0.001. The relative effective nonlinear coeflicients <&> are determined for ar-
X1
bitrary packing fractions vy by using the Mathematica program (see appendix

Q).

4.2.3 Two Interdispersed Materials

Now we consider composites consisting of two interdispersed materials phases 1
and 2. The theoretical model is that an inclusion with nonlinear coefficient ys (or

X1) is embedded in an effective medium with effective nonlinear coefficient ..
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In fact, this model is the special case of the EMT with ¢ = 1, it is called the
effective medium approximation (EMA). For the case of the composite can not be

specified clearly which phase 1 (or 2) is the inclusions as shown in Fig. 4.2.

Figure 4.2: Two interdispersed materials.

So the representative cell presented in Fig. 4.1 is replaced by a single particle
of phase 1 or 2 having nonlinear coefficient y, (a = 1,2), it is surrounded by a

homogeneous medium of effective nonlinear coefficient x. (see Fig. 4.3).

_— _—
= A
E,.=EzZ
_— _—
oA
z
- .
—_—
—_—

Figure 4.3: A spherical inclusion of radius a with nonlinear coefficient x, (o = 1, 2)

is surrounded by an effective medium having nonlinear coefficient x..

To determine the electric potentials in the inclusion and the effective medium
which obey the complicated nonlinear differential Eq. (2.17), the variational

method which is explained in section 2.4 will be applied.
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We use simple trial potentials:

0a(r,0) = —coEorcost, 0<r<a (4.23)
3
0e(r,0) = —Eo(r— ba%) cosf, r>a (4.24)

where ¢, and ¢, are the electric potentials in the inclusion of material type «
(v =1,2) and the effective medium, respectively. b, is a variational parameter as

yet to be determined.

The continuity of the potentials at the inclusion surface is used in order
to determine the relation between parameters ¢, and b,. From Eqs. (4.23) and

(4.24), evaluated at r = a, we obtain

Ttk N (4.25)

To determine the variational parameter b, with the trial electric potentials,
Eqgs. (4.23) and (4.24), the energy functional of Eq. (2.21) with the first term is

neglected,

1

Wiel = 51 el [Foula) aview, )

1 4dV—l— /Xe(:c) }?(pe(x)

Ve =
is determined and minimized with respect to the parameter b,. In this case, the

surface energy term (W) is [16]

3

a
W= XebaﬁEg‘. (4.27)
From Eqs. (4.23) and (4.24), we get
é ~
Voo = —coaEplcosdr —sin ), (4.28)
20,a° boa’ ~
Ve = —Eol(1+ 220 cos 07 — (1 — -2 sin 6. (4.29)
r r

Eqgs. (4.27)-(4.29) are substituted into Eq. (4.26), hence

1 EX(1 a®  36a°b? N 36a2  8a’b? . 8a’h?

47" R3  5RS 5R3 5RY ' SRS
8a'?bt  8abi a®ctxa, @by .

o 5R12 + 5R3 )Xe R3 ] R3 XeEo, (430)

Wip] =
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4
where the composite volume is assumed to be §7TR3. For R > a, Eq. (4.30) is

reduced to
1 a®  36a’b2  8a*hd  8a’bt
W [ 4 1 — — « [e% o .
W = 1Bl -+ 5 5 T X
a at 4
+§CO¢XO¢] + XebaﬁEO' (431)
a3
Without loss of generality, Ey is set equal to 1, Eq. (4.31) with v, = g
and ¢, =1 — b, is
1 36 8 8 1
Wip] = ZKl — Vo + gvabi + gvabf’x + gvabi +4vabo) xe + Zva(l — ba)4xa]. (4.32)

A dimensionless contrast parameter between the o' component and the
effective medium is defined as y, = Xe (v =1,2) and ¢, is eliminated from Eq.
(4.32) by using Eqs. (4.25). Minimizat?on of Wp] with respect to the variational
parameter b, gives

oW 18h, 602 8B
87 Vo 1 -+ o=l —— —

5 = 5 (1 - ba)gya> )
= 0. (4.33)

Eq. (4.33) is solved analytically for b,, we obtain three b, with different roots.
Two complex roots give physically meaningless y.. Only real root is considered,

which is

b — )
a 8+5ya

21/3(3964-810y4)
3(8+5ya ) (—1296—7020ya —24975y2 +27v/5(8+5ya )/ 1072+5272y0 +6845y2)1/3

(—1296—7020y0 —24975y2 +27v/5(8+5ya )/ 107245272y 4+ 684592 ) /3 434
3 21/3(8+5yq) ) ( ’ )

From Eq. (4.34), we note that the parameter b, is a function of y, = Xa

(v = 1,2). The volume average of local electric field within the spherical inclusion

<<E§a)>> is calculated by using Eq. (4.28), we get
(E{) = c,Ey
= (1 - ba)EO- (435)
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Hence, an approximate expression for <E§a)> is obtained by using the so-
lution of b, calculated in Eq. (4.34). For convenience, we define new parameters

which are dimensionless as

_Xe_xexi_y 1

Xe X1 Xe T Xe x
where x = Xe and y = X2
X1 X1

According to the self-consistency condition of Eq. (4.16), the volume average

Y2

of local electric field within the spherical material « calculated by Eq. (4.35) is
replaced into Eq. (4.16), we get

Ugb(yg) .= (1 I Ug)b(yl) = 0, (436)

where b(y;) and b(ys) are the solutions of Eq. (4.34) evaluated at y, = x1 and

Xo = X2, respectively.

By solving Eq. (4.36), then the relative effective nonlinear coefficient is

obtained as a function of vy and y = X
X1
X P(0s, 22 b)) (4.37)
X1 X1

In this work; the inclusion packing fraction (vs) is varied from the dilute limit

(vg = 0) to the ideal maximum packing fraction vy = 1. The parameter X2 Has
X1
been set equal to 10, 100,.1000, 0.1, 0.01, and 0.001. The relative effective nonlinear

coefficients (&) are determined for arbitrary inclusion packing fractions by using
X1
a Mathematica program (see appendix C).

4.3 Results and Discussion

The relative effective nonlinear coefficients are plotted in terms of log(&) against
X1

the packing fraction of material 2 (vy) for various values of relative nonlinear

coefficients (y = &), as shown in Fig. 4.4 for X2 _ 10, 100, and 1000, Fig. 4.5

X1 X1

for X2 = 0.1, 0.01, and 0.01.
X1
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Figure 4.4: Bounds of the effective nonlinear coefficient by the variational method

(

X2 _ 10,100 and 1000

X1

).
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Figure 4.5: Bounds of the effective nonlinear coefficient by the variational method

(X2 = 0.1, 0.01 and 0.001).
X1
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Fig. 4.4 and Fig. 4.5 shows the lower (- - -) and upper (- - -) bounds of the
effective nonlinear coefficient calculated by Eqs. (4.21 ) and (4.22), respectively.
They are the best possible lower and upper bounds for a statistically homogeneous
and isotropic two-phase composite materials, when the only geometrical informa-
tion available is inclusion packing fractions. In addition, a remainder middle (—)

presented for log(&) calculated by Eq. (4.37).
X1



Chapter V

Effective Nonlinear Coeflicient by
Decoupling Technique

In this chapter, the decoupling technique presented in chapter 2 will be
applied to determine the effective nonlinear coefficient (x.) of strongly nonlinear
dielectric composites. We first begin to investigate the linear response in the range
of dilute inclusion packing fractions, then extend to the case of arbitrary inclusion
packing fractions. Next, by using the decoupling technique, y. including the lower

and upper bounds are determined for arbitrary inclusion packing fractions.

5.1 Effective Linear Coeflicient

To determine the effective linear coefficient (.} of the composite which contains
dilute inclusions, a single inclusion model was assumed [15]. As shown in Fig. 5.1,
an inclusion of radius a with linear coefficient €4is embedded in a host medium
with linear coefficient £; and an external uniform electric field (E>0> is applied to

study the dielectric response.

To determine the electric potentials, according to Eq. (2.14), the Laplace

equation in spherical coordinate is used:

Vip=0. (5.1)

The electric potentials satisfying the boundary conditions at r = 0 and
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E,=E2
/\
—_— g z
Figure 5.1: The single inclusion model.
r — o are
po(ry0) = =cEyrcostd, 0<r<a (5.2)
b
@1(r,0) = —Eo(r— —)cos, r>a (5.3)
r

where @9 and ¢; are the electric potentials in the inclusion and the host medium,

respectively.

The constants ¢ and b in Eqgs. (5.2) and (5.3) are determined by using the
continuities of the tangential component of E andMtHe normal component of D

at the inclusion surface, hence

— 3
= 227 ande= 2t (5.4)
€9+ 261 g9 + 2¢1
In order to determine e,, the energy integral is used |15, 3], which is
1 a g3
& T W/Vga Ea d‘/, = 1, 2, (55)

where the subscripts 1, and 2 are referred to the host medium and the inclusion,
respectively.
— —
From E, = -V, and using Egs. (5.2)-(5.4), Eq. (5.5) gives

381(52 — 81)
e =& FUg—m— 2, 5.6
c “1 v €9 +2€1 ( )

where v, is the inclusion packing fraction.
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Eq. (5.6) is a well know result which is obtained by assuming that the
inclusion volume is much less than the composite volume. Hence, it has a limit

on the practical application.

As presentation in Chapter 3, the more general EMT model was used to
determined the effective linear coefficient (e.) and the result is given by Eq. (
3.26) which is valid for composites having arbitrary inclusion packing fractions,

(Y
— Y 1+ﬁ s (57)

(S 3

where v; = 1 — vy.

€e
The relative effective linear coefficients (—) , calculated from Egs. (5.6)
€1
€
and (5.7), are plotted against the relative linear coefficient (—2> for various in-
€1

clusion packing fractions (vs) in Fig. 5.2.

. : — \ . €
From Fig. 5.2, the relative effective nonlinear coefficients —= calculated by
€1

using the single inclusion model with Eq. (5.6) and the EMT model with Eq.
(5.7), are presented as dash (- - -) and solid lines (—=), respectively. The more

inclusion packing fraction (vy) increases, the greater distinction of — calculated
€1

from Eqgs. (5.6) and (5.7) are observed. However, for vy is less than 0.1, the e
€1

values obtained by using both models are approximately corespondent. Therefore,

the single inclusion model is for inclusion packing fraction less than 0.1.
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ele,

€
Figure 5.2: Comparison of relative effective linear coefficients <—e) obtained by
€1

using the single inclusion model and the EMT model for varying inclusion packing

fractions (ve = 0.01, 0.08, 0.1 and 0.2).
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5.2 Effective Nonlinear Coefficient

Next, extending to a strongly nonlinear dielectric composite, the effective nonlin-
ear coefficient (x.) of the composite has been evaluated by using the decoupling

technique.

In 1996, Yu and Yuen [17] applied the decoupling technique to strongly
nonlinear dielectric composite having dilute inclusion packing fractions. In their
work, the single inclusion model was assumed, so the obtained results have limits

on practical applications.

To generalize the decoupling technique in determining . for arbitrary in-
clusion packing fractions, the calculation begins with an estimation of y. from Eq.

(2.29):
_ V1X1 <Ef> V2 X2 <E§>
Xe Eél ESL )

where (E?) is the volume average of electric field to the fourth power, and sub-

(5.8)

scripts 1,2 are referred to the host medium and the inclusion, respectively.

We invoke the decoupling technique [26] by ignoring the fluctuations of the

local electric field,
(B2~ (B2 =By =(E)" =0 a=12,
or (E%) is approximated by
(Bf) = (B2), (5.9)
and also
(BRy=(£3)". (5.10)
Now, Eq. (5.8) is replaced by using Egs. (5.9) and (5.10), hence

_ o (B vaxe (E3)
Xe E(L)l E(L)l )

(5.11)

where F3 and E? are the mean square of electric fields within the inclusion and
host medium, respectively. v, and v; are the packing fractions of inclusion and

host medium, respectively.



42

Eq. (5.11) implies that if we know (E?) and (FE3), the effective nonlinear

coefficient . is obtained.

To obtain the mean square of electric fields (E?) and (FE3), the derivatives

Oee Oee _ ,
°¢ and i, then substituted into Eqgs. (2.36) and

of Eq. (5.7) are evaluated for Dz, n 92,

(2.37), which give

1 o0e
E2 — eEQ
< 1> 1—1}2 881 g
V9€1 ( a4+ 1 )
(e2—e1) E2—€1 (%]
1 — 2 1 1 . + -~ — v, Eg, (512)
(E—l + —_’Uz) g9—e€1 3
£9—¢€1 &)
and also
1 0e
2 € 12
<E2> 7 U_2862E07
2
€
3 ! SE3 | (5.13)

(e — =12 (22 + 52

By using the decoupling technique, the relations between the linear and
nonlinear coefficients from Eq. (2.39) with &; = x; (E?) = x18 and Eq. (2.40)
with e3 = X2 (E3) = xa, thus the Egs. (5.12) and (5.13) are modified to be

ﬁ2

a = 5 (5.14)
(8 — ay)® (ay‘iﬂ + 1%)
1 B
B = 1_1 1- v <“y_5+W) t e |, (515)
% (25 +452) BT E
where o = (E3), 8= (E?), y = % and vy is the inclusion packing fraction.

Now, Egs. (5.14) and (5.15) can be solved self-consistently for a = (E3) and
B = (E?). We have to determine the unknowns « and 3 in terms of parameters
y and ve. Because of the complication, o and 3 can not be solved in closed form.
To keep off complication of the determination on o and 8 in explicit analytical

forms, specific values of y and vy will be given first, then Egs. (5.14) and (5.15)
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are solved numerically for o and (. Let

o = a(ve,y), (5.16)
g = Bluy), (5.17)

a* and 3* represent the numerical solutions of a and 3 evaluated at given values

of vy and y.

Without loss of generality, we set Ey = 1 and replace a and 3 into Eq. (5.11)

by a* and %, then the relative effective nonlinear coefficient Xe as a function of

X1
vo and y is obtained:
Xe _l ' *\ 2 %) 2
- Fv,y) = (1 —w2)xa (8°)" +vaxa (@) (5.18)
1

In general, the range of parameter y = k2 may varies from very low contrast
X1

to vary high contrast, that is from y equal to zero up to thousands. In this work,

because at high contrast <& . 100), the increase of X2 rarely effect the Xe
X1 X1 X1

value, so we vary X2 from 0 to 100. In addition, v, is set equal to 0.01, 0.08, 0.1
X1
and 0.2, then the relative effective nonlinear coefficient Xe for specific inclusion
X1
packing fractions are obtained by using the Mathematica program (see appendix

Q).

To determine the distinction between the-results of the EMT and the work

of Yu and Yuen, the relative effective nonlinear coefficients (&> calculated by
X1
using the EMT and the results of Yu and Yuen [17] are plotted against the relative

/ f X2 . ) : . .
nonlinear coefficients (— for various values of inclusion packing fraction (vs) .

X1
As shown in Fig. 5.3, vy is set equal to 0.01, 0.08, 0.1 and 0.2
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Figure 5.3: Comparison of relative effective nonlinear coefficient for various inclu-

sion packing fractions determined by using the decoupling technique.
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From Fig. 5.3, the relative effective nonlinear coefficients (&), calculated
X1
by Yu and Yuen and the EMT, are presented as dash (- - -) and solid lines (—),

respectively. Xe increases rapidly with increasing &, however a higher values of
X1 X1
X2

==, the increase of X2 rarely affects the Xe values. The distinction of 2 obtained

X1 X1 X1 X1

by Yu and Yuen and the EMT increases with increasing of the inclusion packing

fractions (v9). However, for vy is less than 0.1, the Xe values obtained by both
X1

results are corespondent which confirms our results using the EMT model and also

shows the validity of the single inclusion model if v, < 0.1.

Further, the calculation is separated into three cases based on different kinds
of composite microstructure geometry. First, the inclusions of material 2 are
embedded in material 1. Second, in contrary, inclusions of material 1 are embedded

in material 2 and the last case of two interdispersed materials.

5.2.1 Inclusions of Material 2 Embedded in Material 1

In fact, we has already considered this case in section 5.2. The effective nonlinear

coefficient (y.) was given by Eq. (5.18) for arbitrary inclusion packing fractions

(U2)7

% = F(vs, ;) = (1= v2)x1 (8 +v2x2 (). (5.19)

where vy is the inclusion packing fraction with e and 5* given by Egs. (5.16) and

(5.17).

5.2.2 'Inclusions of Material 1 Embedded in Material 2

This case is opposite to the case considered in subsection 5.2.1. To obtain &, the
X1
process of calculations are similar to previous case. As explained in section 4.2.2,

we report the results in terms of parameters vy and X2 We note that in this case
X1

vy is the packing fraction of material 2 which is the host medium,

Xe / X2
Xe — Py, X2y, 5.20
X1 ( ? Xl) ( )
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The effective nonlinear coefficients (y.) are calculated for arbitrary values

of vy by using the Mathematica program (see appendix C).

5.2.3 Two Interdispersed Materials

For two interdispersed materials, inclusions of phase 1 and 2 are randomly mixed
together. The composite can not be clearly specified which phase is the inclu-
sion (or host medium). The theoretical model is assumed that an inclusion with
nonlinear coefficient xo (or xi) is embedded in an effective medium with effective
nonlinear coefficient x,.. This is equivalent to the EMT model with ¢ = 1. To
obtain the (E?) and (F3), we have to know &, which was derived in Chapter 3.
From Egs. (3.32) or (3.33),

& — S¢
€1+ 2¢,

E9 — E¢
€9 + 2e,

Ul(

)+ v

) =0, (5.21)
where v, and v, are the packing fractions of materials 1 and 2, respectively.

Eq. (5.21) is solved analytically for .. The solution has two real roots of
opposite signs, a negative root gives a negative £, which is physically meaningless.

Only the positive root is considered, which is

1
Ee = — [251 — 3’0281 — &9 + 31)282 -+ \/88182 -+ (281 - 3U2€1 — &9 + 31)262)2] .

4
(5.22)

To obtain the mean square of electric fields (F?) and (£%). The Mathematica

/5 Oe
¢ and —=, th
(981 Y 852 7 o

Program is used to determine the derivatives of Eq. (5.22) for

substituted into Egs. (2.36) and (2.37). We obtain

882 + 2(2 — 31)2)(281 — 31)281 — &9 + 31}252)
2\/85182 + (281 — 3’0251 — &2+ 3U2€2)2

(E}) = m [2 — 3y +
(5.23)
] . (5.24)

861 + 2(—1 + 3’112)(261 — 31)281 — &9+ 31)262)

—1 4+ 3vy +
? 2\/86162 + (261 — 31)251 — &9 + 3U262)2

1
2\ _ N
<E2> - 40

By using the decoupling technique, the relations between the linear and

nonlinear coefficients from Eq. (2.39) and (2.40), with &1 = x; (E?) = x13, and
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g9 = X2 (E3) = X2, thus Egs. (5.23) and (5.24) become

1 2(—1 206 — =
PN P 8e1 + 2(—1 + 3uvg) (28 — 3v28 — ya + 3vaay)  (525)
4, 24/8yaf + (28 — 3v28 — ya + 3vaay)?
1 8 2(2-3 28 —-3 — 3
oL |y g,y St 2280 @0 Snl o yad dnay)| g0
4(1 — vy) 24/8yaB + (28 — 3v28 — ya + 3vaary)?
where a = (E2), B = (E}), y = A2 nd v is the packing fraction of material 2.
X1

Now, Egs. (5.25) and (5.26) can be solved self-consistently for o = (E3)

and 3 = (E?). We have to determine the unknowns o and £ in terms of X2 and
X1
vo. Because of the eomplication, o and  can not be solved in closed form. To

keep off complication of the determination of ov and 3 in explicit analytical forms,

specific values of X2 and vy will be given first, then Eqs. (5.25) and (5.26) are
X1
solved numerically for e and . Let a* and 3 be the numerical solutions of o and

0 evaluated at given values of vy and X2 We replace a* and * into Eq. (5.11),
X1

then the relative effective nonlinear coefficient (&) is obtained as a function of
X1

packing fraction of material 2 (v5) and the relative nonlinear coefficient A2,
X1

Xe X2 * ok
= = F(vy, ==, ™, 3%). 5.27
X1 = X1 ) ( )

To determine the bounds of y., the relative effective nonlinear coefficients

Xe)

are plotted as log( against the packing fractions of material 2 (v,) for various
X1

values of X2 | As shown in Fig. 5.4 and 5.5, 4 & is set equal to 10, 100, 1000, 0.1,
X1 X1
0.01, and 0.001.
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Figure 5.4: Bounds of the effective nonlinear coefficient by the decoupling tech-

nique (

X2

X1

= 10, 100 and 1000).
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Figure 5.5: Bounds of the effective nonlinear coefficient by the decoupling tech-

nique (X2 = 0.1, 0.01 and 0.001).

X1
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Figs. 5.4 and 5.5 show the lower (- - -) and upper (- - -) bounds of x.
calculated from Egs. (5.19) and (5.20), respectively. They are the best possible
lower and upper bounds for a statistically homogeneous and isotropic two-phase
composite materials, when the only geometrical information available is inclusion
packing fractions. The remainder middle (——) calculated from Eq. (5.27), which
represents the effective medium approximation. These are similar to the work of
Yu, Hui and Lee [26]. The more the difference between the nonlinear coefficients
of the materials 1 and 2, the more distinetion between two bounds are observed.
These results will be ecompared with those of the variational method for their

verification and reliability of the decoupling technique results in the next section.

For detail explanation, we consider the bounds of y. for X2 _ 100. As shown
X1

in Fig. 5.6, log(&) increases with increasing v, because s is larger than y;. For
X1

vy = 0, all curves coincide at log(&) equal to 0 because x. becomes y;. On
X1

the other hand, for v5 = 1, all curves coincide at log(&) equal to 2 because .
X1

becomes ya (log(&) = log(&) = l0og100 = 2). For vy = 0.4, the volume ratio of
X1 X1

€

material 2 to material 1 is 4 : 6, log(X—) calculated from Egs. (5.19) and (5.20)
X1

are 0.74, and 1.39, respectively. Xe_calculated-from Eq. (5.20) are obtained by
assuming that particles or inclusi(icris of material 1 are randomly dispersed in the
host medium of material 2. While Eq. (5.19) explains the material with opposite
microstructure which is composed of material 2 are randomly dispersed in the host
medium of material 1. For the same ratio of materials 1 and 2, and yy > x1, the
effective nonlinear coefficient (x.) of the composite with material 2 being the host
medium is larger than x. of the composite case with material 2 being inclusions.
The ratio between y. of the former to the latter case is about 5.6 for X2 _ 100

X1
and vy = 0.4.
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5.3 Reliability and Utilization of Decoupling Tech-

nique

In order to determine the validity or reliability of the decoupling technique, log(&)
X1

calculated by using the decoupling technique are compared with those calculated

by using the variational method as shown in Figs. 5.7 - 5.14.

Figs. 5.7 - 5.9 are presented for A 10, 100, and 1000, respectively. It
X1

is found that log(&) calculated by using both methods significantly differ as
X1

increasing X2 From Fig. 5.9 with LA 1000, the maximum difference reaches

X1 X1

to about 30%. Figs. 5.10 - 5.12 are presented for X2 _ 0.1, 0.01 and 0.001,

X1
h 20— 0.001, the maximum difference reaches

X1
to about 12%. Therefore, it is concluded that results of decoupling technique are

respectively. From Fig. 5.12 wit

comparable to those of the variational method at only small values of X2
X1

Now, we consider own intersections between log(&) obtained by using the

X1
variational method and the decoupling technique of two interdispersed materials

in Fig. 5.7-5.12. Before the intersections, log(&) from the variational method
X

1

are less than those from the decoupling technique, after that log(&) from the
X1

variational method are larger than those from the decoupling technique. The

intersections in terms of wy are approximately v, = 0.5, 0.3 and 0.2 for X2 _ 10,

X1
100 and 1000, respectively. Therefore, the intersections of x2 > 1 decrease with

X1
increasing X2 For X2 0.1, 0.01 :and 0.001, the intersections are approximately

X1 X1
v = 0.5, 0.75 and 0.8, respectively. ‘So, the intersections of 0 < i < 1 increase
X1

with decreasing X2 We expect that the intersections may be caused from the
X1
determination on Y. by using the variational method, which also occur in the

work of Jitrin [16].

For material 2 embedded in material 1, we report Xe by varying X2 for lower
X1 X1

values of vy in Figs. 5.13. From Fig. 5.13, Xe caleulated by using the variational
X1

method (Eq. (4.21)), and the decoupling technique (Eq. (5.19)) are compared
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for inclusion packing fractions vs = 0.01, 0.08, 0.1 and 0.2. It is found that

Xe

X1

packing fractions and lower values of % It is concluded that the decoupling
1

technique is reliable for v, < 0.1 with X2 less than about 10 and also for vy = 0.2
X1

with X2 less than about 5 because these are observed that the difference is about
X1
5%.

calculated by using both methods are in good agreement only at very dilute

For inclusions of material 2 embedded in material 1 and inclusions of material
1 embedded in material 2, Figs. 5.7 - 5.13 show y. predicted by using the decou-
pling techniques are all less than those using the variational method. These con-
firm the theoretical prediction reported by Yu and Yuen [17] that x.(decoupling)<
Xe(exact)< x.(variational). It is clear that both methods are indispensable for es-
timating y. of intractable boundary value-problems. If both results coincide, they
both give the exact result. On the other hand, if both results are tight, the esti-

mations are good.

Next, we consider the gap between x.(decoupling) and x.(variational) in
Fig. 5.13. By using the data of Fig. 5.13, we now report the data on a loga-
rithmic scale in Fig. 5.14. From Fig. 5.14, the gap between y.(decoupling) and

Xe(variational) depends on vy and X2 For the range of log(&) <0or0< X< 1,

X1 X1 X1
the gap decreases with decreasing the contrast between y, and x; (—2 approaches
X1
X2 S X2 X2
1) and becomes zero-at == = 1.-Similarly, for the range of log(==) > 0 or == > 1,
X1 X1 X1
the gap also decreases with decreasing the contrast Xz
X1

The gap between x.(decoupling) and x.(variational) increases with increas-
ing vs. These may be explained by considering the approximation (E%) ~ (E2)?
used in Egs. (5.9) and (5.10). Therefore, we calculate the percentage of dis-

1 242 (Bt)~(e2)’ :
crepancy between (E}) and (E7)” | A% = Ty x 100 ) of the field in

the medium (Z_?)1> from the variational method results. A% are plotted against

1og(*2) for v, = 0.01, 0.08, 0.1 and 0.2 in Fig. 5.15. From Fig. 5.15, A% depend
X1

on X2 and vy similar relation with these of Figs. 5.13 and 5.14.
X1



o4

It is found that A% > 0 or (E4) > (E2)” for the whole ranges of X2 and
for all values of vy. Because x.(decoupling) depends on (E}) (see Eq. (5>8<)1)7 we
therefore expect our results are less than the expect values satisfying the theoret-
ical relation between x.(exact) and x.(decoupling) as shown in Appendix B that

Xe(ezact) > xe(decoupling).
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Figure 5.8: Comparison of bounds of log(&) obtained by using the variational
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Figure 5.9: Comparison of bounds of log(&) obtained by using the variational
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method (black lines)and the decoupling technique (red lines) for X2 _ 1000.
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5.4 Experimental Effective Nonlinear Coefficients

To test our programs in sections 4.2.3 and 5.2.3, which are used in determination
on the effective nonlinear coefficients of the composites, our results are compared
with the experimental results of Gehl, Fisher and Boyd in 1997 [32]. In their
work, the nonlinear-optical responses of the porous-glass-based composite ones
are studied as experimental samples. The samples have two parts: silica glass
(72%) and spaces (28%), then the spaces in the sample were saturated and re-
placed with various nonlinear fluids, such as methanol, carbon tetrachloride and
diiodomethane. The ratios between the nonlinear coefficients of the glass and var-
ious fluids (M> are 0.62, 0.32 and 0.03, respectively. By using Mach-Zehnder

X fluid
interferometer and analytical process, the relative effective nonlinear coefficients

( Xe ) were determined.
X fluid

In comparison, our results which predict the effective nonlinear coefficient
of two interdispersed materials and the experimental results are plotted in Fig.

5.16. Our results using the variational method and the decoupling technique
Xe

X fluid
between the experiment and our result are about 15% for methanol, 13% for carbon

agree very well with the experimental results, while the discrepancies of

Xe

X fluid
and diiodomethane lie between our variational and decoupling results satisfying

tetrachloride and 5% for dilodomethane. Moreover, of carbon tetrachloride

the theoretical prediction that x.(decoupling) < x.(exact) < x.(variational);

which confirms that our results are reliable.
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Chapter VI

Conclusions

This research is an extension of the work of Yu and Yuen [17] in study-
ing the electric field response of strongly nonlinear dielectric composites. These
composites consist of spherical strongly nonlinear dielectric inclusions randomly
embedded in a strongly nonlinear dielectric host medium of different nonlinear
coefficient. In their work, they assumed that the inclusion volume is much less
than the composite volume, then the effective nonlinear coefficient (x.) of the
composite is determined by using the decoupling technique. Hence, their work

has limits on practical applications.

In this research, the effective response of strongly nonlinear dielectric com-
posites has been investigated by using the decoupling technique. The reliability of
X in dilute inclusion packing fraction is now extended to arbitrary inclusion pack-
ing fractions. The effective medium theory (EMT) originally proposed by Hashin
[18] is applied for theoretical modeling and studying, the electric field response of

these composites.

We consider the composite which is composed of two components, material
1 and material 2, and exhibits nonlinear coefficients x; and y», respectively and
determine the bounds of x.. The results show the lower and upper bounds in
Figs. 5.4 - 5.12 and the higher the contrast between y; and X2, the larger the gap
between the two bounds are observed. Moreover, if the composite has material of
higher nonlinear coefficient being the host medium instead of the inclusions, the
higher y. is obtained, for the composite of the same packing fraction, as seen in

Fig. 5.6, the ratio of y. is about 5.6.
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In order to confirm the reliability of x. based on the EMT, the calculated
Xe is compared to those of the single inclusion model of Yu and Yuen’s work. It
is found that y. based on the EMT is comparable to the result of Yu and Yuen at

inclusion packing fraction less than 0.1.

Moreover, in this research, we also apply the simple variational method to
calculate x. in order to confirm all decoupling technique results. Comparing x.
calculated by the decoupling technique and Y. calculated by the simple variational
method, we found that both results agree quite well, especially at inclusion packing
fraction less than 0.1 for the contrast less than 10 which is the range of the work

of Yu and Yuen.

Our results of y, calculated by using the decoupling technique are less than
those calculated by using the variational method which satisfies the theoretical pre-
diction that y.(decoupling) < x.(exact) < x.(variational) [17]. Our theoretical
results which are obtained by using the decoupling technique and the variational
method also agree with the experimental results of Gehl, Fisher and Boyd [32] in

the determination on y. of the porous-glass-based composite materials.

At the end of this research, we would like to propose that there is a recent
method which is applicable to determine y,. called the effective energy approxima-
tion [33]. This approximation is accomplished by the Ponte Castaneda variational
principle [34] and Torquato approximation [35].- Moreover, the addition of vari-
ational parameters is interested for improvement in y.. Therefore, the effective
energy approximation and the addition of variational parameters are suggested

for further studies.
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Appendix A

Energy Functional

73

In this appendix, we have to show that the determination of the extremum

condition of the energy functional as in Eq. (2.22), is Laplace equation (Eq.

(2.14)) for linear dielectric media, and nonlinear partial differential equation Eq.

(2.16) for nonlinear dielectric media.

A.1 Energy Functional of Linear Media

Consider the relation between the electric displacement D and electric field E of

linear dielectric media:
_>

H
D=¢E. (A.1)
— —
By using £ = —V, the energy functional of linear dielectric media having
volume {2 can be written as
1 ] 2
W = 5///8 ’Vgp’ dxdydz, (A.2)
Q
hence
1
W = 3 ///6 (02 + ¢ + ©?] dedydz, (A.3)
Q
here O O and 00
w T — 4§ = z = -
7 oz ¥v dy 7 0z
From the variational principle [36] of which
(A.4)

I= /// F(u, ug, uy, uy, ,y, 2)dedydz
Q
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is the functional of variations with u(z,y, z) being a trial function and u, = %
Then F' satisfying
oF 0 ,60F d ,0F 0 ,0F
— ——(—)—=(=—)—=—(=—)=0 A5
ou 8:}0(3%) 8y<3uy) 8z<3uz) ’ (A-5)

which is Euler-Lagrange’s equation for several variables. The solution of Eq. (A.5)

yields u(z,y, z) satisfying the functional [ has an extremum.

Comparing our functional in Eq. (A.3) with the functional I in Eq. (A.4),
we obtain

]
F = Se(0h + ¢, + 92). (A.6)

Replacing Eq. (A.6) into Eq. (A.5) to obtain

_5(90:1:9: ) Pyy 5 szz) N O, (A'7)
Dpy op 0.
where ¢, = By Pw T 8—yy and @, = 5,

Rearranging Eq. (A.7), thus we obtain

—

—5V2<p(a:,y,z) =0,

or
—

Vip(z,y,2) = 0. (A.8)
This is Laplace’s equation for linear dielectric media. It implies that the ex-
tremum condition of the energy functional in Eq. (A.2) gives the solution ¢(z,y, 2)

which is also the solution of Laplace’s equation in Eq. (A.8).

A.2 Energy Functional of Nonlinear Media

For nonlinear dielectric media with the relation between the electric displacement
1_5 and electric field ﬁ is

— — —12 =

D:5E+X‘E‘ E. (A.9)
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W:%///eﬁga2dv+i///xﬁgprdv (A.10)
Q Q

describes the energy functional. Replacement of Eq. (A.10), we obtain

W = %///5 {(g—;)g + (‘3—‘;)2 + (g—jﬂ dxdydz (A.11)

In this case

or

1
w o= S @ daas
Q
1
b /// X [(patwy +¢2) (@r + ¢ +¢2)] dedydz. (A12)
Q
Similar to previous section, we define

1
(@2 + @2 £ i)+ % (Os 0 +¢2) (P2 + 2+ ¢2), (A.13)

F =

N | —

where ¢ (x,y, z) is the functional. Substituting Eq. (A.13) into the Euler-Lagrange’s
equation Eq. (A.5), we obtain

0 0 0
- |2 o0 Hlgs o+ (e
- Q(XSO)(802+902+902)+2(X90)(902+902+802)+£(X90)(902+902+902)
am z x Yy z ay Y T Yy z 82 z x Yy z
_ (A.14)
— — — — 2=
—[V~<8V<p>]— V-X’Vgo Vil =0,
or
— — — |12 =
{v-<5w+x‘w wﬂ —0. (A.15)

This is a nonlinear partial differential equation describing the potential of the
nonlinear media as shown in Eq. (2.21). It implies that the extremum condition
of the energy functional in Eq. (A.10) gives the solution ¢(z,y, z) which is also

the solution of the nonlinear partial differential equation in Eq. (A.15).
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Appendix B

Theoretical Relation Between

Yelexact) and ye(decoupling)

In order to show the theoretical relation between y.(exact) and x.(decoupling),
the works of Ponte Castaneda [9, 10] are considered. In his work, the theoretical

relation between y.(exact) and the composite parameters was derived; as a result,

1 5 UIET U2l
Xe(e:(;act) > E_(A)‘ (260EU — I — ; . (Bl)

From the previous work of Yu et. al. [30], there are the relations e, = y; (E?)

and €y = xo (E2), which give

2y _ €L

(ED = — (B.2)
and

(E3) = o (B.3)

According to Eq. (2.31), €. can be written as
ol ) Luy (B3

e = B.4

B & (B4

Then; (Ef) and (E3) in Egs. (B.2) and (B:3) are substituted into Eq. (B.4), hence
1 (v vzeg)

Ce=—5|—+—). B.5

Eg < X1 X2 (B:5)

Replacing the left-hand side of Eq. (B.5) into Eq. (B.1), we obtain

(exact) > ce
XG — E027
and by using the relation e, = y.Ej, we also obtain

Xe(exact) > x(decoupling). (B.6)
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(* This flow chart is for the determination on ,, by using the variational
method with the Mathematica Program *)

Define trial electric potentials in the composite which
depend on the effective medium model

v

Calculate gradient of
electric potentials

A 4

Find the total energy functional (W)
in each medium

A 4

Use the inclusion packing fraction (%)3 =V;

|

Use the relation of any parameters from the
boundary conditions

|

Use the self-consistency condition

A 4

Minimize W with respect to
variational parameter

|

Substitute v, =2 and %2 =7
X1

Obtain Ze(v,,%2)
X1 X1
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(* This flow chart is for the determination on 4, by using the decoupling
technique with the Mathematica Program *)

Define the effective linear coefficients which obtained in
chapter 3 and depend on the effective medium model

|

Replace the linear terms
with the nonlinear terms

l

Find the volume average of electric field
to the second power in inclusion (<E§>)

and host medium ((E?))

l

Substitute v, =2 and %42 =+

y4
Replace (g)and (g?) to find the
effective nonlinear coefficients ,

l

Obtain Ze(v,,%2)
VAl pA
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