(g) (F)

PLASMA CATALYTIC PRODUCTION OF METHANOL

Mr. Sutha Sutthiruangwong

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

1999
ISBN 974-331-909-3

Thesis Title: Plasma Catalytic Production of Methanol

By : Mr. Sutha Sutthiruangwong

Program: Petrochemical Technology

Thesis Advisors: Assoc. Prof. Richard G. Mallinson

Assoc. Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

(Assoc. Prof. Richard G. Mallinson)

Simueth Chivade,

REVOLLS

(Assoc. Prof. Sumaeth Chavadej)

(Dr. Pramoch Rangsunvigit)

ABSTRACT

##4071023063 : PETROCHEMICAL TECHNOLOGY PROGRAM

KEY WORDS : Methane Reaction / Methane Conversion / Plasma /

Corona Discharge / Methanol Production / Cu/ZnO Catalyst / Catalysis /

Synthesis Gas Production

Sutha Sutthiruangwong: Plasma Catalytic Production of

Methanol. Thesis Advisors: Assoc. Prof. Richard G. Mallinson and

Assoc. Prof. Sumaeth Chavadej 49 pp ISBN 974-331-909-3

The partial oxidation of methane (POM) for converting methane into oxygenate compounds has been intensively studied by many researchers. The present study was carried out to investigate the conversion of methane in the catalyst packed bed reactor under ac corona discharge. A typical methanol synthesis catalyst prepared by coprecipitation technique, Cu/ZnO, was used in this study. All the experiments were carried out at atmospheric pressure and room temperature. The combination of catalyst and ac corona discharge gave the feasibility of methane conversion at atmospheric conditions. Although the amount of methanol produced was small, other useful chemicals such as synthesis gas were found in the product stream. The oxygen partial pressure had an effect on both the methane conversion and product selectivity of the plasma promoted catalytic reactions. Methane conversion and product selectivity increased with decreasing total flow rate. Increasing the applied voltage also increased the methane conversion, but showed a saturation effect due to an insufficient of oxygen. Non-catalytic system gave much higher methane conversion than the catalytic system and produced product mainly consisted of C2 hydrocarbons.

บทคัดย่อ

สุธา สุทธิเรื่องวงศ์ : การผลิตเมทานอลภายใต้สภาวะพลาสมาและตัวเร่งปฏิกิริยา (Plasma Catalytic Production of Methanol) อ.ที่ปรึกษา : รศ. ริชาร์ด จี แมลลินสัน (Assoc. Prof. Richard G. Mallinson) และ รศ. สุเมธ ชวเดช 49 หน้า, ISBN 974-331-909-3

การออกซิไดซ์บางส่วนของมีเทนเพื่อเปลี่ยนมีเทนเป็นสารประกอบของออกซิเจนได้ถูก ศึกษาอย่างกว้างขวางโดยนักวิจัยหลายกลุ่ม การศึกษาครั้งนี้เพื่อดูการเปลี่ยนแปลงโดยใช้ตัวเร่ง ปฏิกิริยาแพคเบคภายใต้สภาวะสนามไฟฟ้ากระแสสลับแบบโคโรนา ตัวเร่งปฏิกิริยาเพื่อการผลิตเม ทานอลคือคอปเปอร์บนซิงค์ออกไซด์ ที่ใช้ในการศึกษาครั้งนี้เตรียมโดยวิธีการตกตะกอนร่วม การ ทดลองกระทำที่ความดันบรรยากาศและอุณหภูมิห้อง การใช้ตัวเร่งปฏิกิริยาร่วมกันกับสภาวะ สนามไฟฟ้าแบบโคโรนาสามารถทำให้มีเทนเกิดการเปลี่ยนแปลงได้ แม้ว่าปริมาณเมทานอลที่ผลิต ได้จะมีปริมาณน้อยแต่สารเคมีที่เป็นประโยชน์ชนิคอื่นเช่น ซินเทซิสก๊าซ (synthesis gas) สามารถ พบได้ในก๊าซผลิตภัณฑ์ ความเข้มข้นของออกซิเจนมีผลต่อทั้งอัตราการเปลี่ยนแปลงของมีเทนและ สภาพการเลือกผลิตภัณฑ์ที่ได้ในปฏิกิริยาแบบมีตัวเร่งภายใต้การสนับสนุนของพลาสมา อัตรา การเปลี่ยนแปลงของมีเทนและสภาพการเลือกผลิตภัณฑ์เพิ่มขึ้นเมื่อลดปริมาณการใหลของสารตั้ง ค้น การเพิ่มความต่างศักย์ไฟฟ้าทำให้อัตราการเปลี่ยนแปลงของมีเทนมีค่าเพิ่มมากขึ้นแต่จะพบการ อิ่มตัวเนื่องจากความไม่พอเพียงของปริมาณออกซิเจน ปฏิกิริยาแบบไม่ใช้ตัวเร่งจะให้อัตราการ เปลี่ยนแปลงของมีเทนมากกว่าปฏิกิริยาแบบใช้ตัวเร่งและผลิตภัณฑ์ที่ได้ส่วนใหญ่คือ อีเทน เอทิลีน และ ละเซดิลีน

ACKNOWLEDGMENTS

I would like to show my gratitude to my both U.S. and Thai advisors, Assoc. Prof. Richard G. Mallinson of the University of Oklahoma and Assoc. Prof. Sumaeth Chavadej of The Petroleum and Petrochemical College. They gave me very useful and valuable suggestions.

I would like to thank The Petroleum and Petrochemical College for providing me a full.

I appreciate Miss Malinee Leetochavalit who provided me helpful information. I deeply appreciate all technicians of The Petroleum and Petrochemical College for their helps.

I would like to express my great gratitute to my family for their support on my success. Finally, my friends especially Siriphong, Krit, Chavalit, Luesak, Athapol, Sawad and Ratchadaporn should be acknowledge for their help.

TABLE OF CONTENTS

			PAGE	
	Title F	Page	i	
	Abstra	act (in English)	iii	
	Abstra	net (in Thai)	iv	
	Ackno	owledgements	V	
	Table	of Contents	vi	
	List of Tables			
	List of	FFigures	X	
CF	IAPTER			
	I	INTRODUCTION	1	
	Н	BACKGROUND	4	
		2.1 Physical and chemical properties of methane	4	
		2.2 Catalytic system for methanol synthesis	5	
		2.2.1 High-pressure process	6	
		2.2.2 Low-pressure process	7	
	2.2.2 Low-pressure process2.3 Gaseous plasma for activating methane molecules		7	
		2.3.1 Fundamental properties of plasma	8	
		2.3.2 Generation of plasma	8	
		2.4 Type of non-equilibrium plasmas	12	
		2.4.1 Radio frequency discharge	12	
		2.4.2 Microwave discharge	13	
		2.4.3 Glow discharge	13	
		2.4.4 Corona discharge	13	
		2.4.5 Dielectric-barrier discharge	14	

CHAPTER			PAGE
	2.5 Non-c	catalytic direct partial oxidation of methane	14
	2.6 Cataly	ytic direct partial oxidation of methane	15
	2.7 Plasm	na promoted partial oxidation of methane	16
Ш	МЕТНО	DOLOGY	19
	3.1 Mater	ials	19
	3.1.1	Catalyst preparation materials	19
	3.1.2	Gaseous reactant	19
	3.2 Cataly	yst preparation	20
	3.3 Cataly	yst characterization	20
	3.3.1	Surface area measurements	20
	3.3.2	Reduction temperature determination	21
	3.3.3	X-ray diffraction	21
	3.3.4	Atomic absorption spectroscopy	21
	3.4 Exper	imental setup	21
	3.4.1	Reactant make-up section	21
	3.4.2	Reaction section	23
		3.4.2.1 Power supply unit	23
		3.4.2.2 Reactor	23
	3.4.3	Analysis section	26
	3.5 Exper	imental procedure	27
	3.5.1	Catalyst reduction procedure	27
	3.5.2	Variation of oxygen partial pressure	
		experiments	28
	3.5.3	Variation of applied voltage experiments	28
	3.5.4	Variation of total flow rate experiments	29

CHAPTER	ER		PAGE
IV	RESULT	S AND DISCUSSION	31
	4.1 Charac	cteristics of studied catalyst	31
	4.2 Effect	of oxygen partial pressure	31
	4.2.1	Effect of oxygen partial pressure on conversion	31
	4.2.2	Effect of oxygen partial pressure on products	
		selectivities	33
	4.3 Effect	of applied voltage	34
	4.3.1	Effect of applied voltage on conversions	34
	4.3.2	Effect of applied voltage on products	
		selectivities	35
	4.4 Effect	of total flow rate	36
	4.4.1	Effect of total flow rate on conversions of	
		methane and oxygen	36
	4.4.2	Effect of total flow rate on products	
		selectivities	37
	4.5 Effect	of catalyst	38
	4.5.1	Effect of catalyst on conversions of methane	
		and oxygen	38
	4.5.2	Effect of catalyst on products selectivities	39
V	CONCLU	USIONS AND RECOMMENDATIONS	41
	5.1 Concl	usions	41
	5.2 Recor	nmendations	41
	REFERE	NCES	43
	APPEND	ICES	46
	CURRIC	ULUM VITAE	51

LIST OF TABLES

TABLE		
2.1	Average chemical bond energy of some covalent bonds	4
2.2	The first ionization potential of some common gases	5
2.3	Catalysts proposed or used for industrial methanol synthesis	6
2.4	Collision mechanisms in the gases	11
4.1	Comparison of catalytic and non-catalytic system on conversio	ns
	at total flow rate = 100 ml/min and applied voltage = 5,000 V	39
4.2	Comparison of catalytic and non-catalytic system on products	
	selectivities at total flow rate = 100 ml/min and applied	
	voltage = 5,000 V	39
4.3	Summation of C ₂ selectivity at total flow rate = 100 ml/min	
	and applied voltage = 5,000 V	40
A.1	Effect of oxygen partial pressure	
	at total flow rate = 100 ml/min and applied voltage = 5,000 V	47
A.2	Effect of applied voltage at total flow rate = 100 ml/min and	
	$CH_4:O_2 = 4:1$	47
A.3	Effect of total flow rate at $CH_4:O_2 = 4:1$ and	
	applied voltage = 5,000 V	48
Λ.4	Effect of oxygen partial pressure on non-catalytic system at	
	total flow rate = 100 ml/min and applied voltage = 5,000 V	48

LIST OF FIGURES

FIGURE		
1.1	The world total capacity and demand for methanol production	2
2.1	Production of charged particles	9
3.1	Flow diagram of plasma catalytic reactor system	22
3.2	Schematic diagram of power supply unit	24
3.3	Configuration of plasma catalytic reactor	25
4.1	XRD spectra of the studied catalyst	32
4.2	Effect of oxygen partial pressure on conversions of methane	
	and oxygen total flow rate = 100 ml/min and applied	
	voltage = 5.000 V	33
4.3	Effect of oxygen partial pressure on products selectivities	
	total flow rate = 100 ml/min and applied voltage = 5,000 V	34
4.4	Effect of applied voltage on conversions of methane and oxyge	n
	at total flow rate = 100 ml/min and $CH_4:O_2 = 4:1$	35
4.5	Effect of applied voltage on products selectivities	
	at total flow rate = 100 ml/min and $CH_4:O_2 = 4:1$	36
4.6	Effect of total flow rate on conversions of methane and oxygen	
	at $CH_4:O_2 = 4:1$ and applied voltage = 5.000 V	37
4.7	Effect of total flow rate on products selectivities	
	at $CH_4:O_2 = 4:1$ and applied voltage = 5,000 V	38