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ABSTRACT
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«Stress relaxation

Nanowire-Poiypyrrole/gelatin. MW NT/gelatin, and graphene/gelatin
hydrogel composites were fabricated by the dispersion of nanofillers into the gelatin
aqueous solution followed by the solvent casting. The electromechanical properties,
thermal properties and deflection of pure gelatin hydrogel and nanowire-
polypyrrole/gelatin, MW NT/gelatin, and graphene/gelatin hydrogel composites were
studied as functions of temperature, frequency, and electric field strength as an
actuator. The 0.1)1. 0.1, 0.5. 1 vol% these hydrogel composites and pure gelatin
hydrogel possess a higher storage modulus sensitivity values (AG'/G'0) at a higher
applied electric field strength in which graphene/gelatin hydrogel composites exhibit
the greatest AG'/G'o suggesting that it is the most suitable candidate for actuator
applications. Nevertheless, the stress relaxation behavior as an important property for
actuator.  crosslinked and crosslinked gelatin hydrogels were prepared by adding a
glutaraldehyde solution into a gelatin solution followed by a casting method. Stress
relaxation functions of the uncrosslinked and crosslinked gelatin hydrogels were
measured to study the effects of electric field strength and the crosslinking ratio. For
the uncrosslinked. 3 vol% crosslinked and 7 vol% crosslinked gelatin hydrogels, the
relaxation times decrease with increasing degrees of crosslinking and the applied
electric field strengths. The experimental shift factors can be thus obtained from
either the stress relaxation functions or the storage and loss moduli. Both approaches
yield numerically the same shift factor values which successfully allow the time-

electric field superposition of various related functions.
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