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ABSTRACT

5182007063:  Polymer Science Program
Piyawanee Jariyasakoolroj: Overcoming Poly(Lactic Acid)
Brittleness based on Balancing of Crystalline and Amorphous Phases
via Approaches of Compatible Nucléation, Plasticizer Addition, and
Biaxial Stretching
Thesis Advisors: Prof. Suwabun Chirachanchai, and Prof. Kohji
Tashiro 137 pp.

Keywords:  Poly(lactic acid)/ Starch/ Thermoplastic starch/ Silane coupling
agent/ Compatibility/ Reactive blend/ Biaxial orientation/
Microstructural regularization/ Block copolymer

The present work aims to improve poly(lactic acid) (PLA) toughness
through practical approaches  based on crystalline and amorphous phases
optimization (1.e. nucleating agent and plasticizer additions and process conditions
control). In case of nucleating agent addition, various silane modified starch were
studied on hoth detailed Structures and their effective functions for nucleation and
compatibilization. Chloropropyl trimethoxysilane (CPMS) successfully formed
covalent bonds with starch and PLA to produce the reactive PLA/CP-starch blend.
This leads to the effective compatibility improvement as well as the significant
increases of degree of crystallinity and chain mobility. This work is extended to
produce PLA/modified thermoplastic starch film which performs the potential in use
as mulch film. For applying of biaxial-stretching, the structural and thermal analyses
under systematically varied stretching rates and draw ratios declare the relationship
between PLA mechanical properties and PLA microstructure. When the high
stretching rate combined with the high draw ratio (75 mm/s and 5x5), many but
small PLA crystals (“crystallite) were created isotropically. It is the key factor for
toughening PLA film. Furthermore, the present work also studies poly(L-lactic acid)-
poly(ethylene glycol)-poly(L-lactic acid) (PLLA-PEG-PLLA) triblock copolymer
with various PLLA chain length as miscible plasticizer. The difference in PLLA
chain length has an effect on crystallization behavior of block copolymers. The



recrystallization of PEG in PLA/PEG homopolymers blend could be evitable by
using PLLA-PEG-PLLA to replace PEG. The miscibility between PLA/PLLA-PEG-
PLLA was significantly enhanced while its toughness was remained as high as that
of PLA/PEG homopolymers blend.



(Overcoming Poly(Lactic Acid)
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