ผลของ 3 แอลฟา - ได้ไฮโครคาคามบืนที่แยกจากใบกระทุ่มใหญ่ต่อความคันเลือด และอัตราการเต้นของหัวใจในกระแต (Tupaia glis)

นางสาว อนุสรา วัฒนจันทร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการคึกษาตามหลักสูตรปริญญาวิทยาคาสตรมหาบัณฑิต สหสาขาวิชาสรีรวิทยา

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2536

ISBN 974-583-392-4

ลิชสิทธิ์ของปัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

018947 117150115

EFFECT OF 3α-DIHYDROCADAMBINE ISOLATED FROM WILD CINCHONA (Anthocephalus chinensis) LEAVES ON BLOOD PRESSURE AND HEART RATE IN TREE SHREW (tupaia glis)

Miss Anusara Vattanajun

A thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
Inter-Department of Physiology
Graduate School
Chulalongkorn University
1993
ISBN 974-583-392-4

Effect of 3α -dihydrocadambine isolated from wild Thesis Title cinchona *(Anthocephalus chinensis)* leaves on blood pressure and heart rate in tree shrew (Tupaia glis) By Miss Anusara Vattanajun Inter-Department Physiology Thesis Advisor Associate Professor Ratree Sudsuang, Ph. D. Thesis Co-advisor Assistant Professor Pongsak Kunluan Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree. Thanon Vonallasa Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph. D.) Thesis Committee Puttipongoz Varandhi Chairman (Professor M.R. Puttipongse Varavudhi, Ph. D.) Rather Sudsuary..... Thesis Advisor (Associate Professor Ratree Sudsuang, Ph. D.) Pare Rober Thesis Co-advisor (Assistant Professor Pongsak Kunluan) W. Smyhanyon Member (Assistant Professor Veerachai Singhaniyom, Ph. D.) (Assistant Professor Prayode Boonsinsukh)

อนุสรา วัฒนจันทร์ : ผลของ 3 แอลฟา-ไดไฮโดรคาดามบื้นที่แยกจากใบกระทุ่ม ใหญ่ต่อความดันเลือดและอัตราการเต้นของหัวใจในกระแต (<u>Tupaia glis</u>) (EFFECT OF 3 CLIHYDROCADAMBINE ISOLATED FROM WILD CINCHONA (<u>Anthocephalus chinensis</u>) LEAVES ON BLOOD PRESSURE AND HEART RATE IN TREE SHREW (<u>Tupaia glis</u>) อ.ที่ปรึกษา : รศ.ดร.ราดรี สุดทรวง, ผศ.พงษ์ศักดิ์ กรรณล้วน , 78 หน้า. ISBN 974-583-392-4

ได้ศึกษาผลของสาร 3 แอลฟา - ไดไฮโดรคาดามบีนซึ่งเป็นอินโดลกลัยโคซิดิล อัลคาลอยค์ (ALK) ที่แยกจากใบของต้นกระทุ่มใหญ่ ต่อความคันเลือดและอัคราการเต้นของ หัวใจในกระแต โดยการให้ ALK ทางหลอดเลือดคำ (IV) ขนาดต่าง ๆ กัน ละลายใน 10% polyethylene glycol (PEG) ในน้ำเกลือ ซึ่งพบว่าขนาดที่เหมาะสมมากที่สุดคือ 6.4 มิลลิกรัม/กิโลกรัม ของน้ำหนักตัว และให้ทาง ventricle ของสมอง (VENT) ขนาด 0.4 ถึง 3.2 มิลลิกรัม/กิโลกรัม ของน้ำหนักตัว ละลายใน 20%PEG ในน้ำใขสันหลังเทียม(aCSF) พบว่าการให้ทั้งสองทาง มีผลในการลดความคันเลือด และอัตราการเต้นของหัวใจอย่างมีนัยสำคัญทางสถิติ (p < 0.05) แต่อย่างไรก็ตาม ยังคงพบความแตกต่างของรูปแบบในการลดลง ของความคันเลือดระหว่างสองทางที่ให้ โดยความคันเลือดจะลดลงทันที และลดลงมากที่สุด ประมาณ 40 วินาทีหลังจากให้ ALK ทาง IV ในขณะที่ทาง VENT ความคันเลือดจะลดลงมาก ที่สุดหลังจากให้ ALK ประมาณ 20 นาที นอกจากนี้ยังพบว่าการให้ตัวทำละลาย 20% PEG ใน aCSF เพียงอย่างเดียวทาง VENT สามารถลดความคันเลือดได้อย่างมีนัยสำคัญทางสถิติ และ เมื่อนำไปเปรียบเทียบกับกลุ่มที่ให้ตัวทำละลายร่วมกับ ALK ขนาดต่าง ๆ ทาง VENT ไม่พบว่า มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ (p > 0.05)

จากการศึกษาในครั้งนี้ยังพบว่า การให้ ALK ทาง IV สามารถลด fastigial pressor response ที่เกิดจากการกระตุ้น fastigial nucleus ได้ แต่อย่างไรก็ตาม เมื่อนำมาเปรียบเทียบกับผลของ ALK ขนาดเท่ากันในระดับความคันปกติแล้ว ไม่พบว่ามีความ แตกต่างกัน

จากการศึกษานี้อาจสรุปได้ว่า สาร 3 แอลฟา- ไดไฮโดรคาคามบีน มีฤทธิ์ในการ ลดความดันเลือด โดยออกฤทธิ์เด่นในส่วนของระบบประสาทส่วนปลายมากกว่าระบบประสาท ส่วนกลาง

ภาควิชา	777	ลายมือชื่อนิสิตรู้หาว ก็นะกาก!
	्रकार अने भारतीये वेशाल	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2536	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##C346865 : MAJOR PHYSIOLOGY

KEYWORD : Anthocephalus chinensis / INDOLE GLYCOSIDE / BLOOD

PRESSURE / HEART RATE / Tupaia glis

ANUSARA VATTANAJUN : EFFECT OF 3 % - DIHYDROCADAMBINE

ISOLATED FROM WILD CINCHONA (Anthocephalus chinensis) LEAVES

ON BLOOD PRESSURE AND HEART RATE IN TREE SHREW (<u>Tupaia glis</u>).

THESIS ADVISOR: ASSO. PROF. RATREE SUDSUANG, Ph.D., ASSIS.

PROF. PONGSAK KUNLUAN, 78 pp. ISBN 974-583-392-4

The effect of $3 \propto$ -dihydrocadambine, indole glycosidic alkaloid (ALK), isolated from Anthocephalus chinensis leaves on blood pressure and heart rate was investigated in tree shrews. This ALK at various doses were dissolved in 10% polyethylene glycol (PEG) in normal saline for intravenous injection (IV) which was found that 6.4 mg/kg B.W. was the optimal effective dose; in case of intraventricular injection (VENT), 0.4 to 3.2 mg/kg B.W. were dissolved in 20% PEG in artificial cerebrospinal fluid (aCSF). It was found that after ALK injection, systemic arterial pressure and heart rate were decreased significantly when compared to those control by both routes of administration (p < 0.05). However, there was a difference in the pattern of hemodynamic change between the two routes of administration. The IV injection decreased systemic blood pressure immediately (about $40\ \text{sec}$ after injection) while by VENT , $20\ \text{min}$ delayed decreasing effect was occurred. It was also found that placebo injection of 20% PEG in aCSF itself into the lateral ventricle evoked significant systemic change. When it was compared to the VENT doses of ALK, there was no statistically significant changes between them (p > 0.05).

We also observed hypotensive effect of this agent during fastigial pressor response which was induced by fastigial nucleus stimulation, hemodynamic changes of these groups were similar to the basal blood pressure groups, when the same doses were compared.

ภาควิชาครั้งว่า	ลายมือชื่อนิสิต ราการการการ
สาขาวิชา ^{จันเจ้าราจ} ับกลังสุดชา	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

The author is indebted and grateful to her advisor, Associate Professor Ratree Sudsuang, Department of Physiology Faculty of Medicine, her co-advisor Assistant Professor Pongsak Kunluan, Head of the department of Physiology, Faculty of Pharmaceutical Science, Chulalongkorn University and Assistant Professor Veerachai Singhaniyom, Head of the department of Anatomy, Faculty of Medicine, Sri Nakharinwirot University for their helpful guidances, suggestions, criticisms and encouragements throughout the course of this study.

The author would like to express her appreciation to Associate Professor Nijsiri Ruangrungsi, Department of Pharmacognocy, Faculty of Pharmaceutical Science, Chulalongkorn University for his very useful suggestion in extraction and purification of the ALK.

The author also would like to extend her sincere thanks to all the staff members of the department of Physiology, Faculty of Pharmaceutical Science, Chulalongkorn University for their help and kindness.

Finally, the author also grateful thanks to Graduate School, Chulalongkorn University for granting her partial financial support to conduct this experiment.

TABLE OF CONTENTS

	Page
THAI ABSTRACT	IV
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	VI
TABLE OF CONTENTS	VII
LIST OF TABLES	IX
LIST OF FIGURES	XI
ABBREVIATION	XIII
CHAPTER	
I. INTRODUCTION	1
II. LITERATURE REVIEWS	2
III. MATERIALS AND METHODS	
- Isolation of ALK from Anthocephalus chinensis	
leaves	
- Source of plant materials	11
- Isolation of ALK	11
- Purification of light brown amorphous powder	13
- Experimental animals	14
- Experimental procedure	
- Preparation of animals	14
- Measurement of systemic cardiovascular activity.	14

	Page
- 3α -dihydrocadambine administration	15
- Electrical stimulation of FN	16
- Effect of 3α -dihydrocadambine on FPR	17
- Histological techniques	17
- Statistical analysis	19
IV. RESULTS	20
V. DISCUSSION AND CONCLUSION	48
REFERENCES	58
VITA	ń4

LIST OF TABLES

Tá	Table 1	
1.	Decreasing effect of intravenous ALK on systolic blood	
	pressure in anaesthetized tree shrews	22
2.	Decreasing effect of intravenous ALK on diastolic blood	
	pressure in anaesthetized tree shrews	23
3.	Decreasing effect of intravenous ALK on mean arterial	
	pressure in anaesthetized tree shrews	24
4.	Comparison of the percent changes in arterial pressure	
	produced by intravenously ALK 0.0 (10% PEG), 3.2 and	
	6.4 mg/kg as function of the time	27
5.	The effect of intravenous ALK in various doses on heart	
	rate in anaesthetized tree shrews	30
6.	Decreasing effect of intraventricular ALK on systolic	
	blood pressure in anaesthetized tree shrews	33
7.	Decreasing effect of intraventricular ALK on diastolic	
	blood pressure in anaesthetized tree shrews	34
8.	Decreasing effect of intraventricular ALK on mean	
	arterial pressure in anaesthetized tree shrews	35

Table	Page
9. Comparison of the percent changes in arterial pressure	
produced by intraventricular ALK 0.0 (20% PEG) and 3.2	
mg/kg as function of the time	37
10. The absolute values and the percent changes of heart	
rate before and after intraventricular administration in	
various doses of ALK	39
11. Comparison of the effect of FN stimulation on	
arterial pressure and the effect of intravenous ALK 3.2	
and 6.4 mg/kg during FPR	43
12. Comparison of the effect of intravenous ALK on basal	
systolic blood pressure and during FN stimulation at	
doses 3.2 and 6.4 mg/kg	44
13. Comparison of the effect of intravenous ALK on basal	
diastolic blood pressure and during FN stimulation at	
doses 3.2 and 6.4 mg/kg	45
14. Comparison of the effect of intravenous ALK on basal	
mean arterial pressure and during FN stimulation at	
doses 3.2 and 6.4 mg/kg	46

LIST OF FIGURES

Figure	Page
1. Anthocephalus chinensis leaves	4
2. The structure of 3α -dihydrocadambine (C27 H34 N2 O10)	5
3. Outline of the extraction and purification of 3α -dihydro-	
cadambine from Anthocephalus chinensis leaves	12
4. Diagrammatic representative of the experimental set up	18
5. Changes in arterial pressure at base line after intravenous	
administration of ALK in various doses 0.8, 1.6, 3.2, 6.4	
and 16.0 mg/kg	21
6. Dose-dependent decreases in systolic, diastolic and mean	
arterial pressure produced by intravenous administration	
of ALK	25
7. The concentration response curves for hypotensive effect	
after intravenous administration of ALK 0.8, 1.6, 3.2, 6.4,	
16.0 and 24.0 mg/kg	26
8. Representative experiment depicting the changes in	
systolic, diastolic and mean arterial pressure at base line	
and for 0-20 min after intravenous 10%PEG and ALK 3.2	
mg/kg in 10% PEG administration	28

F	igure	Page
9.	Changes of arterial pressure at base line after intra-	
	ventricular administration of ALK in doses 0.0 (20% PEG),	
	0.8 and 3.2 mg/kg	32
10.	The mean of percent decreases in systolic, diastolic and	
	mean arterial pressure produced by intraventricular	
	administration of ALK	36
11.	Representative experiment depicting the changes in systolic,	
	diastolic and mean arterial pressure at base line and for $0-30$	
	min after intraventricular 20% PEG and ALK 3.2 mg/kg in	
	20% PEG administration	38
12.	Fastigial pressor responses during FN stimulation	41
13.	Records showing fastigial pressor response in	
	anaesthetized tree shrews and its attenuation by	
	intravenous ALK 6.4 mg/kg	42
14.	Comparison of the effect of intravenous ALK on basal blood	
	pressure and during FPR at doses 3.2 and 6.4 mg/kg	47
15.	Basic pathways involved in the medullary control of blood	
	pressure	52

ABBREVIATION

AC = alternating current

aCSF = artificial cerebrospinal fluid

ALK = ALKALOID from Anthocephalus chinensis leaves

AP = arterial pressure

B.W. = body weight

°C = degree celsius

FN = fastigial nucleus

FPR = fastigial pressor response

g = gram

HR = heart rate

Hz = Hertz (pulse per second)

IV = intravenous

 $K\Omega = kilo ohm$

mA = milli Ampered

MAP = mean arterial pressure

mg/kg = milligram per kilogram

min = minutes

ml = millilitre

mm = millimetre

mmHg = millimetre Mercury

mS = milli second

NSS = normal saline solution

O.D. = outer diameters

P = probability

PEG = polyethylene glycol

rFN = rostral portion of fastigial nucleus

sec = second

S.E.M. = standard error of the mean

V = volt

VENT = intraventricular

μl = microlitre

 $\mu m = micrometre$