CHAPTER |
PRELIMINARIES

In this chapter we shall give some notations, definitions
and theorems used in this thesis. Our notations are

z is theset ofall integers,

z+is theset ofall positive integers,

Q is theset ofall rational numbers,

Qt is theset ofall positive rational numbers,

R+ is theset ofall positive real numbers,

Zn, £ z+, is the set of congruence classes modulo in z,

Qu = &t {0}.

Definition 1.1. Atriple ( ,+*) is said to be a right
seminear-ring iff

(a) ( ,f) and ( ,*) are semigroups and

(b) (x+y)z =xz +yz for all x,y,z ¢ . (right
distributive law)
Aleft seminear-ring is defined similarly. If is a right and
left seminear-ring then we call a distributive seminear-ring.

Throughout this thesis the word "seminear-ring" will
mean a right seminear-ring. Eachstatements for right seminear-rings
has a dual statement for left seminear-rings.

Example 1.2.  ,Z+,Zq,Q+ and IR+ with the usual addition and
multiplication are seminear-rings



Example 1.3» Let s be a nonempty set. Define +and « on by
x +y=xand x «y =y forall x,y £ . Then ( ,+1*) is a
seminear-ring.

Example 1*+. Let ( 1+) be & semigroup. Let

M(s) = (f *>s|f is a map). Define + and + on M(5) by
(f+g)(x) = f(x) + g(x) and (f*g)(x) = f(g(x)) for all x&¢ . Then
(M (s)1+,*) is a seminear-ring.

Definition 1.5» A séminear-ring (D,+1*) is said to be a ratio
seminear-ring iff (D,¢) is a group. (in J. Hattakosol* thesis
[1], ratio seminear-rings are called division seminear-rings)

Example 1.6. <&t and R+ with the usual addition and multiplication
are ratio seminear-rings. Alsol if we define x +y = min {x,y}
for all x,y Q+ or R+ and use the usual multiplication we still
obtain a ratio seminear-ring.

Example .7» Let (D,*) be a group. Define +onDbyx+y=y
for all x,y £EDorx+y=x for all x,y£ D. Then (D,+,*) is a
ratio seminear-ring.

0
addition and multiplication. Then (D,+1*) is a ratio

Example 1.8. Let D={[

X y .
][x,z ety £ twith the usual
z

seminear-ring.

Example 1.9» Let D" and D" be ratio seminear-rings. Then D1 X DM
with the usual product structure is a ratio seminear-ring.

Definition 1.10. Let ( ,+1*) be a seminear-ring and T a nonempty
subset of . T is said to be a subseminear-ring of iff (T,+*)



is a seminear-ring. A subseminear-ring is said to be a ratio

subseminear-ring iff it is a ratio seminear-ring.

Definition 1.11. Let be a semigroup. is said to be a band
iff x» = X for all X £ . is said to be a rectangular band iff

xyx = X for all x,y e

Lemma .12. If (D,+1*) is a finite ratio seminear-ring then
(D1+) is a band.

See [1] 1 page 17.

Definition .13» Let G be a group and G,J, 2 subgroups of G.
Then G is said to be a Zappa-Szep product of G* and G21 denoted
by G =G| * G21 iff G = anc* G"o G2 = {e} where e is the

identity of G.

Example 1.14. Let 3 be the symmetric group on three letters.
Thus = {(1),(12),(13),(23), (123), (132)}. Let A= {(1),(12)} and
AN = {(1) ,(123),(132)}. Then A and A3 are subgroups of 3. Since
(13) = (132)02) £ A3A and (23) = (123)02) £ mm, 3 = kMK

Hence 3 = A3 * A

Theorem 1.13» Let D be a finite ratio seminear-ring. Then theref
exist unique ratio subseminear-rings D”», D2 ¢ D such that
(1) X+ y= X for all x,y £ D11
(2) X+y
(3) (D,*)

y for all x,y £ D2,

(DA 1*) * (D2,0 (= (D21*) * (D11-)).
Furthermore,

0) (D,+) (DM1+) X (D2,+),

(5) D2+ D = {e} (where e is theidentity of (D,0),

(6) (D1+ ) is a rectangular band, D = {xe Dx + e = x}



and 2 = {x £ d|X + e = e}.

See [ ]1 page 17 - 19.

Definition . 6, Let be a seminear-ring and X£ . X is said to
be left additively cancellative (L.A.C.) iff for all y,z e (x+y =
x+z implies y = z). Avright additively cancellative (R.A.C.) element
is defined similarly. X is said to be additively cancellative (A.co
iff it is both left and right additively cancellative. is said to
be left additively cancellative (L.A.C.) iff y is L.A.C. for all y £
is said to be right additively cancellative (R.A.C.) iff y is R.A.C.
for all y £ . S is said to be additively cancellative (A.co iff is

both left and right additively cancellative.

X is said to be aleft additive zeroof iff X +y = X for all

y £ . Aright additive zero of is defined similarly. X is said to be

an additive zero dfs iff it is both a left and a right additive zero.

X is said to be aleftadditive identity of iff X+y =y for all
y £ . A right additive identity of is defined similarly. X is said

to be an additive identity of iff it is both a left and a right additive

identity of

X is said to be aleft multiplicative zero of if xy = X for all
y . Aright multiplicative zero of is defined similarly. X is said
to be amutiplicative zero of iff it is both a left and a right

multiplicative zero of

Let d £ . Then X is said to be a left additive identity of d
iff X +d =d. Aright additive identity of d is defined similarly.
X is said to be an additive identity of d iff it is both a left and
a right additive identity of d.

The set of all left (right) additive identities of d is
denoted by LI (d) (RIlg(d)). The set of all additive identities of d

is denoted by Ig(d).



Example 1.17» z+, <t and IR+ with the usual addition and
multiplication are A.c.

Proposition 1.18. Let D be a ratio seminear-ring.

() If one element of Dis a left (right) additive zero
then every element of Dis a left (right) additive zero so (D,+)
is a left (right) zero semigroup.

(2) |f one element of D is a left (right) additive
identity then every element of D is a left (right) additive
identity so (D,+) is a right (left) zero semigroup.

Proof. To prove ( ), let d be a left additive zero of D. Then
d+ X=4d forall X£D. Lety £D. We must show that y is

a left additive zero of D. "y +z(d "y) = d(d~"y) + z(d *y) =

(d+z)(d ™y) = d(d ™y) =y for all ZED. Letc ={zd 1y|lz £ D}.
Since (D,0 is a group,c =D. Thusy + =1y forall £D.
Hence y is a left additive zero of D. Since y is an arbitary element
in D, we obtain ( ).

To prove (2), let d be a left additive identity of D.
Then d + X = X for all X£ D. Let y £ D. We must show that y
is aleft additive Identityof D. 'y +zd y =d(d y)+z(d vy) =
(d+z)d "y = zd *®y forall z£ D.Let c={zd V|z£ D}. Since (D,*) is
a group, C=D. Thusy+ = forall £ D Henceyis a left
additive identity of S. Since y is an arbitary element in D, we obtain

(2).

Proposition . 9» If Dis a ratio seminear-ring of order greater
than 1 then D contains no additive zero.
See [1]1 page 22,
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Corollary 1.20» Let D be a ratio serainear-ring and e the
identity of (D,0. If e is an additive zero of D then D = 'tel.

Proof. It immediately follows from Proposition 1.19*
#

Proposition 1.21. If Dis a ratio seminear-ring of order greater
than 1 then D contains no additive identity.
See []., page 22.

Definition 1.22. An ideal | of a semigroup is called
completely prime iff for any a, ES, ab £ | implies that a £ |
or £ 1.

Definition 1.23» Let be a semigroup and F a nonempty subset
of . Fis said to be a filter in iff for all x,y£ (x,y £ F
iff xy £F).
It is well-known that Fis a filter in implies that
S\F =0 or S\F is a completely prime ideal in

Example .2°- z+ with the usual multiplication is a semigroup.
Let F ={n £z+ is odd}. Then F is a filter in z+, so Z+F
is a completely prime ideal in z+.

Proprosition 1.23. Let Dbe a seminear-ring and d £ . Then the
following statements hold

(1) Llg(d) =0 or Llg(d) is an additive subsemigroup of

(2) Rlg(d) =0 or Rlg(d) is an additive subsemigroup of
(Therefore Ig(d) =0 or Ig(d) is an additive subsemigroup of )

(3) If is a seminear-ring with identity e then the
following statements hold

(3.1) Llg(e) =0 or Llg(e) is subseminear-ring



of

(3*2) Rlg(e) =0 or Rlg(e) is 3 subseminear-ring
of
(Therefore Ig(e) =0 or Ig(e) is a subseminear-ring of )

(3.3) LI (e) *d£LIg(d), Rlg(e) *d £ Rlg(d
lg(e) « d Clg(d).

(b) If is a ratio seminear-ring then the following

statements hold

(b.) Lig(d) =LI(e) ~+dand Llg(e) « Llg(d) ¢ LI (d)
(b.2) RI (d) = Ri(e) =*dand Rlg(e) * Rig(d) £RIg(d)
(if.3) 1g(d) =1g(e) . dand 1g(e) * 1g(d) Clg(d).
(if.if) (f Rlg(d) = and Fq Llg(d) is a filter in

(,%) then F = = (e).
(if.5) If LI (d) =s and F Rlg(d) is a filter in
( ,4) then F = = {e}.

Proof. (1) Suppose that LI (d) r 0. Let x,y E Llg(d). Then
xt+d=y+d=d, so (xty) +d =X+ (ytd) =X +d =d. Hence
X+y £LI (d).
(2) The proof of (2) is similar to the proof of (1).
(3) Assume that s a seminear-ring with identity e.
(3.1) Suppose that Llg(e) + 0. By (1), Llg(e) is
an additive subsemigroup of  so we need only show that Llg(e) is

QO

multiplicative subsemigroup of . Let x,y £ Llg(e). Then
X+te=yt+te=e, soxyte=xy+ (yte) = (xyty) +e = (xte)y +¢e

eyt+te=y+e=e. Hencexy £ Llg(e).

(3*2) The proof of (3.2) is similar to the proof
of (3.1)
(3.3) Let X£ LI (e) «d. Then X =yd for some
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y£ Llg(e). Soy +e=¢ Thusx+d=yd+d= (y+te)d = d.
Hence X £ Llg(d). Therefore Llg(e) « d CLIg(d).

Similarly, e can show that Rlg(e) « d C Rlg(d).

Since Ig(e) «dC LI (e) «dC LI (d) and
lg(e) «d&RlIg(e) «+de Rlg(d), lg(e) «d Llg(d) Rlg(d) =1 (d).
(*f) Assume that is a ratio seminear-ring
(*.1) By (3.3), Llg(e) «d C Llg(d) so we need only
show that Llg(d) ¢: Llg(e) « d. Let xe Llg(d). Then X +d =d,
so e = dd~/ = (x+d)d » =xd 1 +e. Thus xd e Llg(e). Hence
X=(xd 1)d £ LI (e) «d. Therefore LI (d) ¢ Llg(e) -« d.

To show that Llg(e) « LI (d) . Llg(d), note that Llg(e)
is a multiplicative subsemigroup of so Llg(e) + Llg(d) C Llg(e).
Thus Llg(e) « Llg(d) = Llg(e) « (Llg(e)*d) = [Llg(e) < Llg(e)] =« d
ELI (e) -d=Llg(d).

The proofs of (4.2) and (4.3) are similar to the proof of
(")

(4.4) Assume that Rlg(d) = and F.q. Llg(d) is a
filterin ( ,+). Then d + X =d for all X£ . Thus d is a left
additive zero of and s a ratio seminear-ring. By Proposition
1.18, ( ,+) is a left zero semigroup. Thus LI (d) = {d}. Since
F 10, F ={d}. Hence {d} is a filter in ( ,+). Claim that
s\(d) = 0. Suppose that >{d} / 0. Let ye SMd}. Since
RI (d)= , d+y=d. Thus d +y £ {d}. Since {d} is a filter
in ( ,+),y =d, a contradiction. Hence \{d} =0. Therefore

= {d}. Since e e , d=-¢. Consequently, ={e} =F .

The proof of (4.5) is similar to the proof of (4.4). ;
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Definition 1.26» A seminear-ring (K,+,*) is said to bhe a

seminear-field iff there exists an element a in K such thst =¥\

and (K\{a},«) is a group.
element of K.

Such an element a is cnlled a special

Example 1.27. (1) and [Rg with usual the addition and

multiplication are seminear-fields.

(2) Let (G,*) be a group with zero element00.

Define + on G by
(1)
(11)

X+y=0 forall x,ye Gor

Xty

Then (G,+,*) is a seminear-field with 0 as a special element.

L

c Xif X=y
N for all x,ye G.
VUi Xy
£ £ o
X,2 £ 1ot
¢t Y E < {LO OJ}

with the usual addition and multiplication is a seminear-field

0 0O

with 0 as a special element.

Lo

(4)

Let (G,*) be a group and let a be a syn

not representing any element of G. Let K=G (a). Define +

on K and extend « to Kby
(1)
(i1)
(i)
(iv)

xa:aandX+y:XforaiI x» ¢ K,
xa =aand X +y =y forail xyE K
xa = Xand X +y = X for ail x»y £ K or

Xxa = X and X+y:yfor ail x»y£ K.

Then (K,+,*) is a seminear-field with a as a special element.

Theorem 1.28. If Kis a seminear-field of order greater than 2

then there exists a unique special element of K

See [1], page zs.
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Theorem 1.29» Let Khbe a seminear-field with a as a special
element. Then (a « X =a for all xEKora*x=x for all XE K
and (x ¢ a =a for all xe Kor X+ a = Xfor all xe K).

See [1] , page 28.

From Theorem 1.29 we get that there are b types of special
elements a in a seminear-field. They have exactly one of the
following properties.,

(1) ax =xa =a for all Xe K

(2) ax = xa = X for all Xe K,

(3) ax =a and xa = X for all X e K and
ib) ax = Xand xa = a for all X e K

We call a special element a satisfying (1),(2),(3) or (b) a

category 1,101,111 or IV special element of Krespectively (In [{]
a seminear-field with a category 1,11, 111 or IV special element
is called a category I,11,111 or IV seminear-field, respectively.).

Clearly a category | special element is unique and so is a category
Il special element.

Note that Example 1.27(1)» Example 1.27(2), Example 1.27(3)
and Example 1,27(M i) )» (M ii)) are seminear-fields with a category |
special element. Example 1.27(M iii)), (Miv)) are seminear-fields
with a category Il special element.

A seminear-field with a category Il or IV special element
is of order 2 (see [1], page 29)* For a complete classification
up to isomorphism see [1] , page 29 - I>bh.

Theorem 1.30» Let Kbe a seminear-field with a as a category |
special element. Then (either a + X = a for all xe Kora+x=x
for all X e K) and (either X +a =a for all xeKorx+a=x
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for all X £ K).
See [1] 1 page 35.

From Theorem 1.30 we see that a category | special element
a has exactly one of the following properties.

(1) a+x=x+a=x forall X£ K In this case we
say that a is a zero special element (a 0-special element).

(2) a+x=x+a=aforall X£ K In this case we
say that a is an infinity special element (an °°-special element).

(3) a+X X for all X£ K. Then for
all x,y £K X+y X+ (aty) = X +a =X, Thus

a and X +a

(x+a) +y
(Kt+) is a left zero semigroup.

(4) a +X=Xand X+
all x,y £K x+y=x+ (aty)

a for all X£ K. Then for
(xta) +y=a+y=y. Thus

f<H)
11

(K,+) is a right zero semigroup.

Definition 1.31» Let Kbe a seminear-field with a as a category |
special element. If Kcontains a O-special element then K is
called a O-seminear-field. If Kcontains on “-special element
then Kis called a “-seminear-field. If Kcontains a category |
special element a satisfying (3) then Kis called an additive left
zero seminear-field with a category | special element. If K
contains a category | special element a satisfying (") then Kis
called an additive right zero seminear-field with a category |
special element.

Theorem 1.32. Let Kbe a seminear-field with a as a category Il
special element. Then (K\{a},+,*) is 3 ratio seminear-ring.
See [1], page 53 - 57,



Theorem 1.32» Let Kbe a seminear-field with a as a category Il
special element. Then (K\{a},+,*) is a ratio seminear-ring.
See [1], page 53 - sb.

Theorem 1.33» Let K bea seminear-field with aas acategory Il
special element and lete denote the identity of(K\{a}t*). Then
the following statements hold

(1) Ifa + a =a then (K,+) is a band.

(2) Ifa+ alathena+a-e+e.

(3) e+a=aore+ta=e+te

(b) a+e=aora +e=¢ete.,

(5) For all x,y £K'fa}, X+ X =y +y iff X=y,
(6) Forall x/a,xta=aorx+a=x+e.
(7) For all X/ a, a+X=aora+x=¢ +xX,

See [1], page 5
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