CHAPTER IV

EMBEDDING THEOREMS

In this chapter we shall study embedding theorems involving ratio seminear-rings and seminear-fields.

Theorem 4.1. Every ratio seminear-ring can be embedded into a o-seminear-field.

<u>Proof.</u> Let D be a ratio seminear-ring. Let a be a symbol not representing any element of D. Extend + and \cdot from D to D U {a} by ax = xa = a for all x \in D U {a} and a + x = x + a = x for all x \in D U {a}. It is easy to check that (D U {a},+, \cdot) is a seminear-field. Define f : D—D U {a} by f(x) = x for all x \in D. Then f is clearly a monomorphism. Hence D can be embedded into a o-seminear-field.

#

Theorem 4.2. Every ratio seminear-ring can be embedded into an ∞-seminear-field.

<u>Proof.</u> Let D be a ratio seminear-ring. Let a be a symbol not representing any element of D. Extend + and • from D to D U {a} by ax = xa = a for all $x \in D$ U {a} and a + x = x + a = a for all $x \in D$ U {a}. It is easy to check that $(D \cup \{a\}, +, \cdot)$ is a seminear-field. Define $g: D \rightarrow D \cup \{a\}$ by g(x) = x for all $x \in D$. Then g is clearly a monomorphism. Hence D can be embedded into $a \sim -seminear-field$.

#

Theorem 4.3. Let D be a ratio seminear-ring such that (D,+) is a left zero semigroup. Then D can be embedded into an additive left zero seminear-field with a category I special element.

Proof. Let a be a symbol not representing any element of D. Extend + and • from D to D U {a} by ax = xa = a for all x \in D U {a} and a + x = a and x + a = x for all x \in D U {a}. Claim that x + y = x for all $x, y \in$ D U {a}. Let $x, y \in$ D U {a}. If $x, y \in$ D then x + y = x since (D,+) is a left zero semigroup. Suppose that x = a or y = a. By extending +, we get that x + y = x. Hence x + y = x for all $x, y \in$ D U {a}. Therefore (D U {a},+,•) is a seminear-field. Define $f : D \rightarrow D$ U {a} by f(x) = x for all $x \in$ D. Then f is clearly a monomorphism. Hence we obtain this Theorem.

Theorem 4.4. Let D be a ratio seminear-ring such that (D,+) is a right zero semigroup. Then D can be embedded into an additive right zero seminear-field with a category I special element.

Proof. This proof is similar to the proof of Theorem 4.3.

From Theorem 2.12 and Theorem 3.24 we get the following two theroems.

Theorem 4.5. Every ratio seminear-ring can be embedded into a seminear-field with a category II special element.

Theorem 4.6. Every ratio seminear-ring can be embedded into a seminear-field with a category VI special element.

Theorem 4.7. Let K be a seminear-field with a category I special element. Then K can be embedded into a seminear-field with a category II special element if and only if |K| = 2.

<u>Proof.</u> Let a be the category I special element of K and e the identity of (K\{a},.). Assume that that K can be embedded into a seminear-field K with a category II special element. Let a be the category II special element of K and let e be the

identity of $(K \setminus \{a\}, \cdot)$. Then, up to isomorphism, we can consider that $K \subseteq K$. Since K has two multiplicative idempotents, $\{e, a\} = \{e, a\}$. If e = e then a = a. Thus $a = a = a \cdot e = a \cdot e = e$, a contradiction. Hence e = a and a = e. Suppose that |K| > 2. Let $x \in K \setminus \{e, a\}$. Then $x = e \times a = a$, a contradiction. Therefore |K| = 2.

Conversely, assume that |K|=2. Then $K=\{a,e\}$. By Theorem 1.31, K must have one of structures given below:

	•	е	а			е	а	
(1)	е	е	а	and	е	е	ʻa	or
	a	а	а		a	а	а	
	•	e	а		+	e	а	
(2)	е	е	a	and	е	е	е	or
-	а	а	а	•	а	е	а	
	•	е	a		+	е	а	
(3)	е	е	а	and	е	е	е	or
-	а	а	а		a	а	а	
	•	е	a		+	е	а	
(4)	е	е	а	and	е	е	а	or
-	а	а	а	-	а	е	a	
	•	е	а		+	e	a	
(5)	е	е	а	and	е	а	a	•
	a	a	a		а	a	a	
							7	

Let K = { a ,e } be a set. Define + and · on K as follows:

		e ¹	a'		+	e	a	
(i)	e	e	е	and	е	е	е	or -
_	a	e	a	-	a	e '	a	

-	•	e e	a a		+	e'	a	
(ii)	e	e	e	and	e	e '	a '	or Pensalem and
-	a ¹	e	a		a	a'	a	
	•	e '	a'		+	e'	a'	
(iii)	e'	e	e	and	e '	e l	e	or
	a	e	a		a	a	a	
	•	e	a'		+	e l	a	
(iv)	e'	e¹	e	and	e	e '	a	or
_	a	e	a	•	a	e	a	
_	•	e'	a		+	e e	a	
(v)	e'	e	e	and	e	e'	e	11.25
_	a'	e	a		a	e	e	

It is easy to verify that K with stureture (1),(2),(3), (4) and (5) are isomorphic to K with structure (i),(ii),(iii), (iv) and (v) respectively.

Theorem 4.8. Let K be a seminear-field with a category I or II special element. Then K cannot be embedded into a seminear-field with a category VI special element.

<u>Proof.</u> By hypothesis, K has two multiplicative idempotents.

Since a seminear-field with a category VI special element contains exactly one multiplicative idempotent, we are done.

Corollary 4.9. Let K be a O-seminear-field or an ∞-seminear-field.

Then K can not be embedded into a seminear-field with a category

VI special element.

Proof. Follows directly from Theorem 4.9.

Theorem 4.10. Let K be a seminear-field with a category VI special element. Then K cannot be embedded into a seminear-field with a category I special element.

<u>Proof.</u> Let a be a category VI special element of K and e the identity of (K\{a},.). Suppose that K can be embedded into a seminear-field K with a category I special element a.

Let e be the identity of $(K \setminus \{a\}, \cdot)$. Consider, up to isomorphism, $K \subseteq K$. Note that $a \neq a$. Since $e^2 = e$, e = e or e = a. If e = e then a = e a $= ea \neq a$, a contradiction. Hence e = a. Since $a^2 \neq a$, $a = a^2a = a^2e = a^2$. Since $a \in K \setminus \{a\}$, there is a $y \in K \setminus \{a\}$ such that ay = e. Thus $a = ae = a(ay) = a^2y = a = a$, a contradiction.

Theorem 4.11. Let K be a seminear-field with a category VI special element. Then K cannot be embedded into a seminear-field with a category II special element.

<u>Proof.</u> Let a be a category VI special element of K and e the identity of $(K \setminus \{a\}, \cdot)$. Suppose that K can be embedded into a seminear-field K with a as a category II special element. Let e be the identity of $(K \setminus \{a\}, \cdot)$. Consider, up to isomorphism, $K \subseteq K$. Note that $a \neq a$. Since $e^2 = e$, e = e or e = a. If e = e then ae = ae = a contradicting the fact that $ae \neq a$. If e = a then ae = ae = a contradicting the fact that $ae \neq a$.

Remark 4.12. Let K be a seminear-field with a category III or IV special element. Then K cannot be embedded into a seminear-field with a category V special element.

<u>Proof.</u> Since K has two multiplicative idempotents but a seminear-field with a category V special element contains exactly one multiplicative idempotent, we obtain Remark 4.3.

Using a similar proof **as** in Remark 4.12, we obtain the following remarks:

Remark 4.13. Let K be a seminear-field with a category III or IV special element. Then K cannot be embedded into a seminear-field with a category VI special element.

Remark 4.14. Let K be a seminear-field with a category V special element. Then K cannot be embedded into a seminear-field with a category III and IV special element.

Remark 4.15. Let K be a seminear-field of order 2 with a category VI special element. Then K cannot be embedded into a seminear-field with a category III and IV special element.

Remark 4.16. Let K be a seminear-field of order 2 containing a category I or II special element. Then K cannot be embedded into a seminear-field with a category V special element.

From page 64 we see that, up to isomorphism, there are 3 seminear-fields with a category V special element. Let $K = \{a,e\}$ with structure given in page 64.

Let (G, \cdot) be a group containing an element x_0 of order 2. Let a be a symbol not representing any element of G and let $d \in G$. Let $K' = G \cup \{a\}$. Define + on K' and extend \cdot to K' by

ax = dx and xa = xd for all $x \in G$, $a^2 = d^2$ and either

- (i) x + y = y for all $x, y \in K$ or
- (ii) x + y = x for all $x, y \in K$.

Then $(K',+,\cdot)$ is a seminear-field with a as a category VI special element. Let e' be the identity of (G,\cdot)

Define $f: K \rightarrow K$ by f(e) = e and $f(a) = x_0$. It is easy to check that K with structure (3) can be embedded into a seminear-field K with statement (i) and K with structure (4) can be embedded into a seminear-field K with statement (ii).

Conjecture: K with structure (1) can be embedded into a seminear-field with a category VI special element.

<u>Definition 4.17</u>. Let K be a seminear-field and $L \subseteq K$. L is said to be a <u>subseminear-field</u> of K iff L forms a seminear-field with respect to the same operations on K.

Definition 4.18. Let K be a seminear-field. Let L be a subseminear-field of K. L is called the prime seminear-field of K iff L is the smallest subseminear-fied of K.

Let K be a seminear-field and let a be a special element of K. If $a^2 = a$ (i.e. a is a category I,II,III or IV special element of K) then, by Theorem 3.9 in [1] page 27, there exist a smallest subseminear-field contained in K.

For examples, see page 47 - 59 in [1].

Now we shall give an examples of a seminear-field K with a as a category VI special element such that the prime seminear-field does not exist.

Example 4.19. Let $K = \{e,b,a\}$ with the structure :

	e	ъ	а	+	е	ъ	a
е	е	ъ	е	е	е	ъ	a
ъ	ъ	е	ъ	р	е	ъ	а
a	е	b	е	a	е	ъ	a

It is easy to check that K is a seminear-field with a as a category VI special element.

Let $K_1 = \{e,b\}$. Then $(K_1,+,\cdot)$ is a subseminear-field of K. Note that K_1 is a seminear-field with b as a category V special element.

Let $K_2 = \{e,a\}$. Then $(K_2,+,\cdot)$ is a subseminear-field of K. Note that K_2 is a seminear-field with a as a category VI special element. Thus $K_1 \cap K_2 = \{e\}$ which is not seminear-field. Hence a prime seminear-field does not exist.

Remark: We shall state open questions for future research.

- (1) Can a seminear-field with a category V special element be embedded into a seminear-field with a category II special element?
- (2) Can a seminear-field with a category V special element be embedded into a seminear-field with a category VI special element?
- (3) Under what conditions can a seminear-field with a category I special element be embedded into a near-field.