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CHAPTER 1
INTRODUCTION

1.1 History and Overview

For a graph G, we will use the notations V(G) and E(G) to denote the vertex
set and the edge set of the graph G. Note that a graph in this work is always a
simple graph.

A clique is a complete subgraph of G. A clique decomposition (or a clique
partition) of G is a collection of cliques of G such that each edge of G belongs to
exactly one clique in the collection. Note that a clique decomposition of a graph
always exists since its edge set is certainly a clique decomposition. However, it is
more interesting to find a clique decomposition with smaller number of cliques. A
minimum clique decomposition of G is a clique decomposition of G with minimum
number of elements among all possible clique decompositions of G. A clique par-
tition number of G, denoted by ¢p(G), is the number of elements in a minimum
clique decomposition of G.

Clique decompositions of graph have been extensively studied for a long time.
The first related paper came out around 1941. Hall [5] showed that an edge set

2
n
of any graph can be covered by at most {ZJ cliques whose order are at most 3.

Later on, in 1966, Erdés, Goodman and Pésa [3] showed that the number L%QJ
happened to be the bound of clique partition number.

Various studies about graph decomposition are related to the decompositions of
complete graphs. Furthermore, some of them investigate cyclic decompositions of
complete graphs into certain subgraphs such as bipartite graphs, almost-bipartite
graphs, cycles etc. See more details in [[l], [2] and [4].

Note that when k& > LgJ, the complete graph K, is a k-power of an n-cycle



which will be denoted by C*. In 2007, Wichianpaisarn [9] studied clique decom-
positions of square (2-power) of cycles in order to determine the clique partition
number.

Our aim is to investigate minimum cyclic clique decompositions of Cﬁ, the
k-power of n-cycles for k£ > 3 and all natural numbers n. Note that there is a
well-known construction of a cyclic K3-decomposition of K,, for n = 1,3 (mod 6)
which is equivalent to a cyclic Steiner triple system of order n. Such a construc-
tion relies on the solution of Heffter’s difference problem [G]. In this work, we
focus on C* when k < {gJ and we introduce a certain method to construct their
cyclic clique decompositions. Our method is a generalization of the construction
of cyclic Steiner triple systems using Heffter’s difference problem. The objective is
to investigate a minimum cyclic clique decomposition of C’ff into cliques of order
at most 4.

This thesis is divided into 4 chapters. The first chapter includes most of the
definitions and notation needed for our work. In Chapter II, we give details re-
garding Steiner triple system and Heffter’s difference problem. In Chapter III,
we talk about the k-power of an n-cycle and explain our idea to construct cyclic
clique decomposition of C’V’f. Furthermore, we will introduce a classification of cer-
tain 2-cliques, 3-cliques and 4-cliques. Our main results will also be given in this
chapter.

Finally, we conclude the results of our work in Chapter IV including some

interesting open problems.

1.2 Definitions and Notation

A path with n vertices, denoted by P,, is an n-vertex graph whose vertices can
be ordered so that two vertices are adjacent if and only if they are consecutive in
the list. The length of a path is the number of edges in it. A u,v-path is a path
whose endpoints are u and v. The distance between vertices u and v in a graph

G, denoted by dg(u,v) or d(u,v), is the length of a shortest u,v-path in G. The



diameter of G, denoted by diam(G), is the maximum distance d(u,v) over vertex
pairs u, v in V(G).

A cycle is a closed path. The n-cycle, denoted by C,,, is a cycle with n vertices.
Let Z,, be the group of integers modulo n. In our work, we use Z, to represent
V(C,) and E(C,) = {(i)(i +1) | i € Z,} as shown in Figure 1.1, We denote
elements 0,1,2,...,n — 1 in Z, as (0),(1),(2),...,(n — 1) in the figure when we

label vertices of a graph.

(n-1) ]
C : (-2 o
AT
Figure 1.1: The n-cycle C,

The k-power of a graph G, denoted by G*, is the graph with the same vertex
set as G, and for any u,v in V(GF), there exists an edge uv in F(G*) if and only
if dg(u,v) < k.

Example 1.1. Figure @ illustrates the k-power of Ps.

'P.n:
P
P&

For kz4, P’ :

Figure 1.2: The k-power of P



Given a k-power of n-cycle C*

no

we define the length function of edges as fol-

lowing.
Definition 1.2. Let £ : E(C*) — N be a function of edges in C* defined by
((ij) = min{|i — j|,n — |i — j|} for all ij € E(C¥).

For each edge ij in C¥, note that £(i5) is the distance between vertices i and j in

Cy. Thus, we call the function £(ij) the length of the edge ij.

We write K, {v1, v, ...,v,} to denote the clique of order n (or n-clique) on the

vertex set {vy,vs,..., 0, }.

Example 1.3. Given a graph G such that V(G) = {u,v,z,y,2} and E(G) =
{uwv, uz, uwy, ve, vy, vw, wy, Ty} as in Figure @, let C1,Cy be two collections of

cliques of G defined as follows:
Cl = {K4{U, v, T, y}v KQ{Ua w}a K2{w7 y}} and

Co = {K3{u, v, 2}, Ks{v, w, y}, Ko{u,y}, Ko{z,y}}.

Figure 1.3: The graph G

Note that C; and Cy are both clique decompositions of GG. Consequently, clique
decompositions of G might not be unique. Observe that in this example, two cliques
are not enough to partition the graph G. Therefore, any clique decomposition of
GG has to contain at least 3 cliques. Hence, C; is an example of a minimum clique

decomposition of G. U

Next, we mention a special type of decompositions of a graph. If all cliques in a

clique decomposition C have the same order k, then we call C a Kj-decomposition.



A clique decomposition P is cyclic if there is an isomorphism a : V(G) — V(G),
which is not an identity, such that Ki{a(v1),a(ve),a(vs),...,(vk)} is a clique in
P whenever Kp{vy,ve,vs,...;vx} is. As in [E], we recall the notion of clicking.
Given a graph G with V(G) = Z,, clicking G means applying the isomorphism
i — i+ 1 on V(G). Therefore, if clicking each element in P yields another element
in P, then P is cyclic. Figure @ illustrates an example of clicking the clique
K3{z,y,z}. If edges zy,yz and zz are of length ¢, (s and {3, respectively, then
edges (z+ 1)(y+1),(y+1)(z+1)and (x+1)(z+1) of Kg{x+1,y+ 1,2+ 1} are
of the length /1, 5 and /3, respectively. Therefore, clicking preserves the length of
edges of 3-clique.

i =i+l

Figure 1.4: Clicking K3{x,y, 2z}

Example 1.4. We illustrate three different clique decompositions of the complete
graph K, with V(K;) = Z;. Let C;,Cy and C3 be three clique decompositions of

K as follows:

Cl = {K7{07 ]-7 27 3a 4a 57 6}}7
Co = {Ke{1,2,3,4,5,6}, K2{0, 1}, K»{0, 2},
K>{0,3}, K»{0,4}, K2{0,5}, K»{0,6} } and

Cy = {K3{i,i+1,i+3}:0<i<6}.



Figure 1.5: Clique decompositions of the complete graph K

Clearly, C; is a minimum clique decomposition of K.

Furthermore, Cs is a cyclic K3-decomposition of K7 but C; is certainly not. [J



CHAPTER II
PRELIMINARIES

Before we discuss a method to construct cyclic clique decompositions of C’ﬁ ,
we would like to review a Steiner triple system. Note that C’ff = C’ﬁj = K, if
k> LgJ . Essentially, the well-known cyclic Steiner triple system is equivalent to a
cyclic K3-decomposition of the complete graph. The idea behind the construction
of a cyclic Steiner triple system motivates us to make certain generalization and
then use it in this work to construct cyclic clique decompositions of C’ffb into cliques
of order at most 4.

A Steiner triple system of order n, STS(n), is an ordered pair (S, 7T), where S
is a finite set of points such that |S| = n and T is a set of 3-element subsets of
S called triples, such that each pair of distinct elements of S occurs together in
exactly one triple of T.

Graphically, if we represent each point in .S by a vertex and represent each triple
{z,y, z} by a triangle whose vertices are z,y and z, then the Steiner triple system
(S,T) is equivalent to a decomposition of a complete graph K\g| into 3-cliques.

Next, we give some examples of Steiner triple systems.

Example 2.1. We consider the following Steiner triple systems.
(i) Si = {0,1,2,3,4,5,6},
Ti = {{0,1,3},{1,2,4},{2,3,5},{3,4,6},{4,5,0},{5,6,1},{6,0,2} }.
Note that (S7,77) is a STS(7) which is equivalent to a K3-decomposition of K7
shown in Figure (Cs).
(i7) Sy = {0,1,2,3,4,5,6,7,8}
To = {{0,1,2},{3,4,5},{6,7,8},{0,3,6},{1,4,7},{2, 5,8}
{0,4,8},{1,5,6},{2,3,7},{0,5,7},{1,3,8},{2,4,6} }.
Note that (S2,73) is a STS(9).



In 1847, Kirkman solved the problem regarding to a positive integers n such
that a Steiner triple system of order n exists. The reader may see more details

in [[7].
Theorem 2.2. [[i] An STS(n) ezists if and only if n = 1,3 (mod 6).

More studies have been conducted on STS. Some of them are to determine
whether STS is cyclic. Recall that an automorphism of an STS (S, T') is a bijection
a:S — Ssuch that t = {z,y,2z} € T if and only if a(t) = {a(z),a(y),a(2)}. An
STS(n) is cyclic if there is an automorphism which is a permutation consisting of
a single cycle of length n. Note that (Z,,T) is a cyclic STS(n) if clicking gives a
permutation of 7T .

Note that in Example @, (S1,71) is a cyclic STS(7) because clicking is a
permutation on 7;. On the other hand, (5;,73) is a STS(9) but it is not cyclic.

Next, we would like to introduce Heffter’s difference problems [6] which will be a
key to construct a cyclic Steiner triple system. In particular, the Heffter’s problems
concern the partition of a given set into difference triples. In details, for each integer
n, a difference triple is a subset of 3 distinct elements of {1,2,3,...,k — 1} such
that either

(i) their sum is 0 (mod k), or

(77) one element is the sum of the other two (mod k).

In 1896, Heffter [6] posed the following problems which are known as Heffter’s

difference problems which compose of two difference problems:

—1
1) Let n = 6m-+1. Is it possible to partition the set < 1. 2,3, ... n = 3m
(1) p P 12305

into difference triples?

—1
(2) Let n = 6m + 3. Is it possible to partition the set {1, 2,3,..., n 5 =

3m + 1} \{g =2m + 1} into difference triples?
For more details regarding these problems, see [7]. We mention here some

results regarding to the above problems in Example @



Example 2.3. Here are some certain solutions to the Heffter’s first difference
problem.

(i) For n = 7, the solution is {{1,2,3}}.

(i1) For n = 13, the solution is {{1,3,4},{2,5,6}}.

The following are some solutions to the Heffter’s second difference problem.

(7ii) For n =9, the set we have to partition is {1,2,4} which is not a difference
triple. Therefore, there is no solution in this case.

(iv) For n = 15, the only solution is {{1,3,4},{2,6,7}}. O

In 1939, Peltesohn [8] completely solved the Heffter’s difference problems except
when n = 9, which is shown that the solution does not exist. Peltesohn’s solutions

can be used to prove the existence of a cyclic STS(n) which is precisely stated in

Theorem @

Theorem 2.4. [[] For all n = 1,3 (mod 6) and n # 9, there exists a cyclic
STS(n).

In order to construct a cyclic STS(n), we introduce the notion of a base block.
Given a difference triple {z,y, 2z}, we define the corresponding base block to be
the triple {0, 2,z + y}. Graphically, observe that the base block {0,z,z + y} is
a 3-clique K3{0,z,z + y} with the set of edge lengths {z,y, 2z} as illustrated in
Figure @ The base blocks corresponding to difference triples in the solution to

Heffter’s difference problems are then used to construct a cyclic STS(n).

(0

[

(z+y)

Figure 2.1: Base block K3{0,z,z+y} corresponding to a difference triple {z,y, z}
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According to a solution of Heffter’s difference problems, Examples @, @
and @ illustrate the construction of a cyclic K3-decomposition of K,,, which is
equivalent to cyclic STS(n). Recall that for K, = C* when k > {gJ, we define
the length function of edges in K, as in Definition .

Example 2.5. We consider the complete graph K7 with V(K7) = Z.

Figure 2.2: The complete graph K-

The set {1,2,3} is the set of all edge lengths of K7, which is itself a differ-
ence triple. Therefore, the solution to Heffter’s difference problem when n = 7 is
{{1,2,3}}. We obtain the corresponding base block K3{0,1,3} with the set of
edge lengths {1,2,3}. As clicking preserves the length of edges and K contains 7

edges of each length 1,2 and 3, we have a cyclic K3-decomposition C; of K; where
Cp={Ks{i,i+1,i+3}:0<1i<6}

after clicking this base block 6 times.
Equivalently, (V(K7),T;) is a cyclic STS(7) where

Ti={{i,i+1,i+3}:0<i<6}.
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Example 2.6. We consider the complete graph Ki3 with V(K3) = Zs.

Figure 2.3: The complete graph K3

The set {1,2,3,4,5,6} is the set of edge lengths of K;3. A solution to Heffter’s
difference problem when n = 13 is {{1, 3,4},4{2,5, 6}} Consequently, we obtain
the base blocks K3{0,1,4} and K3{0,2,7} with the set of edge lengths {1, 3,4}
and {2,5,6}, respectively. Those two base blocks are shown in Figure @ Note
that edges of those two 3-cliques contain all edge lengths that occur in Ky3. Also,
observe that Kj3 contains 13 edges of each length i € {1,2,3,4,5,6}. By clicking

each base block 12 times, we obtain that
Co={Ks{i,i+1,i+4}, Ks{i,i +2,i+7}:0<i<12}

which is a cyclic K3-decomposition of Kis.

Equivalently, (V(K3),73) is a cyclic STS(13), where

To={{i,i+1,i+4}{5,i+2,i+7}:0<i<12}.



12

Example 2.7. We consider the complete graph Ki5 with V(K5) = Zys.

Figure 2.4: The complete graph K5

The set of edge lengths of Ky5is {1,2,3,4,5,6,7}. A solution to Heffter’s second
difference problem when n = 15 is {{1, 3,4}, {2,6, 7}} Thus the corresponding
base blocks are K3{0,1,4} and K3{0,2,8} which are shown in Figure @ on the
left.

Note that edges of length 5 are not included in any base block. However, we
can form 3-cliques using these edges, consequently, there must be one more base
block, namely K3{0,5,10}, which is shown on the right of Figure @

Thus, all the base blocks in this case are K3{0, 1,4},K3{0, 2,8} and K3{0,5,10}.

Therefore,
Cy = {K3{i,i+1,i+4}, K3{i,i+2,i+8}, K3{j, j+5,j+10} : 0 <i < 14,0 < j < 4}

which is a cyclic K3-decomposition of K5 that we are looking for.

Equivalently, (V(Ki5),7T3) is a cyclic STS(15) where
To={{i,i+1,i+4},{i,i+2,i+8},{j,j+5,7+10}:0<i<14,0<j <4}

O



CHAPTER I11
CYCLIC CLIQUE DECOMPOSITIONS OF C*

In this chapter, we explain the method to construct cyclic clique decompositions
of C*. First, we classify certain cliques of order at most 4. Finally, we can construct
cyclic clique decompositions of CF.

Recall that the k-power of an n-cycle, denoted by C¥, is an n-cycle with addi-
tional edges for each pair of vertices u and v such that d¢, (u,v) < k. It is easy to
see that C% = K, for k > {gJ since diam(C¥) = LZJ In this case, the complete
graph K, itself can be considered as the n-clique and therefore, we have cp(K,,) = 1
for any natural number n. In order to focus on the case that C* is not the com-
plete graph, from now on, we write Cf; to denote the k-power of n-cycle where
k< {gJ We let V(CF) = V(C,) = Zy, and E(C*) = E(C,) U {uv : u,0 € V(C,)
and dg, (u,v) < k}.

Figure 3.1: The 3-power of a 9-cycle C’g

Remark 3.1. Let C* be a k-power of an n-cycle with k < LSJ We have the
following observations:

(1) There are kn edges in C*.

(i1) The set of all lengths of edges in C* is {1,2,3,..., k}.

(i31) For each i € {1,2,3,...,k}, there are n edges of length 4 in C.
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As in Chapter II, the Heffter’s difference problems can be used to decompose
K, into 3-cliques. In this work, we generalize such an idea and establish the
construction method for cyclic clique decompositions of C* into cliques of order at

most 4.

3.1 Pure Difference Tuple Problem

Given a natural number k < LSJ , from Remark @, there are n edges of length

i in C% for each i € {1,2,3,...,k}. We would like to find base blocks containing
cliques of order at most 4 such that there is only one edge of length 7 in these base
blocks. Afterward, we can use them to construct a cyclic clique decomposition
of C*. In order to find such base blocks, we generalize the Heffter’s difference
problems by allowing a partition of the set {1,2,3,..., k} of edge lengths of C* to
contain pure difference 3-tuples, pure difference 6-tuples and singletons which we

define as follows.

Definition 3.2. Let k£ be a positive integer.

(1) A pure difference 3-tuple is an ordered triple (z,y, z) of 3 distinct elements
of {1,2,3,...,k} such that z = x + y. In particular, a pure difference 3-tuple is a
triple that can be written in the form (x,y,z + y).

(17) A pure difference 6-tuple is an ordered 6-tuple of the form

(z,y,z,c+y,y+z,2+y+2)

containing 6 distinct elements of {1,2,3,...,k}.
(1ii) A singleton is a 1-tuple containing x, denoted by {x}, where x € {1,2,3,..., k}.

Our construction of a cyclic clique decomposition of C* into cliques of order at
most 4 will rely on the partition of the set of edge lengths of C¥ into certain subsets.
Inspired by the Heffter’s difference problems, we pose the following problem in
order to investigate certain partition of the set. This problem plays an important

role in our work.
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Pure Difference Tuple Problem of order k. Let k > 3, is it possible to
partition the set {1,2,3,...,k} into pure difference 6-tuples, pure difference 3-
tuples, or singletons where the number of elements in the partition is the minimum

among all such partitions?

We denote PDT(k) as a solution to Pure Difference Tuple Problem of order k.

Example 3.3. Here, we give some examples of partitions of the set {1,2,3,...,k}
into pure difference 6-tuples or pure difference 3-tuples or singletons and therefore,
solutions to Pure Difference Tuple Problem of order k.
(i) Let A= {{i}:1<i<9},
B ={(1,3,2,4,5,6),{7},{8},{9}} and
C={(3,2,4,5,6,9),(1,7,8)}
be ones of the partitions of the set {1,2,3,...,9}.
Observe that C' has smaller size than the sizes of A and B. In this case, C' is
a PDT(9) because we need at least 2 of such tuples to form a partition of the set
{1,2,3,...,9}.
(17) Given Dy, Dy and Dy as follows:
D, = {(1, 16,6,17,22,23),(2,12,7,14,19,21), (3,5, 10,8, 15, 18), (4,9, 11, 13, 20, 24)},
Dy = {(1, 6,16,7,22,23),(2,12,5,14,17,19), (3, 10, 8, 13, 18, 21), (4, 11,9, 15, 20, 24)}

and
Dy ={(1,16,6,17,22,23), (5,2,12,7,14,19), (3,10, 8,13, 18,21), (4, 11,9, 15,20, 24) }.
Then, Dy, Dy and Ds are ones of possible partitions for £ = 24. Note that they
are PDT(24). Therefore, a solution to Pure Difference Tuple Problem might not
be unique.
(77i) Onme of the possible partition for £ = 18 is
{(1,6,5,7,11,12),(2,13,3,15,16, 18), (4, 10, 14), (8,9, 17) }.

Surprisingly, it is a PDT(18) which will be proved in Theorem . O
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Let D be a partition of the set {1,2,3,...,k} into a pure difference 6-tuples,
k k—6
b pure difference 3-tuples and ¢ singletons. Note that if a = { J , b= L GJ

6 3
and ¢ = k — 6a — 3b, then D is certainly a PDT (k). However, the converse does

not hold as we see in Example @ (4i1).

3.2 Classification of 2-cliques, 3-cliques and 4-cliques

In this section, we define the base blocks corresponding to a pure difference
6-tuple, a pure difference 3-tuple and a singleton. This set of base blocks obtained
from a solution PDT (k) will be used to form our cyclic clique decomposition of ij
into cliques of order at most 4 in our construction.

We introduce a classification of 2-cliques, 3-cliques and 4-cliques according to
the parity of their edge lengths. For convenience, we call an edge with odd length
(and even length) an odd edge (and even edge, respectively).

3.2.1 2-cliques

For a singleton {z}, where z € {1,2,3,...,k}, we define the corresponding
base block to be the 2-clique K5{0,2} in C* with length z. Such graph is shown

in Figure @
0 0——0@)

Figure 3.2: K3{0,z} corresponding to a singleton {x}

3.2.2 3-cliques

For a pure difference 3-tuple (z,y,x + y), we define the corresponding base
block to be the 3-clique K3{0,x,z + y} which contains edges of lengths z,y and
x +y as illustrated in Figure @
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(0)

T+y

(z+y)
Figure 3.3: K3{0,z,z 4+ y} corresponding to a pure difference 3-tuple (z,y,z + y)

By considering each case which depends on the parities of elements x and y in
a pure difference triple (z,y,x + y), there are four different cases of a 3-clique as
shown in Table @ where we represent odd edges and even edges as dash lines and

bold lines, respectively.

Remark 3.4. There are only two types of base blocks corresponding to pure
difference 3-tuples as follows:

1) 3-clique of type O®E containing 2 odd edges and 1 even edge, and

2) 3-clique of type E* containing all 3 even edges.

x y | z+y | Graph K3{0,x,x 4+ y} | Type
(0)
N\o®
Even| Odd | Odd O*E
fr+y]|-f"-".
0q...
ol
Odd | Even| Odd O’E
(z+y)d
o).
i)
Odd | Odd | Even O*E
(z+y) O
(0
\‘-s[.rr
Even| Even| Even E?
(z+y)e

Table 3.1: Types of K3{0,z,x + y}
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3.2.3 4-cliques

For a pure difference 6-tuple (z,y,z,z + y,y + z,x + y + z), we define the
corresponding base block to be the 4-clique K4{0,z,x + y,x + y + 2z} illustrated
in Figure @ The edges of length z,y,z and x 4+ y + 2z are called border edges
and the edges of length z 4+ y and y + z are called diagonal edges. Note that there
are exactly four 3-cliques contained in the 4-clique K4{0,z,z+y,x +y+ z} as its
subgraphs.

Figure 3.4: K4{0,z,x + y,x + y + z} corresponding to a pure difference 6-tuple
(@9, 20 +y,y+z0+y+2)

By considering each case which depends on the parities of elements z,y and z
in a pure difference 6-tuple (z,y, 2,2 +y,y + z,x + y + z), we have eight different
forms of a 4-clique as shown in Table @

Remark 3.5. There are only three types of base blocks corresponding to pure
difference 6-tuples as follows:

1) 4-clique of type E° containing all 6 even edges,

2) 4-clique of type O*E? containing 4 odd edges and 2 even edges, and

3) 4-clique of type O E* containing 3 odd edges and 3 even edges.



19

Graph
T Y z r+y | y+z | xtyt+z Type
KA0,z,z+y,z+y+ z}
(13). ......... '(;chy)
Odd | Odd | Odd | Even | Even | Odd ", 0'E?
(0) A, . (;[;+'y+z)
vy (T + )
Odd | Odd | Even| Even | Odd | Even O*E?
(0} DT+ + 2
Ea} o 0 (@+y)
Odd | Even| Odd | Odd | Odd Even '_ 24 O*E?
{ﬂ]-f‘—t- =z +3 + 20
Odd | Even| Even| Odd | Even Odd O*E?
Even| Odd | Odd | Odd | Even Even O*E?
Even| Odd | Even| Odd | Odd | 0Odd O*E*?
Even| Even| Odd | Even | Odd | 0Odd O3E?
(z+y)
Even| Even| Even| Even | Even Even ﬁ ES
(z+y+2)

Table 3.2: Types of K4 {0,z,x +y,x +y+ z}

For Table @, we obtain some properties of base blocks corresponding to pure

difference 6-tuples concluded in the next proposition.
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Proposition 3.6. Let K (V') be the base block corresponding to a pure difference
6-tuple.

(1) If K4(V) is of type OPE®, then it always contains exactly one 3-clique
subgraph of type E°.

(i1) If K4(V) is of type O*E?, then two even edges must be both diagonal edges

or two opposite border edges.

3.3 Cyclic Clique Decompositions of C?’f; into Cliques of Or-
der at Most 4 for 3 < k < 26

From now on, in this work, Bj denotes the corresponding set of base blocks
obtained from a PDT(k). Note that if a PDT (k) contains a, b and ¢ pure difference
6-tuples, pure difference 3-tuples and singletons, respectively, then B, contains a
4-cliques, b 3-cliques and ¢ 2-cliques.

We say that a cyclic clique decomposition of C,’i into cliques of order at most
4 is optimal if it contains the minimum number of cliques among all such possible
clique decompositions obtained by clicking the base blocks. Recall that clicking
means applying the isomorphism i — ¢ 4 1 on V(C¥).

Our study establishes the condition on integers k£ and n to ensure that a cyclic
clique decomposition of CF into cliques of order at most 4 obtained from PDT (k)

is optimal.

Theorem 3.7. Let k and n be integers such that k > 3 and k < LgJ If n > 3k,
then a solution PDT (k) yields an optimal cyclic clique decomposition of Cff into

cliques of order at most 4.

Proof. In order to find a cyclic clique decomposition of Cif into cliques of order
at most 4, we first partition {1,2,3,...,k}, the set of edge lengths of C¥, into
pure difference 6-tuples, pure difference 3-tuples, or singletons. Afterward, we
obtain the corresponding set of base blocks containing exactly one edge of length

i € {1,2,3,...,k}. Since clicking preserves edge lengths of a graph and C* has
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n edges of length i for each i € {1,2,3,...,k}, it follows that clicking each base
block n — 1 times yields the desired decomposition of Cﬁ.

Our construction method can be summarized as the following steps:

Step 1 Obtain a solution, PDT(k), of the Pure Difference Tuple Problem.

Step 2 Get the set of base blocks By, corresponding to PDT (k) in Step 1.

Step 3 Apply clicking n — 1 times to each base block in By and get the desired
decomposition of C¥.

Therefore, a PDT(k) yields a cyclic clique decomposition of C’ﬁ into cliques of
order at most 4.

Next, we show that such a decomposition is optimal when n > 3k.

First, we claim that the union of base blocks must not contain repeated edge
lengths. As an optimal cyclic clique decomposition is obtained from clicking base
blocks n — 1 times, the only possible base blocks of C,’f with repeated edge lengths
must be as given in Figure @

L=
| =

3
(a) ®)
Figure 3.5: Base blocks with repeated edge lengths

However, since n > 3k and k < LgJ, C* has neither edge of length g nor g

Thus the union of all base blocks cannot contain repeated edge lengths. In other
words, the set of edge lengths of each base block form a partition of {1,2,3,...,k}
which can be obtained from a PDT(k).

It remains to make sure that some 2-cliques and 3-cliques obtained from PDT (k)
cannot form a new 3-clique nor a new 4-clique in C*. Otherwise, we will obtain
a smaller set of base blocks. In order to achieve that, we claim that the following

two properties hold when n > 3k.
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(i) C* contains no 3-clique K3{0,z, x + y} with edges of the length z,y and z
where x +y 4+ 2 = n.

(i4) C¥ contains no 4-clique K4{0,x,x +y,x +y + 2} with border edges of the
length z,y, z and w where x +y + 2z + w = n.

()

(x+y)

(i) (i)

Figure 3.6: 3-clique and 4-clique mentioned in (i) and (7i), respectively

We prove (i) by using contrapositive arguments. Suppose that K3{0,z,x + y}
is a clique of C* with edges of the length 2,y and z where 2 +y+ 2 = n as in Figure
@ (). Since z,y and z are all at most k, we have n = x+y+z < k+k+k < 3k.
Thus, the property (i) holds if n > 3k.

Next, we prove (i), suppose that K,{0,z, 2 + y,x +y + 2} is a clique of C*
with border edges of length =, y, z and w where z +y + z +w = n as in Figure @
(#7). Then, the diagonal edges joining vertices 0 and x + y is of the length at most
k. Since z < k and w < k, we have n = (x +y) + 2+ w < k + k + k < 3k. Thus,
the property (ii) holds if n > 3k.

Hence, a solution PDT (k) yields an optimal cyclic clique decomposition of C*

into cliques of order at most 4.. ]

Consequently, it is crucial to determine a solution PDT(k). In this work, we
have succeeded in determining PDT(k) for 3 < k < 26. By Theorem @, this
yields an optimal cyclic clique decomposition of C,’f into cliques of order at most 4
for 3 < k < 26 and all natural numbers n > 3k.

From now on, we let Cx(n) be such an optimal cyclic clique decomposition of

CS into cliques of order at most 4 when 3 < k < 26 and n > 3k.
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Next, we give a solution PDT(k) and Ci(n) for 3 < k < 26 and all natural

numbers n > 3k.

3.3.1 PDT(k) and Ci(n) for 3 <k <11

A PDT(k) and an optimal cyclic clique decomposition Cx(n) of C¥ into cliques
of order at most 4 for 3 < k < 11 and all natural numbers n > 3k are given below.

Case k= 3,4,5

When k = 3, we have PDT(3) = {(1,2,3)} and hence, the set of corresponding
base block is B = {Kg{O, 1, 3}} The base block in Bs is shown in Figure @

(n—1) ()

Figure 3.7: The base block K3{0,1,3} in C?

Apply clicking n — 1 times to the base block in Bs, we obtain that
Cs(n) = {K3{i,i+1,i+3}:0<i<n-—1}
is an optimal cyclic clique decomposition of C? into cliques of order at most 4.

Next, by adding the singleton {4} to PDT(3), we obtain PDT(4). Similarly,
PDT(5) is obtained by adding the singleton {5} to PDT(4). Hence, we have

PDT(4) = {(1,2,3),{4}} and
PDT(5) = {(1’ 2,3), {4}, {5}}

Consequently, the corresponding sets of base blocks are
B, = {K?){Ov ]-a 3}7 KQ{Oa 4}} and
Bs = {K3{0,1,3}, K»{0,4}, K»{0,5} }.

The base blocks in B are shown in Figure @
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(o) {0y (0)

‘/ ‘4 s

A () (5

%]

Figure 3.8: The base blocks in Bj

Therefore, we have
Ci(n) = {Ks{i,i+1,i+ 3}, Kof{i,i +4}:0<i<n—1} and

Cs(n) = {Ks{i,i+ 1,0+ 3}, Ko{i,i + 4}, Ko{i,i + 5} : 0 < i <n—1}.

Since the set of base blocks By, are determined by a solution PDT(k), from now
on, we only show a solution PDT (k) and the decomposition Cx(n) of C* obtained

from Bj,.

Case k£ =6,7,8
When k = 6, we have PDT(6) = {(1, 3,2,4,5, 6)} which yields the correspond-
ing set of base blocks Bg = {K4{O, dued 6}} Hence,

Co(n) = {Kufi,i+1,i+4,i+6}:0<i<n-—1}.
Using PDT(6), we obtain
PDT(7) = {(1,3,2,4,5,6),{7}} and
PDT(8) = {(1,3,2,4,5,6), {7}, {8} }.

© 0 ®
Figure 3.9: The base blocks corresponding to elements in PDT(8)

Therefore, we have
Co(n) = {Ku{i,i+1,i+4,i+6}, Ko{i,i +7}:0<i<n—1} and

Cs(n) = {Ku{i,i+1,i+4,i4+ 6}, Ko{i,i+ 7} Ko{i,i+8}:0<i<n—1}.
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Case k£ =9,10,11
When k& = 9, we have PDT(9) = {(3,2,4,5,6,9),(1,7,8)} which yields the
corresponding set of base blocks By = {K4{O, 3,5,9}, K3{0, 1, 8}} Hence,

Co(n) = {Ky{i,i +3,i+5,0+9}, Ks{i,i+1,i+8}: 0<i<n—1}.
Using PDT(9), we obtain
PDT(10) = {(3,2,4,5,6,9),(1,7,8),{10} } and
PDT(11) = {(3,2,4,5,6,9), (1,7,8), {10}, {11} }.

o i) S T
SI [m 3%
} . ®

® & 10) a1

(3) 5 (5 ) )
N

Figure 3.10: The base blocks corresponding to elements in PDT(11)

Therefore, we have
Cio(n) = {Kuf{i,i+3,i+5,i+9}, K3{i,i+1,i+ 8},
Ko{i,i+10} : 0<i<n—1} and
Cu(n) = {Ku{i,i+3,i+5,i+ 9}, Ks{i,i + 1,1+ 8},

Ko{i, i+ 10}, Ko{i,i+ 11} : 0 <i < n—1}.

3.3.2 PDT(k) and Cg(n) for k = 12,18

When k£ = 12,18, it is natural to try to partition the set {1,2,3,... k} into
% pure difference 6-tuples. However, the following two lemmas and Theorem
show that such a partition does not exist. To achieve that, we begin with the
investigation of a partition of the set {1, 2,3,..., g} into pure difference 3-tuples
in Lemma @
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Lemma 3.8. Let k be a positive integer. If k = 12,18 (mod 24), then there is no
k k
partition of the set {1, 2,3,..., 5} into 5 pure difference 3-tuples.

Proof. For the sake of convenience, we write k = 6a where a = 2,3 (mod 4).

k k
Let X = {1,2,3, ey = Suppose that X can be partitioned into 5 pure

2
k
difference 3-tuples, namely {(wl, T y) i€ {1, 2,3,..., 6}}
Thus, we have y; = x; + 2} for 1 <i < G
Now, we compute the sum of all elements in X as
k/6 k/2
k (k
, .
i r ) = =~ (Z11).
ICESESIEDES (5+1)
k/6 k/6 k/6
On the other hand, Z(xl + T A+ yi) = Z(y@ +yi) =2 Z Ys.-
i=1 i=1 i=1
k/6
k 3a(3a+1)
Theref t . Z SN /HA ) = e
erefore, we ge ;y 8(2+ > 1
3a(3a+1)

Next, we consider where @ = 2 or 3 (mod 4).

Case 1 a =2 (mod 4)
We get 3a =2 (mod 4) and 3a + 1 =3 (mod 4).
Therefore, 3a(3a + 1) =2 (mod 4).
k/6
3a(3a+1)
Th h , — et
us, we have Zy v

i=1

¢ Z, which is a contradiction.

Hence, the partition of the set {1, )31, MY 3

does not exist when k = 6a and a = 2 (mod 4).

into 7 pure difference 3-tuples

Case 2 a =3 (mod 4)
Then, 3¢ =1 (mod 4) and 3a+ 1 =2 (mod 4).
That is, 3a(3a + 1) = 2 (mod 4).
k/6
3a(3a+1)
h Rt Sl M)
We have Zyz 1

i=1

¢ 7, which is a contradiction.

k k
Hence, the partition of the set {1, 2,3,..., 5} into 5 pure difference 3-tuples
does not exist when k = 6a and @ = 3 (mod 4). O
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Lemma 3.9. Let k be a positive integer such that k = 12,18 (mod 24). The base
blocks corresponding to pure difference 3-tuples and pure difference 6-tuples satisfy
the followings.

(1) There is no g base blocks which are 3-cliques of type E* whose sets of edge
lengths form a partition of the set {2,4,6,... ,k}.

(12) There is no % base blocks which are 4-cliques of type O*E> whose sets of
edge lengths form a partition of the set {1,2,3,... k}.

Proof. (i) Suppose the contrary, there is g 3-cliques of type E* whose sets of edge
lengths form a partition of the set {2,4,6, ..., k}.

This yields a partition of {1, =23 .., g} into g pure difference 3-tuples which
contradicts the statement of Lemma B.§.

(77) Again, suppose the contrary, there is g 4-cliques of type O*E?® whose sets
of edge lengths form a partition of the set {1,2,3,...,k}. By Proposition @ (1),
each 4-clique of type O3E® always contains exactly one 3-clique subgraphs of type
E?. Hence, we obtain g 3-cliques of type E® whose sets of edge lengths form a

partition of the set {2,4,6, ..., k}. However, this contradicts (7). O

The next theorem is the key to solve the Pure Difference Tuple Problem of
order k = 12,18

k
Theorem 3.10. If k = 12,18, then there is no PDT(k) which contains g pure

difference 6-tuples.

Proof. Suppose that the statement is false when & = 12. Then, there is a set of
base blocks Bjs containing two 4-cliques whose sets of edge lengths form a partition
of {1,2,3,...,12}.

According to our classification of 4-cliques described in Remark @, there are
only three types of 4-cliques, namely O*E?* O*E? and E°.

We assume that By, contains p, ¢ and r 4-cliques of type O*E*, O*E? and ES,
respectively. Hence, p +q+1r = 2.

Since the set {1,2,3,...,12} contains 6 odd integers and 6 even integers, we

obtain the equation 3p +4q = 6 = 3p + 2q + 6r. Thus, ¢ = 3r.
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Therefore, we have 2 = p + g + r = p + 4r which forces r = 0 = ¢ and hence,
p = 2. Consequently, we must have two 4-cliques of type O E? whose sets of edge
lengths form a partition of {1,2,3,...,12}, which contradicts Lemma @ (13).

We can obtain the result for the case k£ = 18 by the similar argument. [

k
Theorem m implies that when k& = 12,18, any PDT (k) contains at least 5 +1

k
elements. Therefore, if we can find a partition of the set {1,2,3,...,k} into i 1
pure difference 6-tuples and 2 pure difference 3-tuples, then such a partition has

to be a PDT(k). Finally, we obtain a PDT(12) and a PDT(18) as shown below.

Case k£ =12
We have

PDT(12) = {(1,8,3,9,11,12),(2,5,7), (4,6,10) }
which yields the corresponding set of base blocks
By = {K,{0,1,9,12}, K3{0,2, 7}, K3{0,4,10} }

as shown in Figure .

o g © O (0)

5 y.
et o~z 3 @)
1::_.- ..++.:':__.+. '*..‘3 v ; .;.' 10
£ s 6

0) 17 1A2: 1 W@ 10)

Figure 3.11: The base blocks in By,
Therefore, we have
Cio(n) = {Kufi, i+ 1,0+ 9,0+ 12}, Ks{i, i+ 2,i + 7},

Ky{i,i+4,i+10}: 0<i<n-—1}.

Case k£ =18
We have

PDT(18) = {(1,6,5,7,11,12),(2,13,3,15, 16, 18), (4,10, 14), (8,9,17) }

which yields the corresponding set of base blocks
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Bis = {K4{0,1,7,12}, K4{0,2,15,18}, K5{0, 4, 14}, K3{0,8,17} }

as shown in Figure .

& & (2) 13 05 @ 4., Qg
— e - | "--H'[-_l} =:'-...,._‘!ij'i)
15 o WS 2 SN W3 14 17 7
A NS SO A 59
® 12 02® 18 (80 an

Figure 3.12: The base blocks in Big
Therefore, we have
Cis(n) = {K4{i,i +1,i+ 7,4+ 12}, Ky{i, i + 2,4+ 15,7 + 18},

Ky{ii+4,i+ 14}, Ka{i, i +8,i+17}: 0<i <n—1}.

3.3.3 PDT(k) and Cr(n) for k = 13,14,19, 20

According to Subsection 7 a solution PDT (k) for each of the cases k = 3,6
or 9 yields a solution PDT(k + 1) and a PDT(k + 2). However, a PDT(13) and
PDT(14) cannot be obtained from a PDT(12). Similarly, PDT(19) and PDT(20)
cannot be obtained from a PDT(18). On the other hand, a PDT(13) and a PDT(19)
can yield a PDT(14) and a PDT(20), respectively.

Case k= 13,14
We have

PDT(13) ={(3,1,8,4,9,12),(2,5,6,7,11,13),{10}}
which yields the corresponding set of base blocks

Bz = {K4{0,3,4,12}, K,{0,2,7,13}, K»2{0,10} }.

Therefore, we have
Cizs(n) = {Ky{i,i+3,i+4,i+ 12}, Ky{i,i +2,i + 7,7+ 13},
Ky{i,i+10} | 0<i<n-—1}.
Using PDT(13), we obtain

PDT(14) = {(3,1,8,4,9,12), (2,5,6,7,11,13), {10}, {14} }.
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Figure 3.13: The base blocks corresponding to elements in PDT(14)

Therefore, we have
Cu(n) = {Ky{i,i+3,i+4,i+ 12}, Ky{i,i +2,i+ 7,7+ 13},

Ko{i i+ 10}, Kofi i+ 14} | 0<i<n—1}.

Case k£ = 19,20
We have

PDT(19) = {(1,7,10,8,17, 18), (2,4,9,6, 13,15), (3,11, 5,14, 16, 19), {12} }
which yields the corresponding set of base blocks
Big = {K4{0,1,8,18}, K4{0, 2,6, 15}, K4{0,3, 14,19}, K>{0, 12} }.
Therefore, we have
Cio(n) = {Kufi,i +1,i+8,i+ 18}, Kufi,i + 2,7+ 6,4 + 15},
Ko{i, i+ 3,7+ 14,0+ 19}, Ko{i, i+ 12} : 0 <i <n—1}.
Using PDT(20), we obtain

PDT(20) = {(1,7,10,8,17,18), (2,4,9,6,13,15), (3,11, 5,14, 16,19), {12}, {20} }.

M 7 ® 2) 4 (6 (3) 1 ) (O (©

.........

Eh ooy ) L T : Y5
S, i r %
v - 10 A fu, = 0 3 . 5
1; . L. X 12 |20
- g 2 .'+_:‘.' x i . ; ! )

L = [ Fessassssssssssasnad | [ hasssssssssssssssss
(0) 18 (18)(0)

a5 19 (19)(12) (20)
Figure 3.14: The base blocks corresponding to elements in PDT(20)

Therefore, we have
Coo(n) = {K4{z',z' + 1,0+ 8,0+ 18}, Ky{i,i +2,i+ 6,7 + 15},

Ko{iyi+ 3,0+ 14,0 + 19}, Ko{d, i + 12}, Ko{i,i +20} : 0 <i <n—1}.
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3.3.4 PDT(k) and Cx(n) for k = 15,16, 17, 21, 22, 23

Similarly, we determine a PDT(k) when k£ = 15,21, which will consequently
yield a PDT(k+1) and PDT(k +2). Note that a solution PDT (k) when k = 15,21
contains {gJ pure difference 6-tuples and one pure difference 3-tuple.

Case k = 15,16, 17

We have

PDT(15) = {(5,1,8,6,9,14), (2,10,3,12,13,15), (4,7,11) }
which yields the corresponding set of base blocks
Bis = {K4{0,5,6,14}, K,{0,2,12,15}, K3{0,4,11} }.
Therefore, we have
Cis(n) = {Ku{i,i+ 5,1+ 6,i+ 14}, Kuf{i,i + 2,0+ 12,i + 15},
Ky{i,i+4,i+11}:0<i<n-—1}

Using PDT(15), we obtain

PDT(16) = {(5,1,8,6,9,14),(2,10,3,12,13,15), (4,7,11), {16} } and

PDT(17) = {(5,1,8,6,9,14),(2,10,3,12,13,15), (4,7,11), {16}, {17} }.

(5) (6) i2) (12) (0) ) (0
-':;:':"1 """ e, L 7 e 3 1(-'1){ Y (..-.)

57 g N8 L T
9\ Indviesiyy s o
© 14 ad@© 15 a9 an e an

Figure 3.15: The base blocks corresponding to elements in PDT(17)

Therefore, we have

Cio(n) = {Ku{i,i+ 5,1+ 6,0+ 14}, Ku{i,i +2,i+ 12,i + 15},
Ks{ii+4,i+ 11}, Kofi, i +16} : 0<i <n—1} and

Ciz(n) = {Ku{i,i+5,i+ 6,1+ 14}, Ku{i,i + 2,4+ 12,i + 15},

Ks{i,i+4,i+ 11}, Ko{i i+ 16}, Ko{i,i + 17} : 0 <i <n —1}.
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Case k = 21,22,23
We have

PDT(21) = {(1,13,6,14,19,20), (3,8, 10,11, 18,21), (4,5, 7,9, 12, 16),
(2,15,17)}
which yields the corresponding set of base blocks
By = {K4{0,1,14,20}, K4{0,3,11, 21}, K4{0,4,9,16}, K5{0,2,17} }.
Therefore, we have
Cor(n) = {Ku{i,i+ 1,0+ 14,1+ 20}, Ky{i, i+ 3,1+ 11,7 + 21},
Kyf{ii+4,i+9,i+ 16}, K3{i i +2,i+17}: 0 <i<n—1}.
Using PDT(21), we obtain
PDT(22) = {(1,13,6,14,19,20), (3,8, 10,11, 18,21), (4,5, 7,9, 12, 16),
(2,15,17),{22} } and
PDT(23) = {(1,13,6,14, 19,20), (3,8, 10,11, 18,21), (4,5, 7,9, 12, 16),
(2,15,17),{22}, {23} }.

.........

10 / S SR Y s
X A B i S :

L —y Ly O — 9 )
(i 20 (2000} 21 (21) (0} 16 (1617 (22) (23)

Figure 3.16: The base blocks corresponding to elements in PDT(23)

Therefore, we have

Coo(n) = {Ku{i,i+ 1,0+ 14,i + 20}, Ko{i,i + 3,0 + 11,7 + 21},
Ky{i,i+4,i+9,i+ 16}, K3{i,i+ 2,1+ 17},
Kof{i,i+22}:0<i<n-—1}and

Cos(n) = {Kufi,i+1,i+ 14,0+ 20}, Kufi, i+ 3,0+ 11,0 + 21},
Ky{ii+4,i+9,i+ 16}, K3{i,i +2,i + 17},

Kofi i+ 22}, Ko{i,i+23}:0<i<n—1}.
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3.3.5 PDT(k) and Cj(n) for k = 24, 25,26

In this subsection, we determine a PDT(24). In contrast to the cases when
k = 12,18, we show that it is possible to find a PDT(24) containing 4 pure difference
6-tuples. Consequently, a PDT(25) and a PDT(26) immediately follow.

Case k = 24,25,26
We have

PDT(24) = {(1, 16,6,17,22,23),(2,12,7,14, 19, 21),
(3,5,10,8,15,18),(4,9,11,13,20,24) }
which yields the corresponding set of base blocks

Boy = {K4{0,1,17,23}, K,{0,2,14, 21}, K4{0, 3, 8,18}, K4{0,4,13,24} }.

M 1607 (3) 5 (8) @ o 03 OO

L e ). |:‘+. ------ ::"v.". v
i ¥ 1AV 4 Yj af R ias Ilﬁ

@ 23 @230 21 @DM 18 (8)0) 24 (24)(25)(26)

Figure 3.17: The base blocks corresponding to elements in PDT(26)

Therefore, we have

Coa(n) = {Ku{i, i+ 1,0+ 17,0 + 23}, Ko{i,i + 2,0 + 14,7 + 21},
Kufi,i+3,i+8,i+ 18}, Ky{i, i +4,i+13,i+ 24} : 0 <i <n—1}.
Using PDT(24), we obtain
PDT(25) = {(1,16,6,17,22,23),(2,12,7, 14,19,21),
(3,5,10,8,15,18), (4,9,11,13,20,24), {25} } and

PDT(26) = {(1,16,6,17,22,23), (2,12,7, 14, 19,21),
(

3,5,10,8,15,18),(4,9,11, 13, 20,24), {25}, {26} }.
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Therefore, we have
Cos(n) = {Kuf{i,i+ 1,0+ 17, i+ 23}, Ku{i, i+ 2,0 + 14,0 + 21},
Ky{i,i+3,i+8,i+ 18}, Ky{i,i +4,i+13,i + 24},
Kof{i,i+25}:0<i<n-—1}and
Cos(n) = {Ku{i,i+ 1,0+ 17,0+ 23}, Ko{i,i + 2,0 + 14,7 + 21},
Ky{i,i+3,5+8,i+ 18}, Ku{i,i +4,i+13,i + 24},
Ko{i,i+ 25}, Kp{i,i+ 26} : 0 <i<n-—1}.



CHAPTER IV
CONCLUSION AND OPEN PROBLEMS

4.1 Conclusion

1) Given natural numbers k and n > 3 such that k < LgJ , we recount what we
have done so far. First, we introduce Pure Difference Tuple Problem and use it to
construct an optimal cyclic clique decomposition of k-power of an n-cycle C* into
cliques of order at most 4. Secondly, the desired decomposition can be obtained
by the set of the base blocks By corresponding to a solution to Pure Difference
Tuple Problem, PDT (k). Therefore, it suffices to determine a PDT (k).

For each natural number 3 < k < 26, a solution PDT(k) where & = 0 (mod 3)
and k # 12,18 yields PDT(k + 1) and PDT(k + 2). In particular, PDT(k + 1)
is obtained by adding a singleton {k + 1} to PDT(k). Similarly, PDT(k + 2) is
obtained by adding a singleton {k + 2} to PDT(k + 1). Hence, |PDT(k + 1)| =
IPDT(k)| + 1. On the other hand, we found that |PDT(12)] = |PDT(13)| and
|PDT(18)| = |PDT(19)|

Table El! lists a solution PDT(k) to Pure Difference Tuple Problem for 3 <
k < 26.

k pure difference pure difference singleton(s)
6-tuple(s) 3-tuple(s)

3 - (1,2,3) -

4 - (1,2,3) {4}

5 - (1,2,3) {4}, {5}
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k pure difference pure difference singleton(s)
6-tuple(s) 3-tuple(s)
6 (1,3,2,4,5,6) ; ;
7 (1,3,2,4,5,6) ; n
8 (1,3,2,4,5,6) . (7}, {8}
9 (3,2,4,5,6,9) (1,7,8) ;
10 (3,2,4,5,6,9) (1,7,8) {10}
11 (3,2,4,5,6,9) (1,7,8) {10}, {11}
12 (1,8,3,9,11,12) (2,5,7), (4,6,10) :
13 (3,1,8,4,9,12), (2,5,6,7,11,13) ; {10}
14 (3,1,8,4,9,12), (2.5,6,7,11,13) ] (10}, {14}
15 | (5,1,8,6,9,14), (2,10,3,12,13,15) (4,7,11) ]
16 | (5,1,8,6,9,14), (2,10,3,12,13,15) (4,7,11) {16}
17 | (5,1,8,6,9,14), (2,10,3, 12,13, 15) (4,7,11) {16}, {17}
18 | (1,6,5,7,11,12), (2,13,3,15,16,18) | (4,10,14), (8,9,17) -
19 | (1,7,10,8,17,18), (2.4,9,6, 13, 15), ] (12}
(3,11,5, 14, 16, 19)
20 | (1,7,10,8,17,18), (2,4,9,6,13, 15), . {12}, {20}
(3,11,5, 14, 16, 19)
21 | (1,13,6,14,19,20), (3,8,10, 11,18, 21), (2,15,17) ]
(4,5,7,9,12, 16)
22 | (1,13,6,14,19,20), (3,8,10,11,18,21), (2,15, 17) (22
(4,5,7,9,12, 16)
23 | (1,13,6,14,19,20), (3,8, 10, 11,18, 21), (2,15,17) {22}, {23}

(4,5,7,9,12,16)
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k pure difference pure difference singleton(s)

6-tuple(s) 3-tuple(s)

24 | (1,16,6,17,22,23), (2,12,7,14,19,21), _ :
(3,5,10,8,15,18), (4,9,11,13,20,24

25 | (1,16,6,17,22,23), (2,12,7, 14,19, 21), _ {25}

26 | (1,16,6,17,22,23), (2,12,7,14, 19, 21), - {25}, {26}

)
)
)
(3,5,10,8,15,18), (4,9,11, 13,20, 24)
)
)

(3,5,10,8, 15, 18), (4,9, 11, 13,20, 24

Table 4.1: A solution PDT (k) for 3 < k < 26

Let 3 < k < 26 and k # 12,18. Note that |PDT(k)| depends on the largest
possible number of 6-tuples which can be obtained from {1,2,3,...,k}. Hence, we

have that

k k—6%] k k—6%]
PDT(k)| = | = — o Tt Ek—6|=| —3|——=8541| .
PDT () Mﬂ R H BRI
If we write k = 3s +t where 0 <t < 2, then

|PDT@s+¢ﬂ:={§]+t when 3s + ¢ # 12, 18.

Therefore, when n > 3k, the size of an optimal cyclic clique decomposition
Cr(n) of C* into cliques of order at most 4 is

|C3s14(n)| =n E-‘ + nt.

Note further that nt is the number of 2-cliques in Cs,y4(n) when 3s+t¢ # 12, 18.
Thus if ¢ = 0 (k is divisible by 3), then Css14(n) will be composed of all 4-cliques
and 3-cliques.

2) It is important to point out that an optimal cyclic clique decomposition
does not necessarily give the minimum size among cyclic clique decomposition of

C’fj into cliques of order at most 4. Example [1! illustrates this situation.

Example 4.1. We give two different cyclic clique decompositions of 6'156 into

cliques of order at most 4.
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(1) We use a PDT(5) to construct a cyclic clique decomposition of C5s. First,
we have PDT(5) = {(1,2,3),{4},{5}}. Consequently, the set of corresponding
base blocks is By = {Kg{(), 1,3},[(2{0,4},[(2{0,5}}. By clicking each of these

base blocks for 15 times, we obtain that
Cr = {Ks{i,i+ 1,0+ 3}, Ko{i,i + 4}, Ko{i,i + 5} : 0 < i < 15}

is a cyclic clique decomposition of CPs into cliques of order at most 4, where
|C1| = 48. Observe that the above decomposition is optimal.

(#7) Consider the set of base block B = {K4{0,1,2,5}, K3{1,3,6}, K»{0,4} }.

(15} () as) ()
4) O ) 8 GO (D
4 o Y
a3 2) 3. @)
o ) a
g 56 a8
i ; 1somorphism i
| VA5 TRt |
and o@ isi+2  and
O. Jof "Cl_
10y . 7 ) 00} .
. Mo Q.
&) e (6) @ "
8 (7
(15)
4) OO ) Q4) OO,
0 § g .'O o)
{13y .~ a3
o} o
24 &) . ang
i 1somorphism !
.= R —
ang S@ iPit2  and
a el Q
10y~ =" {5) 10) -,
yo Moy Q.
@) TG (6) ®
B @
1% © 1%
) O 14) OO (D)
o o 0,
(13) . 13 @
o fe \
s ¢ e
0 ? isomorphism O O( !
e P — s
and S@) ik i+2 ang S
oy g o g
0y . A 10) . )
o pils g QL 4
©) "G (6) ©) QO
@ @ M

Figure 4.1: Applying the isomorphism ¢ — i 4+ 2 on each base block in B

For each i € {1,2,3,4,5}, there are totally 2 edges of length ¢ occurring in base
blocks in B. By applying the isomorphism i — i +2 on V(C?%) to each base block



39

of B for 7 times as shown in Figure @, we obtain that

Co={Ku{i,i+1,i+2,i+5}, Ks{i+1,i+3,i+6},

Kofi,i+4} :i€{0,2,4,...,14}}

is a cyclic clique decomposition of Cj, into cliques of order at most 4, where
|Ca| = 24.
Note that the construction in (i7) is not optimal but it yields a decomposition

which has less number of cliques than the construction in (7). 0

3) We have investigated the construction of cyclic clique decomposition of C%
when k£ < {gJ However, we would discuss the case when k > LSJ Recall that
the set of edge lengths of K, is {1,2,3, SN LSJ} where C* = K,,. We can then
apply our construction to obtain a cyclic clique decomposition of K,, as follows.

When n is odd, Remark @ is still valid for K, where k = {gJ Therefore,
we can construct a cyclic clique decomposition of K, into cliques of order at most
4 by using PDT (gJ) — PDT (”;1
guaranteed to be optimal.

When n is even, K, has n edges of each length i € {1, 2,3,..., g — 1} and has

>. However, this decomposition is not

g edges joining antipodal vertices of length g Thus,
CU{KQ{Z’,Z'—i—g}:OSng—l}

is a cyclic clique decomposition of K, into cliques of order at most 4, where C is
n
a decomposition obtained from PDT (5 — 1). Again, this decomposition is not

guaranteed to be optimal.

4.2 Open Problems

1) We mentioned that a PDT(k) might not be unique, see Example @ (71).
However, to determine a solution PDT (k) can be very complicated especially when
k is large. Therefore, the problem to find PDT (k) still remains open for all natural

numbers k > 27.
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Although our work reveals that [PDT(3s +t)| # E—‘ +t when 3s +¢ = 12,18,

we believe that

WDT@5+Q\:[§]+t for all 3s +¢ > 27 and 0 < t < 2.

k
Furthermore, we think PDT(3s + ¢) should contain {EJ pure difference 6-tuples,
k—6|% k k—6|%
% pure difference 3-tuples and k£ — 6 MEJ -3 {% singletons.
2) If n > 3k, then our method provides an optimal cyclic clique decomposition
of Cfi into cliques of order at most 4. However, whether a cyclic clique decomposi-
tion of C* into cliques of order at most 4 for natural numbers n for 2k+2 < n < 3k

is optimal still remains open.
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