

PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are

- Z is the set of all integers,
- 2 is the set of all positive integers,
- Q is the set of all rational numbers,
- $\boldsymbol{\varrho}^{+}$ is the set of all positive rational numbers,
- R is the set of all positive real numbers,
- Z_n , n \in Z^+ , is the set of congruence classes modulo n in Z,

$$\mathbf{Z}_{0}^{+} = \mathbf{Z}^{+} \cup \{0\},$$

$$Q_O^+ = Q^+ \cup \{O\}.$$

<u>Definition 1.1</u>. A triple (S,+,·) is said to be a <u>right</u> seminear-ring iff

- (a) (S,+) and (S,\cdot) are semigroups and
- (b) (x+y)z = xz + yz for all $x,y,z \in S$. (right distributive law)

A <u>left seminear-ring</u> is defined similarly. If S is a right and left seminear-ring then we call S a distributive seminear-ring.

Throughout this thesis the word "seminear-ring" will mean a right seminear-ring. Each statements for right seminear-rings has a dual statement for left seminear-rings.

Example 1.2. $\mathbb{Z},\mathbb{Z}^+,\mathbb{Z}_0^+,\mathbb{Q}^+$ and \mathbb{R}^+ with the usual addition and multiplication are seminear-rings.

Example 1.3. Let S be a nonempty set. Define + and \cdot on S by x + y = x and $x \cdot y = y$ for all $x, y \in S$. Then $(S, +, \cdot)$ is a seminear-ring.

Example 1.4. Let (S,+) be a semigroup. Let $M(S) = \{f : S \longrightarrow S | f \text{ is a map}\}$. Define + and \cdot on M(S) by (f+g)(x) = f(x) + g(x) and (f+g)(x) = f(g+g)(x) for all $x \in S$. Then $(M(S),+,\cdot)$ is a seminear-ring.

Definition 1.5. A seminear-ring (D,+,*) is said to be a ratio seminear-ring iff (D,*) is a group. (In J. Hattakosol's thesis [1], ratio seminear-rings are called division seminear-rings)

Example 1.6. \mathbb{Q}^+ and \mathbb{R}^+ with the usual addition and multiplication are ratio seminear-rings. Also, if we define $x + y = \min \{x,y\}$ for all x,y \mathbb{Q}^+ or \mathbb{R}^+ and use the usual multiplication we still obtain a ratio seminear-ring.

Example 1.7. Let (D, \cdot) be a group. Define + on D by x + y = y for all x,y \in D or x + y = x for all x,y \in D. Then $(D, +, \cdot)$ is a ratio seminear-ring.

Example 1.8. Let $D = \{\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} | x, z \in \mathbb{Q}^+, y \in \mathbb{Q} \}$ with the usual addition and multiplication. Then $(D, +, \cdot)$ is a ratio seminear-ring.

Example 1.9. Let D_1 and D_2 be ratio seminear-rings. Then $D_1 \times D_2$ with the usual product structure is a ratio seminear-ring.

<u>Definition 1.10</u>. Let $(S,+,\cdot)$ be a seminear-ring and T a nonempty subset of S. T is said to be a <u>subseminear-ring</u> of S iff $(T,+,\cdot)$

is a seminear-ring. A subseminear-ring is said to be a <u>ratio</u> subseminear-ring iff it is a ratio seminear-ring.

<u>Definition 1.11</u>. Let S be a semigroup. S is said to be a <u>band</u> iff $x^2 = x$ for all $x \in S$. S is said to be a <u>rectangular band</u> iff xyx = x for all $x,y \in S$.

Lemma 1.12. If $(D,+,\cdot)$ is a finite ratio seminear-ring then (D,+) is a band.

See [1], page 17.

<u>Definition 1.13</u>. Let G be a group and G_1 , G_2 subgroups of G. Then G is said to be a <u>Zappa-Szep product</u> of G_1 and G_2 , denoted by $G = G_1 * G_2$, iff $G = G_1 G_2$ and $G_1 \cap G_2 = \{e\}$ where e is the identity of G.

Example 1.14. Let S_3 be the symmetric group on three letters. Thus $S_3 = \{(1),(12),(13),(23),(123),(132)\}$. Let $A = \{(1),(12)\}$ and $A_3 = \{(1),(123),(132)\}$. Then A and A_3 are subgroups of S_3 . Since $(13) = (132)(12) \in A_3A$ and $(23) = (123)(12) \in A_3A_2$, $S_3 = A_3A_3$. Hence $S_3 = A_3 * A_3$.

Theorem 1.15. Let D be a finite ratio seminear-ring. Then there exist unique ratio subseminear-rings D_1 , $D_2 \subseteq D$ such that

- (1) x + y = x for all $x, y \in D_1$,
- (2) x + y = y for all $x, y \in D_2$,
- (3) $(D, \cdot) = (D_1, \cdot) * (D_2, \cdot) (= (D_2, \cdot) * (D_1, \cdot)).$

Furthermore,

- (4) $(D,+) \cong (D_1,+) \times (D_2,+),$
- (5) $D_2 + D_1 = \{e\}$ (where e is the identity of (D, \cdot)),
- (6) (D,+) is a rectangular band, $D_1 = \{x \in D | x + e = x\}$

and $D_2 = \{x \in D | x + e = e\}$. See [1], page 17 - 19.

Definition 1.16. Let S be a seminear-ring and x ε S. x is said to be left additively cancellative (L.A.C.) iff for all y,z ε S (x+y = x+z implies y = z). A right additively cancellative (R.A.C.) element is defined similarly. x is said to be additively cancellative (A.C.) iff it is both left and right additively cancellative. S is said to be left additively cancellative (L.A.C.) iff y is L.A.C. for all y ε S. S is said to be right additively cancellative (R.A.C.) iff y is R.A.C. for all y ε S. S is said to be additively cancellative (A.C.) iff S is both left and right additively cancellative.

x is said to be a <u>left additive zero of S</u> iff x + y = x for all $y \in S$. A <u>right additive zero of S</u> is defined similarly. x is said to be an <u>additive zero of S</u> iff it is both a left and a right additive zero.

x is said to be a <u>leftadditive identity of S</u> iff x + y = y for all $y \in S$. A <u>right additive identity of S</u> is defined similarly. x is said to be an <u>additive identity of S</u> iff it is both a left and a right additive identity of S.

x is said to be a <u>left multiplicative zero of S</u> if xy = x for all $y \in S$. A <u>right multiplicative zero of S</u> is defined similarly. x is said to be a <u>mutiplicative zero of S</u> iff it is both a left and a right multiplicative zero of S.

Let d ϵ S. Then x is said to be a <u>left additive identity of d</u> iff x + d = d. A <u>right additive identity of d</u> is defined similarly. x is said to be an <u>additive identity</u> of d iff it is both a left and a right additive identity of d.

The set of all left (right) additive identities of d is denoted by $LI_S(d)$ (RI_S(d)). The set of all additive identities of d is denoted by $I_S(d)$.

Example 1.17. Z^+ , Q^+ and R^+ with the usual addition and multiplication are A.C.

Proposition 1.18. Let D be a ratio seminear-ring.

- (1) If one element of D is a left (right) additive zero then every element of D is a left (right) additive zero so (D,+) is a left (right) zero semigroup.
- (2) If one element of D is a left (right) additive identity then every element of D is a left (right) additive identity so (D,+) is a right (left) zero semigroup.

<u>Proof.</u> To prove (1), let d be a left additive zero of D. Then d + x = d for all $x \in D$. Let $y \in D$. We must show that y is a left additive zero of D. $y + z(d^{-1}y) = d(d^{-1}y) + z(d^{-1}y) = (d+z)(d^{-1}y) = d(d^{-1}y) = y$ for all $z \in D$. Let $C = \{zd^{-1}y | z \in D\}$. Since (D, \cdot) is a group, C = D. Thus y + w = y for all $w \in D$. Hence y is a left additive zero of D. Since y is an arbitary element in D, we obtain (1).

To prove (2), let d be a left additive identity of D.

Then d + x = x for all $x \in D$. Let $y \in D$. We must show that y is a left additive identity of D. $y + zd^{-1}y = d(d^{-1}y) + z(d^{-1}y) = (d+z)d^{-1}y = zd^{-1}y$ for all $z \in D$. Let $C = \{zd^{-1}y | z \in D\}$. Since (D, \cdot) is a group, C = D. Thus y + w = w for all $w \in D$. Hence y is a left additive identity of S. Since y is an arbitary element in D, we obtain (2).

Proposition 1.19. If D is a ratio seminear-ring of order greater than 1 then D contains no additive zero.

See [1], page 22.

Corollary 1.20. Let D be a ratio seminear-ring and e the identity of (D, \cdot) . If e is an additive zero of D then $D = \{e\}$.

Proof. It immediately follows from Proposition 1.19.

Proposition 1.21. If D is a ratio seminear-ring of order greater than 1 then D contains no additive identity.

See [1], page 22.

Definition 1.22. An ideal I of a semigroup S is called completely prime iff for any a,b ϵ S, ab ϵ I implies that a ϵ I or b ϵ I.

<u>Definition 1.23</u>. Let S be a semigroup and F a nonempty subset of S. F is said to be a <u>filter in S</u> iff for all $x,y \in S$ ($x,y \in F$ iff $xy \in F$).

It is well-known that F is a filter in S implies that $SYF = \emptyset$ or SYF is a completely prime ideal in S.

Example 1.24. Z^+ with the usual multiplication is a semigroup. Let $F = \{ n \in Z^+ | n \text{ is odd} \}$. Then F is a filter in Z^+ , so Z^+ F is a completely prime ideal in Z^+ .

<u>Proprosition 1.25</u>. Let S be a seminear-ring and d ϵ S. Then the following statements hold:

- (1) $LI_S(d) = \emptyset$ or $LI_S(d)$ is an additive subsemigroup of S.
- (2) $RI_S(d) = \emptyset$ or $RI_S(d)$ is an additive subsemigroup of S. (Therefore $I_S(d) = \emptyset$ or $I_S(d)$ is an additive subsemigroup of S.)
- (3) If S is a seminear-ring with identity e then the following statements hold:

(3.1) $LI_S(e) = \emptyset$ or $LI_S(e)$ is a subseminear-ring

of S.

(3.2) $RI_S(e) = \emptyset$ or $RI_S(e)$ is a subseminear-ring of S.

(Therefore $I_S(e) = \emptyset$ or $I_S(e)$ is a subseminear-ring of S.) $(3.3) \quad LI_S(e) \cdot d \subseteq LI_S(d), \quad RI_S(e) \cdot d \subseteq RI_S(d) \text{ and } I_S(e) \cdot d \subseteq I_S(d).$

(4) If S is a ratio seminear-ring then the following statements hold:

(4.1) $LI_{S}(d) = LI_{S}(e) \cdot d$ and $LI_{S}(e) \cdot LI_{S}(d) \subseteq LI_{S}(d)$.

(4.2) $RI_S(d) = RI_S(e) \cdot d$ and $RI_S(e) \cdot RI_S(d) \subseteq RI_S(d)$.

(4.3) $I_S(d) = I_S(e) \cdot d$ and $I_S(e) \cdot I_S(d) \subseteq I_S(d)$.

 $(4.4) \quad \text{If RI}_S(\texttt{d}) = \texttt{S} \text{ and } \texttt{F} \subseteq \texttt{LI}_S(\texttt{d}) \text{ is a filter in }$ $(\texttt{S,+}) \text{ then } \texttt{F} = \texttt{S} = \{\texttt{e}\}.$

 $(4.5) \quad \text{If LI}_S(\texttt{d}) = \texttt{S} \text{ and } \texttt{F} \subseteq \texttt{RI}_S(\texttt{d}) \text{ is a filter in } \\ (\texttt{S},+) \text{ then } \texttt{F} = \texttt{S} = \{\texttt{e}\}.$

Proof. (1) Suppose that $LI_S(d) \neq \emptyset$. Let $x,y \in LI_S(d)$. Then x + d = y + d = d, so (x+y) + d = x + (y+d) = x + d = d. Hence $x + y \in LI_S(d)$.

- (2) The proof of (2) is similar to the proof of (1).
- (3) Assume that S is a seminear-ring with identity e.

(3.1) Suppose that $\mathrm{LI}_{S}(e) \neq \emptyset$. By (1), $\mathrm{LI}_{S}(e)$ is an additive subsemigroup of S so we need only show that $\mathrm{LI}_{S}(e)$ is a multiplicative subsemigroup of S. Let x,y \in $\mathrm{LI}_{S}(e)$. Then x + e = y + e = e, so xy + e = xy + (y+e) = (xy+y) + e = (x+e)y + e = ey + e = y + e = e. Hence $xy \in \mathrm{LI}_{S}(e)$.

(3.2) The proof of (3.2) is similar to the proof of (3.1).

(3.3) Let $x \in LI_S(e) \cdot d$. Then x = yd for some

 $y \in LI_S(e)$. So y + e = e. Thus x + d = yd + d = (y+e)d = ed = d. Hence $x \in LI_S(d)$. Therefore $LI_S(e) \cdot d \subseteq LI_S(d)$.

Similarly, we can show that $\mathrm{RI}_{S}(e) \cdot d \subseteq \mathrm{RI}_{S}(d)$.

Since $I_S(e) \cdot d \subseteq LI_S(e) \cdot d \subseteq LI_S(d)$ and $I_S(e) \cdot d \subseteq RI_S(d)$, $I_S(e) \cdot d \subseteq LI_S(d) \cap RI_S(d) = I_S(d)$.

(4) Assume that S is a ratio seminear-ring

(4.1) By (3.3), $\operatorname{LI}_{S}(e) \cdot d \subseteq \operatorname{LI}_{S}(d)$ so we need only show that $\operatorname{LI}_{S}(d) \subseteq \operatorname{LI}_{S}(e) \cdot d$. Let $x \in \operatorname{LI}_{S}(d)$. Then x + d = d, so $e = dd^{-1} = (x+d)d^{-1} = xd^{-1} + e$. Thus $xd^{-1} \in \operatorname{LI}_{S}(e)$. Hence $x = (xd^{-1})d \in \operatorname{LI}_{S}(e) \cdot d$.

To show that $\operatorname{LI}_S(e) \cdot \operatorname{LI}_S(d) \subseteq \operatorname{LI}_S(d)$, note that $\operatorname{LI}_S(e)$ is a multiplicative subsemigroup of S so $\operatorname{LI}_S(e) \cdot \operatorname{LI}_S(d) \subseteq \operatorname{LI}_S(e)$. Thus $\operatorname{LI}_S(e) \cdot \operatorname{LI}_S(d) = \operatorname{LI}_S(e) \cdot (\operatorname{LI}_S(e) \cdot d) = \left[\operatorname{LI}_S(e) \cdot \operatorname{LI}_S(e)\right] \cdot d \subseteq \operatorname{LI}_S(e) \cdot d = \operatorname{LI}_S(d)$.

The proofs of (4.2) and (4.3) are similar to the proof of (4.1).

(4.4) Assume that $\operatorname{RI}_S(d) = S$ and $F \subseteq \operatorname{LI}_S(d)$ is a filter in (S,+). Then d+x=d for all $x \in S$. Thus d is a left additive zero of S and S is a ratio seminear-ring. By Proposition 1.18, (S,+) is a left zero semigroup. Thus $\operatorname{LI}_S(d) = \{d\}$. Since $F \neq \emptyset$, $F = \{d\}$. Hence $\{d\}$ is a filter in (S,+). Claim that $S \setminus \{d\} = \emptyset$. Suppose that $S \setminus \{d\} \neq \emptyset$. Let $y \in S \setminus \{d\}$. Since $\operatorname{RI}_S(d) = S$, d+y=d. Thus $d+y \in \{d\}$. Since $\{d\}$ is a filter in (S,+), y=d, a contradiction. Hence $S \setminus \{d\} = \emptyset$. Therefore $S = \{d\}$. Since $e \in S$, $e \in S$, e

The proof of (4.5) is similar to the proof of (4.4).

<u>Definition 1.26.</u> A seminear-ring $(K,+,\cdot)$ is said to be a <u>seminear-field</u> iff there exists an element a in K such that $a^2 = a$ and $(K\setminus\{a\},\cdot)$ is a group. Such an element a is called a <u>special</u> element of K.

Example 1.27. (1) \mathbb{Q}_0^+ and \mathbb{R}_0^+ with usual the addition and multiplication are seminear-fields.

(2) Let (G, \bullet) be a group with zero element $^{\infty}$. Define + on G by

(i)
$$x + y = \infty$$
 for all $x, y \in G$ or

(ii)
$$x + y = \begin{cases} x \text{ if } x = y \\ & \text{for all } x, y \in G. \end{cases}$$

Then $(G,+,\cdot)$ is a seminear-field with ∞ as a special element.

(3)
$$K = \{\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \mid x, z \in \mathbb{Q}^+, y \in \mathbb{Q}\} \cup \{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\}$$

with the usual addition and multiplication is a seminear-field

with $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ as a special element.

- (4) Let (G, \cdot) be a group and let a be a symbol not representing any element of G. Let $K = G \cup \{a\}$. Define + on K and extend \cdot to K by
 - (i) ax = xa = a and x + y = x for all $x, y \in K$,
 - (ii) ax = xa = a and x + y = y for all $x, y \in K$,
 - (iii) ax = xa = x and x + y = x for all $x, y \in K$ or
 - (iv) ax = xa = x and x + y = y for all $x, y \in K$.

Then $(K,+,\cdot)$ is a seminear-field with a as a special element.

Theorem 1.28. If K is a seminear-field of order greater than 2 then there exists a unique special element of K.

See [1], page 26.

Theorem 1.29. Let K be a seminear-field with a as a special element. Then $(a \cdot x = a \text{ for all } x \in K \text{ or } a \cdot x = x \text{ for all } x \in K)$ and $(x \cdot a = a \text{ for all } x \in K \text{ or } x \cdot a = x \text{ for all } x \in K)$.

See [1], page 28.

From Theorem 1.29 we get that there are 4 types of special elements a in a seminear-field. They have exactly one of the following properties.

- (1) ax = xa = a for all $x \in K$,
- (2) ax = xa = x for all $x \in K$,
- (3) ax = a and xa = x for all $x \in K$ and
- (4) ax = x and xa = a for all $x \in K$.

We call a special element a satisfying (1),(2),(3) or (4) a category I,II,III or IV special element of K respectively (In [1] a seminear-field with a category I,II,III or IV special element is called a category I,II,III or IV seminear-field, respectively.). Clearly a category I special element is unique and so is a category II special element.

Note that Example 1.27(1), Example 1.27(2), Example 1.27(3) and Example 1.27(4(i)), (4(ii)) are seminear-fields with a category I special element. Example 1.27(4(iii)), (4(iv)) are seminear-fields with a category II special element.

A seminear-field with a category III or IV special element is of order 2 (see [1], page 29). For a complete classification up to isomorphism see [1], page 29 - 34.

Theorem 1.30. Let K be a seminear-field with a as a category I special element. Then (either a + x = a for all $x \in K$ or a + x = x for all $x \in K$) and (either x + a = a for all $x \in K$ or x + a = x

for all $x \in K$).

See [1], page 35.

From Theorem 1.30 we see that a category I special element a has exactly one of the following properties.

- (1) a + x = x + a = x for all $x \in K$. In this case we say that a is a zero special element (a 0-special element).
- (2) a + x = x + a = a for all $x \in K$. In this case we say that a is an infinity special element (an ∞ -special element).
- (3) a + x = a and x + a = x for all $x \in K$. Then for all $x,y \in K$, x + y = (x+a) + y = x + (a+y) = x + a = x. Thus (K,+) is a left zero semigroup.
- (4) a + x = x and x + a = a for all $x \in K$. Then for all $x,y \in K$, x + y = x + (a+y) = (x+a) + y = a + y = y. Thus (K,+) is a right zero semigroup.

Definition 1.31. Let K be a seminear-field with a as a category I special element. If K contains a O-special element then K is called a O-seminear-field. If K contains on o-special element then K is called a o-seminear-field. If K contains a category I special element a satisfying (3) then K is called an additive left zero seminear-field with a category I special element. If K contains a category I special element a satisfying (4) then K is called an additive right zero seminear-field with a category I special element.

Theorem 1.32. Let K be a seminear-field with a as a category II special element. Then $(K\setminus\{a\},+,\cdot)$ is a ratio seminear-ring.

See [1], page 53 - 54.

Theorem 1.32. Let K be a seminear-field with a as a category II special element. Then $(K\setminus\{a\},+,\cdot)$ is a ratio seminear-ring.

See [1], page 53 - 54.

Theorem 1.33. Let K be a seminear-field with a as a category II special element and let e denote the identity of $(K \setminus \{a\}, \cdot)$. Then the following statements hold:

- (1) If a + a = a then (K,+) is a band.
- (2) If $a + a \neq a$ then a + a = e + e.
- (3) e + a = a or e + a = e + e.
- (4) a + e = a or a + e = e + e.
- (5) For all $x,y \in K\setminus\{a\}$, x + x = y + y iff x = y.
- (6) For all $x \neq a$, x + a = a or x + a = x + e.
- (7) For all $x \neq a$, a + x = a or a + x = e + x.

See [1], page 54.