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CHAPTER 1

INTRODUCTION

The Continuum Hypothesis (CH) states that the size of the set of real numbers ¢ is the least
uncountable cardinal, i.e. ¢ = N;. It is well-known that CH is relatively independent from the

Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC).

There are many cardinals of infinite families related to some concepts in infinite combinatorics
that lie between N; and c, called cardinal characteristics. Without assuming CH, the exact values
of these cardinals are impossible to be determined. Relations among them as well as related
consistency results were widely studied. Most of these cardinals are defined on families of

infinite sets of natural numbers.

In Zhang’s work ([12] and [13], for example), almost disjoint families of functions and permuta-
tions on the set of natural numbers w were studied. This inspires us to study families of functions

and permutations on w with other combinatorial properties.

We first provide some basic background in Chapter II. Our new results are in Chapter III and are
divided into several sections: Sections 1 to 3 introduce new cardinal characteristics and show, in
ZFC, relations among our new cardinals and other well-known ones, and Section 4 shows some

related consistency results. Chapter IV summarizes our results and gives some open problems.



CHAPTER 11

PRELIMINARIES

In this thesis, we use a,b,c,..., A, B, C, ... for sets. P(A),Sym(A),(A,B),PA, and F | A
denote the power set of A, the set of permutations (bijections) on A, the ordered-pair of A and
B, the set of all functions from B into A, and the restriction of a functions F' to A. ZFC denotes
the Zermelo-Fraenkel set theory with the Axiom of Choice (AC). Throughout the thesis, we
shall work in ZFC. Proofs of all theorems in this chapter will be omitted. They can be found in
[8] or [9].

2.1 Ordinal Numbers

Natural numbers are constructed as follows:
0=0,1={0},2={0,1},..,n+1={0,1,....,n}, ...,

and w denotes the set of all natural numbers.

A (strict) partial ordering on a set A is a binary relation on A which is irreflexive and transitive.
A linear ordering on A is a partial ordering on A whose every two members are comparable.
A well-ordering R on A is a linear ordering on A such that every nonempty subset of A has an

R-least element. A set A is well-ordered if there is a well-ordering on A.
Definition. A set A is transitive if each element of A is a subset of A.
Definition. A set is an ordinal (number) if it is transitive and well-ordered by €.
Note that every natural number and w are ordinals.

Theorem 2.1.1. Every well-ordered set is isomorphic to a unique ordinal.

Definition. For any ordinals « and 3, we say that
1. «is less than 3, written o < 3, if « € B.

2. «cis less than or equal to 3, written a < B, if a < Bora = f.

Theorem 2.1.2. Let o, 5, and y be ordinals.

1. Every member of o is an ordinal.

2. a £

3 Ifa< fand B < ~then a < 7.

4. Exactly one of the following holds: o < 3, aa = 3, a > f.

Theorem 2.1.3. Every nonempty set of ordinals has a least element.

Definition. For any ordinal «, the successor of o, denoted by « + 1, is defined by
a+1=aU{a}.



Definition. An ordinal « is a successor ordinal if « = (8 + 1 for some ordinal 3. An ordinal

« # 0 which is not a successor is called a limit ordinal.

Note that w is the least limit ordinal.
2.2 Cardinal Numbers
Definition. For any sets A and B, we say that A is equinumerous to B, denoted by A ~ B, if

there is a bijection from A onto B.

Intuitively, the cardinality of a set is the number of all elements of the set. One form of AC states
that every set can be well-ordered. So, by Theorems 2.1.1 and 2.1.3, the following definition is
well-defined.

Definition. For any set A, the cardinality of A, denoted by |A|, is the least ordinal x such that

A ~ k. We say that  is a cardinal (number) if k = | A| for some set A.
Note that every natural number and w are cardinals.

Theorem 2.2.1. For any sets A and B,

Al = |B| ifand only if A =~ B.

Definition. A set A is said to be finite if |A| = n for some n € w. A set which is not finite is
said to be infinite. Natural numbers are said to be finite cardinals. Cardinals which are not finite

are said to be infinite cardinals. A set is said to be denumerable if its cardinality is w.

Theorem 2.2.2. For any cardinal k,

k| = Kk and if & is infinite, then k is a limit ordinal.

Theorem 2.2.3. For any ordinal o, there is a cardinal k such that || < k.

Notation. ¢ is the cardinality of the set of real numbers R, N is the cardinality of w, and ¥; is

the least cardinal which is greater than N.

Definition. Let x = |A| and A = |B|. We define

l. k+A=|AUB|where AN B =0,
2. k- A=]AXx B,
3. kN =|BA.

Theorem 2.2.4. (Absorption Law) For any cardinals k and A such that k or X is infinite,
K+ A=k -\=max{r, \}.

Theorem 2.2.5. For any set A, |P(A)| = 2141,

Sym(A)| = 241,

Theorem 2.2.6. For any infinite set A,



Definition. For any limit ordinal «, the cofinality of «, denoted by cf(«), is the least ordinal
such that there is a function f : § — « so that ran(f) is unbounded in «, i.e.
Vy <a3d < B (f(6) >).

Theorem 2.2.7. For any limit ordinal o, cf(«) is a cardinal and cf(cf(a)) = cf().
Definition. An infinite cardinal « is regular if cf(x) = k; otherwise, it is singular.

Theorem 2.2.8. For any regular cardinal k and any set A, if |A| < k and |A| < & for all
A€ A then||JA| < k.

2.3 The Continuum Hypothesis

Theorem 2.3.1. (Cantor) k < 2% for any cardinal k.

The Continuum Hypothesis (CH) states that there is no cardinal « such that Ry < r < 2%, je.
R; = 2% The Generalized Continuum Hypothesis (GCH) states that, for any infinite cardinal

)\, there is no cardinal & such that A < x < 27

Notation. Throughout this thesis, we use «, (3, 7, ... for ordinal numbers, x, A, u, ... for cardinal

numbers, and k, [, m, ... for natural numbers, unless otherwise stated.
2.4 Cardinal Characteristics

Some concepts in infinite combinatorics lead to cardinal characteristics which lie inclusively
between N and ¢. So, without CH, it is interesting to know properties of these cardinals. Some
of these combinatorial concepts and associated cardinal characteristics are as follows. For more

information, see Chapter 9 of [8].

Notation. For any set A and any cardinal &,

[A]" ={X € P(A) : |X] = &},
[A]<F ={X € P(A) : | X]| < k}, and
<”A:U{aAza<f<;}.

Definition. For any two functions f,g € “w, we say that g dominates f if f(n) < g(n) for
all but finitely many n € w. A family D C “w is a dominating family if each function in “w
is dominated by some member of D, and a family B C “w is an unbounded family if there
is no function in “w which dominates every member of B. The dominating number 0 and the

bounding number b are defined as follows:

0 = min{|D| : D C “w is a dominating family},

b = min{|B| : B C “w is an unbounded family}.



Definition. For any two sets X,Y € [w]|“, we say that Y splits X if X NY and X \ Y are
infinite. A family S C [w]¥ is a splitting family if each member of [w]* is split by some member
of S, and a family R C [w]* is a reaping family if there is no set in [w]* which splits every

member of ‘R. The splitting number s and the reaping number v are defined as follows:

s = min{|S| : § C [w]” is a splitting family},

t = min{|R|: R C [w]” is a reaping family}.

Definition. Two sets X,Y € [w]¥ are almost disjoint if X N'Y is finite. An infinite family
A C [w]¥ is an almost disjoint family if its members are pairwise almost disjoint. Such a family
A is a maximal almost disjoint family if it is maximal with respect to the inclusion. The almost

disjoint number a is defined as follows:
a = min{|A| : A C [w]" is a maximal almost disjoint family}.

Definition. An infinite family Z C [w]“ is an independent family if, for any two finite disjoint
sets ¥, Y C Z, (N X\ |J Y is infinite (here () = w). Such a family 7 is a maximal independent
family if it is maximal with respect to the inclusion. The independent number i is defined as
follows:

i=min{|Z| : Z C [w]” is a maximal independent family}.

Definition. A family £ C [w|“ has the strong finite intersection property (sfip) if, for any finite
set F C &, () F is infinite (here [ = w). A set Z € [w]¥ is a pseudo-intersection of such a
family £ if Z\ X is finite for all X € £. The pseudo-intersection number p is defined as follows:

p = min{|&] : £ C [w]* has the sfip but has no pseudo-intersection}.

Theorem 2.4.1. Relations between these cardinals, provable in ZFC, are in the following dia-
gram. A line connecting two cardinals indicates that the lower cardinal is less than or equal to
the upper cardinal. Rigorously,

N <p<b<o<i<g b<e<i, p<s<o,andb<a<c



2.5 Some Background in Logic

This section gives some informal concepts in first-order logic. For a precise explanation, see

[6]. We write I |- ¢ if a formula ¢ can be proved from a set of formulas I'.

Definition. A set of formulas I' is consistent if there is no formula ¢ such that I' - ¢ and

I' - —p. We denote the statement “T" is consistent” by Con(I").

Definition. For a set M and a set of formulas I', we say that M is a model of I, or M satisfies

T, if every formula ¢ € I" holds in M.

Notation. We write M F ¢ meaning that ¢ holds in M.

Theorem 2.5.1. A set of formulas T is consistent if and only if there exists a model M satisfying
T.

Theorem 2.5.2. Let ¢ be a formula and T be a set of formulas. Then I' U {—¢} is consistent if
and only if T' ¥ .

Thus, to show that a formula ¢ cannot be proved from a set of formulas I, we instead show that
I'U {—p} is consistent. The details for consistency proofs are very deep in logic and set theory.

One of the widely used method is forcing.
2.6 Forcing

We give a brief information about forcing, which will be used in Section 3.4. See [9] or [8] for

the details and proofs.

From now on, we let M be a transitive model of ZFC (this means a finite fragment of ZFC). In
this section, a partial order is a pair (IP, <) such that P # () and < is a relation on IP which is

transitive and reflexive.



Definition. A forcing poset is composed of a set P with a partial order < and a largest element
1. Elements in P are called forcing conditions. A subset D C P is dense in P if
VpeP3ge D(qg<p).

In the following, P is a set with a partial order < and a largest element 1.

Definition. A nonempty F' C P is a filter on P if

1. for any p,q € F, thereis anr € F such that r < pand r < ¢, and
2. forany p,q € P,p < gandp € F implies ¢ € F.
Definition. A filter G C P is P-generic over M if forany D € M whichis dense in P, GND # 0.

Theorem 2.6.1. If M is a countable transitive model of ZFC and P € M is a forcing poset,

then there exists a IP-generic filter G over M.

In the following, M[G] will be constructed from a P-generic filter G over M by applying set-
theoretic processes definable in M. Each element of M [G] will have a name in M. The following

two definitions are defined recursively. In order to keep things simple, we omit the details.

Definition. 7 is a P-name if 7 is a relation and

V(o,p) € T (o isaP-name A p € P).

Definition. Suppose G is a P-generic filter over M and P € M.

* For any P-name 7, 7¢ = {o¢ : (0,p) € 7 for some p € G}.

* M|G] = {7r¢ : 7™ € M is alP-name}.

We sometimes use f for a P-name where fOG = f e M[G].

The model M is regarded as the ground model, and the model M [G] is called a generic model
(or a generic extension of M). M[G] will be the least extension of M to a transitive model of
ZFC containing G, where the set of ordinals in M and in M [G] are the same, but some cardinals
might be different. For example, it could happen that 2% = Xy in M but 2% = X, in M[G].

ON




Definition. For any formula ¢(z1, ..., z,) and P-names 71, ..., 7, € M, we say that p forces
©(71, ..., Tn), denoted by p I (71, ..., ), if
for any IP-generic filter G over M with p € G, (714, ..., Tn) holds in M[G].

Theorem 2.6.2. For any formula o(z1, ..., ) and P-names 11, ..., 7, € M, if G is P-generic
over M, then
o(T1Gy - Tng) holds in M[G] if and only if there is a p € G such that p IF o(71, ..., Tp).

By the definition, 1 I ¢(7y,...,7,) tells us that ©(71¢, ..., Thg) holds in M[G] for any P-
generic filter G over M since 1 € G for any filter G. In general, p I (71, ..., 7,,) tells us that
the possibility that ¢(71¢, ..., Thg) holds in M[G] is related to the possibility that p € G. For
example, in many situations, we may consider aset D = {p € P: p I- ¢(71,...,7,)} and try to
prove that D is dense in IP. If this has been done and G is a P-generic filter over M then there

exists a p € G N D, and hence ¢(7i¢, ..., Tng) holds in M[G].

In the following theorem, Z F'C' + v denotes the union of the set of ZFC axioms and {¢} where

1) is a sentence.

Theorem 2.6.3. Suppose M is a countable transitive model of ZF'C + 1, P is a forcing poset
and G is a P-generic filter over M and P € M. Then M|G)| is a countable transitive model of
ZFC, M C M[G] and G € M|G|. Moreover, if a sentence  holds in the model M |G|, then we
conclude that

Con(ZFC + ¢) = Con(ZFC + ¢).

The statement Con(ZFC) — Con(ZFC + ¢) can be read as “ip is relatively consistent with
ZFC”. By Theorem 2.5.2, the statement means that if Z F'C' is consistent, then ZFC I/ —.

Definition. Let P be a forcing poset.

e Aset A C Pis an antichain in P if for any distinct p, ¢ € A there is no r € P such that
r<pandr <gq.

* The poset P satisfies the countable chain condition (or PP is ccc) if every antichain in PP is

countable.

Definition. For any P-name 7, a nice name for a subset of T is a P-name of the form
U{{o} x Ay : 0 € dom(7)}

where each A, is an antichain in P.

Theorem 2.6.4. If P € M and 7, € M are P-names, then there is a nice P-name ¥ € M for
a subset of T such that 1 I+ (u C 7 — p = 9).



Example. (Cohen Forcing)

In a ground model M, consider the poset P = <

w with the order D. Clearly the largest element
1 = (). Note that P is ccc. Suppose G is a P-generic filter over M and g = |J G. Then it can be

shown that g € M[G] is a surjective function on w.
Definition. Fn(7, J) = {p C I x J : pis a finite function}.

Example. (Another Cohen Forcing)

In a ground model M, consider a cardinal x # 0 and the poset P = Fn(k x w, 2) with the order
D. Clearly the largest element 1T = (). Note that PP is ccc. Suppose G is a P-generic filter over M
and g = |JG. Then g € M[G] is a function from s X w to 2. In addition, if M satisfies GCH
and x is regular, then 2% =  holds in M[G].

Roughly speaking, two posets are forcing equivalent if they produce the same generic extension
and the same interpretation of names. For example, (<“w, D) and (Fn(w,w), D) are forcing

equivalent.
2.7 Finite-Support Iterated Forcing

In this section, M is a countable transitive model of ZFC. We first want to obtain a two-step
iterated forcing. Intuitively, we start with a poset P € M and a IP-generic filter G over M, which
give us a generic extension M [G]. Then we want to get a poset Q € M [G] in order to obtain a Q-
generic filter H over M [G] and further generic extension M [G|[H]. However, since Q € M[G],

there must be a P-name corresponding to Q. This idea leads to the following definitions.

Definition. If (P, <p, 1p) is a forcing poset, then a P-name for a forcing poset is a triple of
P-names (Q, <g,1g) such that 1g € dom(Q) and
1p Ik [ig € Q@ A <¢ is a partial order of Q with largest element 1).

From now on, let IP be a forcing poset and (Q, éQ, le) be a P-name for a forcing poset. Some-

times we write Q for (Q, é(@, ]OlQ). Note that Qg is a forcing poset in M [G].

Definition. The product P % Q is the triple (R, <, 1) where
R = {(p,§) € P x dom(Q) : p I ¢ € Q}, 1 = (1p, 1g), and
(p1,d1) < (p2, o) if and only if p; <p po and p1 IF [¢1<gdo)-

Note that P x Q is a forcing poset.

Theorem 2.7.1. Let K be P Q-generic over M. Let G = {p € P : (p,1g) € P« Q} and let
H = {g : G € dom(Q) A 3p(p, §) € K}. Then G is P-generic over M, H is Qg-generic over
MG, and M[K]| = M|G|[H].

The following figure illustrates this theorem. Two-step iterated forcing, by P € M and then by
Q € M|[G], is the same as one-step forcing by a product P x Qe M.
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MI[K] MI[G][H]
Q¢

PxQ M[q]

P

M M

In the following definition, if p is a sequence of length 7, then we write (p), to denote the yi-th

component of p. (It is p(u) if we regard p as a function with dom(p) = 7.)

Definition. For any ordinal «, a finite-support iteration of length « is a pair of sequences of the

form

(<(P£v <S¢ Le) €< 04>7 <(@57§@£’ lg): €< O‘>)

satisfying the following conditions.

1. Each (P¢, <¢, 1¢) is a forcing poset.
2. Each (@5, é@g, fl@i) is a P¢-name for a forcing poset.

3. For all ordinals § < «, P¢;; is the set of all sequences p~¢ such that p € P¢, ¢ €
dom(@g) and p IFp, ¢ € @5. Here p™¢ is the concatenation of the sequence p and the

length-one sequence (g).

4. For all limit ordinals n < «, IP,, is the set of all sequences p = (g¢ : & < 1) of length n
such that, for some & < 7, p[€ € P¢ and (p),, = ]Ol@M whenever £ < u < 7.

5. If p,p’ € P, then p <¢ p"if and only if p[plFp, [(p), < (p'),] forall p < &.

o)}

. 1¢ is the sequence <]1Q < §>.

From 3, P¢yq and P¢ * @5 are forcing equivalent. From 4, for all limit ordinals n < « and
all p = (qu : p <) € Py, the set {,u <n:iquF Iol@ } is finite. This indicates a property of

finite-support iteration.

Note that we can consider (P¢ : £ < «) as an C-increasing sequence of forcing posets: If £ < 7
and p € P¢, then we can regard p as an element p € P, so that p [{ = p and (p), = ]OIQ
whenever £ < p < 1.

Theorem 2.7.2. In a finite-support iteration of length «, if 1¢ I [Qg is ccc} Jorall ¢ < o, then

P, is ccc.
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Theorem 2.7.3. Let (<IP>§ (€< a>, <Q5 €< oz>) be a finite-support iteration of length a,
and G be a P -generic filter over M. Foreach& < o, let Ge = {p[€ : p € Py} be the restriction
of G to .

1. (M[G¢] : € < «) is an increasing C-chain of generic extensions of M.

2. Foreach& < a, there is a filter H which is ((@g)gE -generic over M[G¢| and M[G¢|[H] =
M[Gea]-

The following figure illustrates a finite-support iteration of length . In many situations, the
length of the iteration is a cardinal (or regular cardinal) and the iterands Q = (@g)cg are the
same (while the name @5 might be different according to different previous posets and models).
In such cases, although M [G,] is not the union of the previous all M[G¢]’s, some important
sets in M [G,] can be shown that they are actually in some M [G¢] where { < «. This feature

yields a good result if the single-step iteration QQ is good enough.

M[G.] MIGa]
M[G£][H] = M[Géﬂ] M[G€+1]
(Qé)G’s (Qﬁ)Ga
Py
M[G] M[G¢] MI[G¢]
Pet1
Pe Pe




CHAPTER III

CARDINAL CHARACTERISTICS ASSOCIATED
WITH FAMILIES OF FUNCTIONS AND
PERMUTATIONS

In this chapter, we introduce eight new cardinal characteristics associated with some families
of functions and permutations. In the forthcoming sections, we show our results on these new

cardinals. First, recall some definitions from Chapter II.

For any sets A and B, we say that A splits B if B N A and B \ A are infinite, and A and B
are almost disjoint if A N B is finite. For any functions f, g € “w, we say that f dominates g,

denoted by g <* f,if g(n) < f(n) for all but finitely many n < w.

Let X be a set such that | X" is a denumerable set. We generalize some combinatorial concepts

given in Chapter II to subfamilies of X’ as follows:

o A family A C X is an almost disjoint family if its members are pairwise almost disjoint.

e A family Z C X is an independent family if, for any disjoint finite sets A, B C Z,
N A\ U B is infinite. We interpret (10 = J X.

o Afamily S C X is a splitting family (in X) if each member of A’ is split by some member
of §, and a family R C X is a reaping family (in X) if there is no set in X which splits

every member of R.

* For the case X C “w, a family D C X is a dominating family if each function in X is
dominated by some member of D, and a family B C X is an unbounded family if there

is no function in X which dominates every function in B.

Definition. We define

a(X) = min{|A] : A C X is a maximal almost disjoint family},
i(X) = min{|Z| : Z C X is a maximal independent family},
§(X) = min{|S| : S C X is a splitting family},

t(X) =min{|R|: R C X is a reaping family},

(X) = min{|D| : D C X is a dominating family},

b(X) = min{|B| : B C X is an unbounded family},
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where the maximality is considered under the inclusion.

Some well-known cardinals introduced in Section 2.4 can be written in these terminologies as
follows:

a=a(jw]“),i=1i(Jw]*), s = s([w]*), v = t([w]¥), 0 = d(“w), and b = b(“w);
see [8] for more details. The cardinals a, = a(*w) and a, = a(Sym(w)) were introduced
by Zhang in [12] and were also studied in [5]. Our main work is to study the following eight

cardinals.

iy =i(*w), i, = i(Sym(w)), sy = s(*w), 5, = s(Sym(w)), ty = t(“w), v, = v(Sym(w)),
0, = 0(Sym(w)), and b, = b(Sym(w)).

3.1 Splitting and Reaping Families

First note that s, s, tf, and v, are well-defined since “w and Sym(w) are splitting and reaping

families of functions and permutations respectively.

We first show our results of s and ty. Recall that the covering number of the meagre ideal
M, cov(M), is the smallest size of a family of meager subsets of R whose union is R, and the
uniformity of M, non(M), is the smallest size of a nonmeager subset of R; see [3] or Chapter
III of [9] for more details.

The following is Theorem 5.9 of [3]. The first statement is also from Corollary 1.8 (page 233)
of [1] and Related Result 117 (Chapter 22) of [8].

Theorem 3.1.1.

cov(M) =min{|C| : C C¥w A —-3f € “wVg € C [f N g is infinite]}, and
non(M) = min{|C| : C C*w AVf € “w Ig € C [f N g is infinite] }.

Theorem 3.1.2. 5y = non(M) and ty = cov(M).

Proof. Notice that if C C “w is a splitting family, then for any f € “w, there is a g € C such that
f N g is infinite. By the previous theorem, non(M) < s¢. By the same theorem, vy < cov(M)
since R C “w is a reaping family of functions if there is no f € “w such that f N g is infinite

forallg € R.

To show that s < non(M), let C C “w be an infinite family such that
Vf € “w3g € C [f N gis infinite].
For each g € C, define g € “w by

g(n) if n is even,

g(n)+1 ifnisodd.
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Let D =CU{g: g € C}. It remains to show that D is a splitting family of functions.

Let f € “w. By the property of C, there is a g € C such that f N g is infinite. If f \ g is finite,
then there is an ny < w such that f(n) = g(n) for all n > nyp, and hence g splits f. Otherwise,
g splits f. Thus sy < |D| = |C|. Since C is arbitrary, s < non(M).

To show that cov(M) < ty, let C C “w be an infinite family such that |C| < cov(M). We shall

show that C is not a reaping family.

Foreachg € C,let g &1 € “w be defined by (g & 1)(n) = g(n) + 1. Let
D=CU{g®1l:g9€C}

Then D C “w and |D| = |C| < cov(M). By the above theorem, there is an f € “w such that

f N his infinite for any h € D.

Consider a g € C. Since f N (¢ @ 1) is infinite, there are infinitely many & € w such that
f(k) = g(k) + 1,50 f(k) # g(k). Hence g \ f is infinite. Since f N g is infinite, f splits g.

Therefore, C is not a reaping family. O

From the facts that b < non(M) < a.,a, (see Theorem 2.2 and Proposition 4.6 in [5]) and
p < cov(M) < 0 (see Proposition 5.5, Theorem 7.12 and 7.13 of [3]), by the above theorem,

we obtain the following corollary.

Corollary 3.1.3. b <s5; < ac,a,andp <ty <.

Next, we shall show that cov(M) < v, and give a lower bound of s,. The proofs make use
of Martin’s Axiom. We start with some relevant definitions and known facts. The following is
Definition I11.3.11 of [9].

Definition. M Ap(r) is the statement that whenever D is a family of dense subsets of a poset P
with |D| < k, there exists a filter G on P such that GN D # () for all D € D.

By the Generic Filter Existence Lemma (Lemma II1.3.14 in [9]), we obtain the following theo-
rem.

Theorem 3.1.4. M Ap(k) holds for any poset P and k < Ny.

Definition. A subset C of a poset P is centered if, for any n € w and any p1,p2,...,pp, € C
there is a ¢ € P such that ¢ < p; for all i. P is o-centered if P is a countable union of centered

subsets of P.

Definition. m, is the least x such that there is a o-centered poset P for which M Ap (k) fails,

and mp, is the least £ such that there is a countable poset IP for which M Ap (k) fails.



15
It is easy to see that every countable poset is o-centered, and the following two posets are count-
able.

Notation. Let Fn(w,w) = {s C w X w : s is a finite function} and

Fn;_;(w,w) = {s € Fn(w,w) : s is injective}.
The following theorem is from Bell ([2]), and is also Theorem I11.3.61 in [9].

Theorem 3.1.5. m, = p.

It is well-known that p < s (see Chapter 9 of [8]). Now, we shall use the above fact to show that

p is also a lower bound of s),.

Theorem 3.1.6. p < 5,

Proof. It suffices to show that m, < s,,. To show this, let C C Sym(w) be such that Xy < |C| <
m,. Define the poset P = Fn;_1(w,w) x [C]<¥, where (s, F) < (¢, F) iff

s 2t, E D FandVn € dom(s) \ dom(t) Vf € F [s(n) # f(n)].
Clearly this poset is o-centered, as the set {(s, E) € P : E € [C]<“} is centered for any fixed s

and Fny_; (w,w) is countable.

Foreachn € wand f € C, let

A, ={(s,E) € P:n € dom(s) Nran(s)},
By ={(s,E)eP: fe E}.

Since for all (s, E) € P, (s, EU{f}) < (s, E)forall f € C, ByisdenseinP forall f €C.

To show that A,, is dense in P for any n € w, let n € w and (s, E) € P. Since s is a finite
function and F is a finite set of injections, we can pick k£ € w \ dom(s) and ¢ € w \ ran(s) so
that (k,n), (n,¢) ¢ |J E. We choose

;

s if n € dom(s) Nran(s),
‘o sU{(k,n)} if n € dom(s) \ ran(s),
sU{(n,0)} if n € ran(s) \ dom(s),
sU{(k,n),(n,£)} ifn ¢ dom(s)U ran(s).

Then (¢, E) < (s, E) and (t, E) € A,. So A, is dense in P.

Since D = {A,, : n € w} U{By : f € C}is of size |C| < my, there is a filter G on P such that
GNA,#0#GnNBgforanyn € wand f € C. Let g = | Jdom(G).
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To show that g is a function, suppose that (z, y1), (z, y2) € g. Thenthere are (s, F1), (s2, E2) €
G such that (x,y1) € s; and (z,y2) € s2. Since G is a filter, there is a (s, ) € G such that
s1,82 € s. So (x,y1), (z,y2) € s. Since s is a function, y; = yo. Therefore, g is a function.

Since s is injective for any s € dom(IP), we can show similarly that g is injective.

To show that dom(g) = ran(g) = w, letn € w. Since GN A, # 0, thereisa (s, E) € GN A,,.
So s € dom(G) and n € dom(s) Nran(s). Hence s C ¢, and the desired result follows. Thus

g € Sym(w).

Next, we shall show that g N f is finite for any f € C.

Let f € C. Since GNBy # (), thereisa (s, E) € G'suchthat f € E. Letm € dom(g)\dom(s).
We shall show that g(m) # f(m). Since (m,g(m)) € g = |Jdom(G), thereisa (¢, F) € G
such that (m, g(m)) € t. Since G is a filter, there is a (s’, E’) € G such that (s', E') < (s, E)
and (s', E") < (¢, F). Then m € dom(s") \ dom(s) and hence, by the definition of the order <
of P, g(m) = t(m) = s'(m) # f(m). Therefore, g(m) # f(m) for any m € dom(g) \ dom(s).
So {m : g(m) = f(m)} C dom(s), which implies that g N f is finite. Therefore, C is not a
splitting family. O

We have shown, in Theorem 3.1.2, that t; = cov(M). Now, we shall show that cov(M) < t,
by using the following theorem which is Proposition (d) of [7].

Theorem 3.1.7. m¢yp = cov(M).

Theorem 3.1.8. cov(M) < t,.

Proof. It suffices to show that m.p < t,. To show this, let C C Sym(w) be such that 8y <

IC| < m¢w. Consider the countable poset P = Fnj_ (w, w).

Foreachn € wand f € C, let

A, ={p €P:n € dom(p) Nran(p)},
Buy={peP:3k>n3>nlp(k) = f(k) Ap(l) £ (O]}

Then A, and B,, ; are dense in P for any n € w and f € C.

Since D = {A, :n € w}U{B,f:n € w,f €CC}isof size < mey, there is a filter G on P
suchthat GNA, #0 #GN B, sforanyn cwand f € C. Let g =JG. Since GN A, # 0
for all n € w, g is a bijection on w, i.e. g € Sym(w). Moreover, for any n € w and f € C, we
have that g(k) = f(k) and g(¢) # f(¢) for some k,¢ > n. Hence f N g and f \ g are infinite

for any f € C, and thus C is not a reaping family of permutations. O
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3.2 Dominating and Unbounded Families

We investigate two lemmas before our main results of b, and 0,,. In this section, for any f, g €

“w, we say that f =* g if f(n) = g(n) for all but finitely many n < w.

Lemma 3.2.1. Forany f € “w, {g € “w : f =* g} is countable.

Proof. Let f € “w. Define A4,, = {g € “w : f(k) = g(k) for all k > n} foreach n < w. Then,
for each n < w, a map from A,, to "w defined by g — g [n is bijective, so A,,’s are countable.

Hence {g € “w: f =* g} = U, <, An is also countable. O

Lemma 3.2.2. Forany f,g € “w, if f is injective, g is bijective and f <* g, then f =* g.

Proof. Let f, g € “w be such that f is injective and g is bijective. Suppose to the contrary that
f<*gbut{k <w: f(k) # g(k)} is infinite. Since f <* g,
{k <w: f(k) > g(k)} is finite and so {k < w : f(k) < g(k)} is infinite.

Define A={n<w: fog'(n)>n}and B ={n <w: fog !(n) <n}. Consider the
mapp:{n<w:fogli(n)#n} = {k<w: f(k)# g(k)} defined by p(n) = g~t(n).
Then ¢ is bijective (since g~ is bijective), ¢[A] = {k < w : f(k) > g(k)} and ¢[B] = {k <
w: f(k) < g(k)}. So Ais finite and B is infinite. Pick an ¢ € B such that £ > max f o g~ ![A].
Notice that, for any ¢ < /,

e ific B, then fog (i) <i<l
o ifi € A, then fog 1(i) € fog ![A],so fog (i) </ (since £ > max f o g L[A]);

» ifi¢ AU B, then fog !(i) =i < {(since £ € B).
So fog (£ +1):(£+1)— £andis injective, which is impossible. O

While p < b, by, turns out to be so small as shown in the following theorem.

Theorem 3.2.3. b, = 2.

Proof. Notice that, for any f € Sym(w), {f} is not an unbounded family of permutations since
f <* f. So b, > 2. To show that b, < 2, define

fo={(2k,2k+1): k<w}U{(2k+1,2k) : k < w}
and consider the family {id,,, fo}. If there is an f € Sym(w) which dominates both id,, and fj,

then id, =* f =* fy by the previous lemma, but id,, =" fy is impossible. O

Unlike the result of unbounded families of permutations, the cardinal associated with dominating

families of permutations is as big as ¢. Recall that 0 < i (see [11] or Theorem 9.1 of [8]).
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Theorem 3.2.4. 9, = c.

Proof. Clearly Sym(w) is a dominating family of permutations. To show that 9, = ¢, notice that
the above two lemmas imply that {g € Sym(w) : ¢ <* f} is countable for any f € Sym(w).
So, for any family D C Sym(w) of infinite size &, the set

{geSymw):3f €D (g <* £)} = Ujenly € Sym(w) : g <* f}
is of size at most . Since |Sym(w)| = ¢, any family of permutations of size < ¢ is not a

dominating family of permutations. O

3.3 Independent Families

Let us first give the following theorem which confirms that iy and i, are well-defined.

Theorem 3.3.1. There is an independent family of permutations of size ¢. Consequently, there

is an independent family of functions of size c.

Proof. Recall that there is an independent family Z C [w]“ of size ¢ (see Proposition 9.9 in [8]).
For each X € Z, define fx € Sym(w) by

9%k +1 ifke X, 2% ifk € X,
Fx(2k) = and fx(2k +1) =
2% ifk ¢ X, 2k +1 ifk¢ X,

Since for any A, B € fin(Z) such that AN B = {),
Hfx : X eA}\ U {fx: X eB}D{(2k2k+1): ke NA\UB},
where () A\ |J B is infinite, the family { fx : X € Z} is an independent family of permutations

of the same size as Z, which is c. O

For the case of almost disjoint families of functions and permutations, relations between a, a,
and other well-known cardinal characteristics provable in ZFC which have been shown so far
are that non(M) is a lower bound of both a. and a, (see Theorem 2.2 and Proposition 4.6 in
[5]). Zhang showed in [12] that each of a < a. and a < a, is relatively consistent with ZFC.
As aresult, each of a. < a and a, < ais not provable from ZFC. Surprisingly, for the case of
independent families of functions and permutations, it turns out that i is an upper bound of both

iy and i,. The following lemma is needed for the proofs.

Lemma 3.3.2. There is an almost disjoint family A C “w of cardinality ¢ such that, for any
feAandn < w,
1< f(n) <27t

Proof. For each g € “2, define f;, € “w by

fo(n)=143" g(i) - 2%
It is easy to see that, for any g, h € “2, if g(N) # h(N) for some N < w, then f,(n) # fn(n)
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foralln > N. Hence A = {f; : g € “2} is an almost disjoint family. Moreover, for any g € “2
and n < w,

1< fy(n) S 143020 = 27T,
So A is the desired family. O

Definition. For any two sets A and B, we say that A is almost contained in B, written A C* B,
if A\ B is finite.

Theorem 3.3.3. iy <1i.
Proof. Let Xy < k < iy and C C [w]¥ be an independent family such that |C| = x. Say
C = {X¢ : £ < k}. We shall show that C is not maximal.

Let A = {f¢ : £ < ¢} be an almost disjoint family of functions as in the above lemma. Then

(i) (wx{0})N fe=0forall € <c,

(ii) fo N fg is finite for any distinct o, B < ¢.

For each £ < k, define g¢ € “w by
ge = (Xe x {0}) U fel(w\ Xe).

Let A, B € fin(x) be disjoint and let

948 = {ga:a € A}\| J{gs: B € B} and
Xap={(WXa: e A\ J{Xs:8€B}.

By (i), X4,B x {0} C ga p. Since C is an independent family, X 4 p is infinite, and so is g4 p.
Hence D = {g¢ : £ < k} is an independent family of functions. Since |D| = k < iy, D
is not maximal. Then D U {h} is an independent family of functions for some h ¢ D. Let
H = h=1{0}].

We next show that X4 p N H and X4 p \ H are infinite. Since C is infinite and X4 p O Xa' B
for any A’ € fin(k) such that A C A’, we may assume that |A| > 2.

By (ii), we have g4 p € X4 g x {0}. Thus

gaBNh - (XA,B X {0}) Nh= (XAyBﬁH) x {0},
ga \h C* (XA,B X {O}) \h= (XA,B\H) x {0}.
Since DU {h} is an independent family, g4, g N h and g4 g \ h are infinite, and so are X 4 p N H

and X4 g \ H. Hence C U {H} is an independent family. Moreover, since A is arbitrary and

Xa,p \ H is infinite, H ¢ C. So C is not a maximal independent family of functions. O
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In the following proof, we write o” for the composition of n copies of a permutation ¢ and

(z1; x2; ...; p) for the cyclic permutation x1 — xg — ... — Ty, — 1.

Theorem 3.3.4. i, <.

Proof. Let Xy < k < i, and C C [w]“ be an independent family which is of cardinality «, say
C = {X¢ : £ < k}. We shall show that C is not maximal. In order to construct an independent

family of permutations of size x, we partition w as follows.

Foreachn < w,letk, = 2"*2 +3n —4and P, = {x < w : k, < 2 < kpy1}. Then {P, :
n < w} is a partition of w. For convenience, for each n < w, we write P, = {ay; : i € |P,|}

where (a,i), <|P.] is strictly increasing. For each n < w, define ¢y, 1, € Sym(P,) by

©n = (aml;an’g; "';an,\PnFl) and

VYo = (An,05 An1; Gn2; -+ G P, |—1)-

For each n < w, let £, = 2", Then |P,| = kpi1 — kn = 26, + 3, ¢!, \ {(an,0,an0)} C
i Uit forallm < wandall 1 < i < £, and forany 1 < i,j < /,,,

(i) @i Nl = {(ano,ano)} whenever i # j,
(i) it Nt = ) whenever i # 4,

(iii) f, N T2 = 0.

Let A = {f¢ : £ < ¢} be an almost disjoint family of functions as in Lemma 3.3.2. For each
§ < K, define g¢ € Sym(w) so that

ol ifn e Xe,

ge an =
G PO e ¢ X

For each ¢ < kand n < w, since 1 < fe(n) < 271 = ¢, and ¥ Nidp, = 0 for all
0<m<|P,|=20,+3,
n € X¢ if and only if (an,0,an0) € ge. (%)

Let A, B € fin(x) be disjoint. Define g4 p and X 4 p as in the proof of the previous theorem. For
any Y Cw,letI(Y) = {(an0,an0) :n € Y}. SoI(X4 ) C gap. SinceC is an independent
family, X 4 p is infinite, and so is g4, 5. Hence D = {g¢ : £ < x} is not maximal. Then DU{h}

is an independent family of permutations for some h ¢ D. Let H = {n < w : (an0,ano) € h}.
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For distinct £, 7 < , since f¢ N f,, is finite, there is an N < w such that f¢(n) # f,(n) for all
n > N. Recall that 1 < f¢(n) < ¢, forall § < x and n < w. Thus, for £ # 7, we have

g9e Ngn = (9e1Pnn gyl Py)

n<w

= U (wPinglP)u |J (glPungylP)
neXe:NX, n¢gX:NX,

< J (etPanggtP)u U (9elPangylP)
ne(XeNX,)\N n¢(XeNX,) )UN

= U (k) (by (ii) and (iii))
ne(XeNX,)\N

= {(@n0,an0) s n € (Xe N X,) \ N} € I(Xe N X,). (by (i)

Hence, by (%), if |A| > 2, then g4, C* I(X4,B).

We next show that X4 g N H and X4 pN(w\ H) are infinite. As in the proof of Theorem 3.3.3,

we may assume that |A| > 2. Then

gaBNh C* I(Xap)Nh=1(XapNH)
gA,B\hg* I(XA7B)\h=I(XA7B\H)

Since DU {h} is an independent family, g4 g Nk and g4 g \ h are infinite, and so are X 4 g N H

and X4 p \ H. Thus C is not a maximal independent family of permutations. O

We have shown that i is an upper bound of iy and i,,. Next we shall show that p is a lower bound
of both of them.

Definition. Let X be a denumerable set. For any family £ C [X]“, we say that an infinite set
K C X is a pseudo-intersection of £ it K C* E forall F € £, and we say that £ has the strong
finite intersection property (sfip) if (| F is infinite for any F € [£]<“ (we interpret (|0 = X).

First, we state a generalization of Lemma III.1.23 in [9] which will be used for the theorem

below.

Lemma 3.3.5. Let X be a denumerable set. FixE C [X|* with |E| < p. Also, fix a nonempty set
H C [X]¥ such that |H| < p and assume that for all H € H, {Z N H : Z € £} has the strong
finite intersection property. Then £ has a pseudo-intersection K such that K N H is infinite for
all H € H.

Notation. For an infinite family C C “w, let
be(C) ={NA\UB:A,Befin(C),ANB=0and A # (}.
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Then each member of be(C) is a function and is an injection if C is a family of permutations.

Notice that C is an independent family if and only if every member of bc(C) is infinite.

In the following proof, for a,b < w, let [a,b) denote {i < w : a < i < b}.

Theorem 3.3.6. p < i,

Proof. Let Xy < k < p and C C Sym(w) be an independent family of permutations such that
IC| = k. Then each member of bc(C) is an infinite injection and |be(C)| = . We shall show

that C is not maximal.

For each = € be(C) and n < w, let
Zyp={s € Fni_1(w,w) : 3k, > n(k,¢ € dom(z) N dom(s)
A s(k) = a(k) A 5(6) £ 2(0) },

H, ={s € Fnj_1(w,w) : dom(s) = ran(s) = [n, k) for some k > n}.

LetE = {Zyn 1 € be(C),n < w}and H = {H,;, : m < w}. We shall show that £ has a
pseudo-intersection K such that K N H,, is infinite for all m < w by using Lemma 3.3.5 with
X =Fni_1(w,w).

Claim. Foreachm < w, {Z N Hy, : Z € £} has the sfip.

Let m < w and consider (Z, n, N Zy,n, N...NZ,

enonn) VHp. Let K = max{nq,...,ny, m}.
* Pick k; € dom(z;) forall 1 < ¢ < N such that K < k; < ko < ... < kp, and
m < x1(k1), z2(k2), ..., xn(kn) are distinct. (This is possible since z;’s are infinite and

are injective functions.)

* Pick ¢; € dom(z;) for all 1 < ¢ < N which are distinct from k;’s such that k& < ¢; <
EQ <. < KN.

* Pick distinct py, p2, ..., py Which are distinct from x;(k;)’s and p; # x;(¢;) for all 1 <
1 < N.

Let M = max{kn,{n,z1(k1),...,2Nn(kN), D1, ..., pN}. Then we can pick s € Fn;_;(w,w)
such that

dom(s) =ran(s) = [m, M + 1), s(k;) = x;(k;) and s(¢;) = p; forall 1 <i < N.
Then s € ﬂlgigN Ly, m, NV Hp,. Moreover, if t € H,, and t O s, then ¢ also belongs to this set.

As there are infinitely many such ¢, (), ;< 5 Zz,n, N Hy, is infinite. —claim

By Lemma 3.3.5, £ has a pseudo-intersection K such that K N H,, is infinite for all m < w.
Let kg = 0. We recursively pick s; € K N Hy, and k; 1 > k; such that dom(s;) = ran(s;) =
[ki, kit1). Define f = J;,, si- Then f € Sym(w).
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To show that for all x € be(C), x N f and = \ f are infinite, let z € bc(C) and n < w. Since
{si i <w} C K C* Z,,, thereis an iy < w such that s;, € Z,,. Since s;, C f, f € Z; .
This implies that

Jk, 0 > n((k,z(k)) €z fALal) €\ f).
Since n is arbitrary, N f and x \ f are infinite, and so f ¢ bc(C). Thus we conclude that f ¢ C
and C U {f} is an independent family of permutations. O

By replacing Fnj_1 (w,w) in the above proof by Fn(w,w) and simplifying the proof, we obtain

the following theorem.

Theorem 3.3.7. p <iy.

The above proof shows directly that p is a lower bound of i,. However, lower bounds of both of
i, and iy can be improved as shown in the theorem below since p < cov(M) (see Theorem 22.5
in [8]).

Theorem 3.3.8. cov(M) < i,

Proof. Recall from Theorem 3.1.7 that mgw = cov(M). So it suffices to show that mep < 1.
LetC C Sym(w) be an independent family of permutations such that Ry < |C| < m. We shall
show that C is not maximal. Consider the countable poset P = Fn;_;(w,w) with the ordering

< defined by p < ¢ if and only if p O ¢. For each n < w and = € be(C), let

Dy ={p€P:3k,£>n(k, e dom(z)Ndom(p) Ap(k) = z(k) Ap(€) # z(0)) },
Ap, ={p € P:nedom(p) Nran(p)}.

For each x € bc(C) and n < w, since for any p € P, we can pick distinct k, ¢ > n such that
k,¢ € dom(x)\ dom(p) where (k) # =(¢)+ 1, and define ¢ = pU{(k,z(k)), (¢, z(£)+1)} €

Dy, Dy, is dense in P. Similar to the proof in Theorem 3.1.6, A,, is dense in IP for all n < w.

LetD = {A, :n <w}U{Dzn :n <w,z € be(C)}. Since |D| = |C| < meyy, there exists a
filter G on P such that A, NG # () # D,,, NG forany n < wand z € be(C). Let g = |JG.
Since G is a filter and A,, N G # () for any n < w, as shown in the proof of Theorem 3.1.6, we
have that g € Sym(w). Since D, NG # ) forany n < w and x € be(C), zNgand z \ g are
infinite for any = € bc(C), so g ¢ C. Thus CU{g} is still an independent family of permutations,

and hence C is not maximal. O

By replacing Fn;_; (w,w) in the above proof by Fn(w,w) and simplifying the proof, we obtain

the following theorem.

Theorem 3.3.9. cov(M) < iy.

The results in this section are also in [10].
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3.4 Consistency Results

In this section, we shall give models of ZFC in which our new cardinal characteristics are greater
than N; or less than c. In fact, the consequences of these results can also be obtained by the results
from Sections 3.1-3.3 together with known consistency results concerning relations among well-
known cardinal characteristics. However, to see the models in which they are separated from Ny

or ¢ directly makes us see the behavior of each corresponding family in those models.

Lemma 3.4.1. Let M be a ground model satisfying ZFC and C € M be a subset of [w X w]|*
whose members are infinite injections. Let P be the Cohen poset <“w and G be P-generic over
M. Then, in M |G|, there is an h € Sym(w) which splits all members of C and h ¢ C.

Proof. Define g = |JG. Then g € “w N M[G] and g is surjective. Define h € Sym(w)
recursively by
hi) = g (min{j < w : g(j) & ran(h[i)}).
That is, h is the one-to-one sequence obtained from g by removing all repetitions of each
occurrence of g(i) except its first one. Since g is in M[G] and surjective, so is h. Thus h €
Sym(w) N M[G]. Foreach z € C and n < w, let
Dyp={p€P: 3k, t>n(k,tcdom(z) Apl-h(k) = x(k) Ah(£) # z(6))}.

To show that each D, ,, is dense in P, let x € C,n < w, and p € P. Pick distinct k,¢ >
max{n,dom(p)} such that k,¢ € dom(z) and & < ¢ where x(k) and z(¢) are not in ran(p).
Choose a ¢ € P such that ¢ O p and the k-th and the /-th unrepeated elements are equal to
x(k) and not equal to x(¢), respectively. Rigorously, let s = dom(p), ¢t = |ran(p)|, pick distinct
A0y A1y +eey Q—t—1,b0, b1, ..oy bp—p—1 € w \ (ran(p) U{z(k), z(¢)}), and define
g=pU{(s+i,a)i<k—t}U{(s—t+kxk)}U{(s—t+k+1+4,bj):75<l—k}
Thus ¢ I+ h(k) = z(k) A h(€) # 2(£),50 ¢ € Dy .

Since G is P-generic, we can pick a p;,, € G N Dy ,. By the definition of D, ., there are
k,0 > n such that p,,, IF h(k) = z(k) A h(€) # z(¢). Since py, € G, h(k) = z(k) and
h(€) # x(¢) in M[G]. Thus = N h and = \ h are infinite for all x € C. This also implies that
h¢cC. O

Corollary 3.4.2. Let M be a ground model satisfying ZFC and C € M be a subset of Sym(w).
Let P be the Cohen poset ~“w and G be P-generic over M.

1. C is not a reaping family of permutations in M[G].

2. If C is an independent family of permutations in M, then C is not maximal in M [G].

Proof. The first statement follows directly from the previous lemma. The second one is obtained

by applying the lemma to bc(C). (By the definition of independency, if C is an independent family
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of permutations and ¢ C splits all members of bc(C), then {h}UC is also an independent family

of permutations.) O

Theorem 3.4.3. Let M be a ground model satisfying ZFC + GCH. In M, let Kk > Ny be a
regular cardinal and P be a finite-support iteration of length k. of Cohen posets. If G is P-generic
over M, then

Ny <kK=ip=ip=tp=1,=c
holds in M[G].

Proof. Since P is a finite-support iteration of length « of Cohen posets, [P is forcing equivalent
to Fn(k x w, 2) and since M is a model of GCH, M [G] E ®; < k = ¢ (see Theorem IV.3.13 in
[9]). It remains to show that M [G] E k < ig, iy, vy, 1)

For each a < &, let P, be a finite-support iteration of length o of Cohen posets (so P = P,;) and
let G, be the restriction of G to P,. Let C € M[G] be an independent family of permutations
such that |C| < k.

To show that C € M[G,] for some a < k, let 7 be a name for w x w such that all forcing
conditions in 7 is 1 and dom(7) is countable (the detail is omitted). Consider each f € C. There
is a P-name f so that fg = f. As f C w X w, by Theorem 2.6.4, we may choose the f so that
it is a nice name for a subset of 7. So
f=U{{o} x 4, : 0 € dom(7)},

where each A, is an antichain. Since P is ccc (Theorem 2.7.2), each A, is countable. By the
fact that dom(7) is countable, we conclude that there are countably many forcing conditions
(elements of P) occurring in f . Let S be the set of all forcing conditions occurring in { f 1 fe
C}. Since there are < x many of these f’s (as |C| < k) and & is uncountable, by Absorption

Law,

S| < k. Recall that we can consider (P¢ : £ < k) as an C-increasing sequence of forcing
posets. For each forcing condition p € S, let n(p) be the least ordinal such that p € P ip)-
Since & is regular and {n(p) : p € S} C &k is of size < &, there is an ordinal « such that
{n(p) : p € S} C «. This means that all forcing conditions occurring in S can be regarded as
they are all in P,,. So f € M[G,], and hence C € M[G,] as we claimed.

If H is Cohen generic over M[G,], by Corollary 3.4.2, C is not maximal in M[G,|[H] =
M[Gu+1]. So C is not maximal in M[G]. Thus M[G] F k < i,. By the same method and the
same corollary, M [G] F k < t,. Moreover, we can get analogous lemma and corollary to obtain
MI[G]E k <ig,ty. O

Let us move to another poset Q = Fnj_1(w,w) x [Sym(w)]<“, where (s, E) < (¢, F) iff
s 2t ED FandVn € dom(s)\ dom(t) Vf € F [s(n) # f(n)].
This is the same poset as in the proof of Theorem 3.1.6 with C = Sym(w). This poset is o-

centered, and hence is ccc.
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Lemma 3.4.4, Let M be a ground model satisfying Z F'C and the poset Q € M be defined as
above. If G is Q-generic over M then, in M |G|, there is a g € Sym(w) which is not split by any
f € Sym(w) N M.

Proof. The arguments which are omitted in this proof can be found in the proof of Theorem
3.1.6. Foreachn € w and f € Sym(w) N M, let

A, ={(s,E) € Q:n € dom(s) Nran(s)},
By ={(s,F)€Q: feFE}

Clearly A,,, By € M since Q,n, f € M. It can be shown that A,, and B/ are dense in Q for all
n € wand f € Sym(w) N M. Since G is Q-generic over M, G N A, # 0 # G N By for all
n € wand f € Sym(w) N M.

Let g = |Jdom(G). Using the fact that G N A,, # ) for all n € w and G is a filter, it can be
shown that g € Sym(w). Using the fact that G N By # () for all f € Sym(w) N M, it can be
shown that g N f is finite, hence g is not split by any f € Sym(w) N M. O

Theorem 3.4.5. Let M be a ground model satisfying ZFC. In M, let K > Wy be a regular
cardinal and P be a finite-support iteration of length k of Q. If G is P-generic over M, then

Ny <k < sy
holds in M[G].

Proof. Foreach a < &, let P, be a finite-support iteration of length a of Q (so P = IP,;) and let
G, be the restriction of G to P,,.

Let C € M[G] be a family of permutations such that |C| < k. By the same argument as in
the proof of Theorem 3.4.3, C € M[G,] for some o < k. If H is Q-generic over M[G,], by
Lemma 3.4.4, there is a g € Sym(w) N M[G4][H] = Sym(w) N M[Gq+1] which is not split by
any element in Sym(w) N M [G]. In particular, g is not split by any element in C. So C is not a
splitting family in M[G]. Thus M [G] F k < s, as desired. O

Theorem 3.4.6. Let M be a ground model satisfying ZFC + N1 < ¢. In M, let P be a finite-
support iteration of length ¥y of Q. If G is P-generic over M, then

Ny =1,<c
holds in M[G].

Proof. Since Ry < t,, it suffices to show that v, < N;. As always, for each o < Wy, let P, be
a finite-support iteration of length o of Q (so P = Py,) and let G, be the restriction of G to
P,. By Lemma 3.4.4, for each o < N; there is a g, € Sym(w) N M[Gq+1] such that g, is not
split by any element in Sym(w) N M[G,]. LetC = {go : @ < N1}. Clearly C € M[G] and



27

IC] < N;y. Since R is regular, by the same argument as in the proof of Theorem 3.4.3, for any
f € Sym(w) N M[G], f € M[G,] for some o < Ry, so f does not split g,. Therefore, C is a
reaping family of permutations in M [G]. O]

Remark. The poset Q actually depends on the ground model since Sym(w) might be different
in various models (while the Cohen poset <“w is the same in any model). We may write Q,, to
denote each Q € M|[G,] in each step . Those Q,,’s are different sets but they are defined by
the same definition, so Lemma 3.4.7 can be applied at any step «. Moreover, the Q-genericity
is strong enough to give us, at each step a, a new g, € Sym(w) which is not split by any
f € Sym(w) N M[Gq).

Similarly, consider a poset Q' = Fn(w, w) x [“w]<¥, where (s, F) < (¢, F) iff
s 2t, E D FandVn € dom(s) \ dom(t) Vf € F [s(n) # f(n)].

Similar to Q, this poset is o-centered, and hence is ccc.

Lemma 3.4.7. Let M be a ground model satisfying ZFC and the poset Q' € M be defined as
above. If G is Q'-generic over M then, in M|[G], there is a g € “w which is not split by any
fe“Ywn M.

Proof. This is the same as in Lemma 3.4.4, replacing Fn;_; (w,w) by Fn(w, w) and Sym(w) by
“w. (We might also relax the set A,, to be {(s, E) € Q' : n € dom(s)} since the surjectivity is

not required here.) 0

Theorem 3.4.8. Let M be a ground model satisfying ZFC. In M, let k > Ny be a regular

cardinal and P be a finite-support iteration of length  of Q'. If G is P-generic over M, then
N <kr<s f

holds in M[G].

Proof. This is the same as in Theorem 3.4.5, replacing Q by Q' and Sym(w) by “w. O

Theorem 3.4.9. Let M be a ground model satisfying ZFC + Ry < ¢. In M, let P be a finite-
support iteration of length ¥y of Q'. If G is P-generic over M, then
Ny = Ty <¢c¢
holds in M[G].
Proof. This is the same as in Theorem 3.4.6, replacing Q by Q" and Sym(w) by “w. O

Corollary 3.4.10. Each of the following statements is relatively consistent with ZFC.

1. N1<if=ip:tf:tp:c.

2. Ny < Sp.
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3. letp<c.
4. Ny < S5y

S5 Ny =<

Proof. Follows by Theorem 2.6.3 together with

1. Theorem 3.4.3 and the fact that Con(ZFC) — Con(ZFC + GCH) (see Theorem 11.6.24
in [9]).

2. Theorem 3.4.5.

3. Theorem 3.4.6 and the fact that Con(ZFC) — Con(ZFC + ®; < ¢) (by Cohen forcing,
see Corollary IV.3.14 in [9]).

4. Theorem 3.4.8.

5. Theorem 3.4.9 and the fact that Con(ZFC) — Con(ZFC + ¥ < ¢). O

It is known that there is a forcing poset which produces a model of 8; = i < ¢ (the poset is
rather complicated and is not used here, so we refer the reader to Proposition 18.11 in [8]). Since
ir,ip <1,

Ry =ip=i, <c¢
holds in the model as well. The direct proof of this fact uses the same idea as that of i < ¢ in the

model.



CHAPTER IV

CONCLUSIONS AND FURTHER RESEARCH

The following diagram summarizes our results, together with the results of a. and a,, from [12]
and [5]. A line connecting two cardinals indicates that the lower cardinal is less than or equal to
the upper cardinal. Our new cardinals and results are in red. Since b, = 2 (Theorem 3.2.3), it

does not occur in the diagram.

Qe
[5] (31 0)
a (&)
s¢ = non(M) B84, 0 if ip tp
[ 18 131
8 ®\, An B
(8]
)
Sp b s cov(M) =ty
@N_ 8] / 1
b
(8]
Ny

From the diagram,

(1) Theorem 3.1.2.
(2) Theorem 3.1.6.
(3) Theorem 3.1.8.
(4) Theorem 3.2.4.
(5) Theorem 3.3.3.
(6) Theorem 3.3.4.
(7) Theorem 3.3.8.
(8) Theorem 3.3.9.
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We also give models of ZFC in which each of the following statements holds:

Ny <ip=i=tp=1,=0¢
e Ny =iy =iy <cg,

. letf<t,

e Ny =1, <cg,

o N1<5f,

N Nl < Sp.
Together with some known-facts in forcing, we can conclude consistency results as follows.

* By Cohen forcing,
Ny =a=s=non(M) <cov(M) =t=c¢
is relatively consistent with ZFC (see pages 472—473, Section 11.3, in [3]). Therefore,
the following statement is relatively consistent with ZFC:

Ny=p=b=sp=s=non(M) <coviM) =r=ty=t,=if=1p,=0=i=c

* By Random forcing,
Ny =5 =cov(M) <non(M) =t=c¢
is relatively consistent with ZFC (see pages 473—474, Section 11.4, in [3]). Therefore,
the following statement is relatively consistent with ZFC:

Ny =p=ty=s=cov(M) <non(M)=t=s;=a.=a,=i=c.

Finally, some open problems are listed below.

—

. Is it provable in ZFC that v, = cov(M)?

2. Is it provable in ZFC that 5, = non(M) (or at least s, < non(M))?

3. Is there any lower bound of i or i, other than cov(M)?

4. TIs there any model of ZFC in which i or i, is separated from cov(M)?

5. Iseachof iy <iandi, < irelatively consistent with ZFC?

6. Are any strict inequalities between iy and i, relatively consistent with ZFC?

7. Does analogous result in [13] hold for independent families?
(Zhang showed in [13] that it is consistent with ZFC+ —CH that there is a maximal almost
disjoint family of permutations which can be extended to an almost disjoint (eventually

distinct) family of functions of greater cardinality.)
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