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APPENDIX

TABLES OF EXPERIMENTAL RESULTS

Table 2 The percentage of H460 cell viability determined by MTT assay after

treatment with various concentrations of TCS (0-10 pM) for 24 h

The concentrations of TCS Cell viability (%)
(pM) (Mean *+ SB)
0 100.00 + 0.00
1 101.87 £ 0.27
25 99.70 + 1.03
5 100.36 + 2.52
75 97.20 + 3.59
10 74.94 + 0.32*

Data present the experimental values and means of three independent
experiments + SEM. “refers significant difference versus non-treated control (P < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 3 The percentage of apoptotic cells determined by Hoechst33342/PI staining

assay after treatment with various concentrations of TCS (0-10 pM) for 24 h

The concentrations of TCS Cell apoptosis (%)

(pM) (Mean + SE)

0 1.00 £ 0.15

1 131 £ 0.50

25 141 + 051

5 1.07 £ 0.30

7.5 1.03 £ 0.19

10 26.82 + 0.96*

Data present the experimental values and means of three independent
experiments + SEM. “refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 4 The percentage of H460 cell viability determined by MTT assay after

Time (h)

24

100.00 * 0.00

68.82 + 2.32

60.25 + 3.75

51.89 + 2.36

49.35 + 3.03

47.98 + 2.34

experiments + SEM.

12 or 24 h in detached condition

TCS (pM)

2.5 5
100.00 + 0.00 100.00 + 0.00
66.91 + 4.76 69.50 + 1.60
65.53 + 2.92 65.08 + 2.05
52.26 *+ 3.53 54.93 + 2.79
52.41 * 4.50 5421 + 251
45.95 + 1.61 47.63 + 3.53

treatment with various non-concentrations of TCS (0-7.5 pM) for 0, 3, s, 9,

7.5

100.00 + 0.00

63.45 + 1.87

34.43 + 3.42

49.95 + 3.09

52.98 + 3.33

43.04 + 04.19

Data present the experimental values and means of three independent
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Table 5 The percentage of AR cell viability determined by PrestoBlue assay after

treatment with various concentrations of TCS (0-7.5 pM) for 12, 24 and 48 h

Time (h)
0
1 100.00 + 0.00
24 100.00 + 0.00
48 100.00 + 0.00

TCS (pM)
25 5
103.87 + 1.75 102.92 + 1.59
98.27 + 0.81 93.56 + 2.13

99.62 + 2.81 99.11+ 2.40

Data present the experimental values and means of

experiments + SEM.

75
103.36 + 2.84
93.71 + 3.65

95.42 + 2.46

three independent



109

Table 6 The percentage of aggregate size of AR cells determined by image analyzer

after treatment with various concentrations of TCS (0-7.5 pM) for 24 h in

detached condition

The concentrations of TCS Aggregate size (%)
(pM) (Mean = SB
0 100.00 + 0.00
25 63.23 + 0.58*
5 41.45 + 0.40*
7.5 37.63 = 0.60*

Data present the experimental values and means of three independent
experiments + SEM. *refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 7 The percentage of aggregate number of AR cells determined by image
analyzer after treatment with various concentrations of TCS (0-7.5 pM) for

24 h in detached condition

The concentrations of TCS Aggregate number (%)

(pM) (Mean + SE)
0 100.00 £ 0.00
25 28.95 + 0.58*
5 8.77 £ 0.38*
7.5 7.02 + 0.33*

Data present the experimental values and means of three independent
experiments + SEM. *refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey'’s test.



Table 8 The relative protein of N-cadherin determined by western blot analysis after

AR cells were treated with TCS (0-7.5 pM) for 24 h in detached condition

The concentrations of TCS Relative N-cadherin level
(pM) (Mean + SE)
0 1.00 + 0.00
25 139 + 0.23
5 2.04 + 0.22*
75 241 + 0.18*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples + SEM Arefers
significant difference versus non-treated control e < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 9 The relative protein of E-cadherin determined by western blot analysis after

AR cells were treated with TCS (0-7.5 pM) for 24 h in detached condition

The concentrations of TCS Relative E-cadherin level
(pM) (Mean + SE)
0 1.00 + 0.00
25 1.00 + 0.09
5 0.60 £ 0.04*
7.5 0.34 £ 0.09*

Mean data from independent experiments are normalized to the level of P-actin
protein. Values are means of three independent triplicate samples + SEM. ‘refers
significant difference versus non-treated control < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 10 The relative protein of vimentin determined by western blot analysis after

AR cells were treated with TCS (0-7.5 pM) for 24 h in detached condition

The concentrations of TCS Relative vimentin level
(M) (Mean *+ SB)
0 1.00 + 0.00
25 121 + 0.02*
5 1.26 + 0.03*
75 1.35 + 0.04*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples + SEM. “refers
significant difference versus non-treated control (p < 0.05) determined by One-way

ANOVA and Tukey’s test.



114

Table 11 The relative protein of slug determined by western blot analysis after AR

cells were treated with TCS (0-7.5 pM) for 24 h in detached condition

The concentrations of TCS Relative slug level
(M) (Mean + SE)
0 1.00 + 0.00
25 123 £ 0.13
5 130 + 0.12
75 147 + 0.10*

Mean data from independent experiments are normalized to the level of P-actin
protein. Values are means of three independent triplicate samples + SEM. “refers
significant difference versus non-treated control < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 12 The relative protein of snail determined by western blot analysis after AR

cells were treated with TCS (0-7.5 pM) for 24 h in detached condition

The concentrations of TCS Relative snail level
(pM) (Mean + SB)
0 1.00 + 0.00
25 1.06 + 0.02
5 1.24 + 0.04*
75 1.36 + 0.08*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples + SEM. *refers
significant difference versus non-treated control (e < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 13 The percentage of colony number of AR cells determined by image
analyzer after treatment with various concentrations of TCS (0-7.5 pM) for

10 days in colony formation assay

The concentrations of TCS Colony number (%)

(pM) (Mean + SE)
0 100.00 + 0.00
25 11111 + 241
5 125.77 £ 2.71*
75 151.66 + 6.36*

Data present the experimental values and means of three independent
experiments * SEM. *refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 14 The percentage of colony size of AR cells determined by image analyzer
after treatment with various concentrations of TCS (0-7.5 pM) for 10 days in

colony formation assay

The concentrations of TCS Colony size (%)

(pM) (Mean + SE)

0 100.00 + 0.00

25 91.10 + 2.37

5 60.77 + 2.37*

75 56.87 + 2.87*

Data present the experimental values and means of three independent

experiments * SEM. “refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 15 Relative cell migration of AR cells determined by transwell migration assay
after cells were pretreated with non-toxic concentrations of TCS (0-7.5 pM)

for 24 h in detached condition and then subjected to transwell assay for

24 h
The concentrations of TCS Relative migration (24 h)
(pPM) (Mean + SE)
0 1.00 + 0.00
25 119 + 0.07
5 2.38 + 0.06*
75 3.70 £ 0.13*

Data present the experimental values and means of three independent
experiments + SEM. “refers significant difference versus non-treated control (p < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 16 Relative cell invasion of AR cells determined by transwell invasion assay

after cells were pretreated with non-toxic concentrations of TCS (0-7.5 pM)

for 24 h in detached condition and then subjected to transwell assay for

24 h

The concentrations of TCS Relative invasion (24 h)

(pM) (Mean + SE)
0 1.00 £ 0.00
25 1.25 + 0.05

5 195 + 0.11*
7.5 2.06 + 0.14*

Data present the experimental values and means of three independent

experiments + SEM. “refers significant difference versus non-treated control (P < 0.05)

determined by One-way ANOVA and Tukey’s test.
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Table 17 The relative protein of pFAK/IFAK determined by western blot analysis after
AR cells were pretreated with TCS (0-7.5 pM) for 24 h in detached condition

and then attached on conventional culture dishes for 4 h

The concentrations of TCS Relative pFAK/FAK level
(pM) (Mean * SE)
0 1.00 + 0.00
25 144 + 0.04*
5 1.54 + 0.03*
75 2.37 + 0.05*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples + SEM. *refers
significant difference versus non-treated control (P < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 18 The relative protein of pAkt/Akt determined by western blot analysis after
AR cells were pretreated with TCS (0-7.5 pM) for 24 h in detached

condition and then attached on conventional culture dishes for 4 h

The concentrations of TCS Relative pAkt/Akt level
(pM) (Mean *+ SE)
0 1.00 + 0.00
25 1.07 £ 0.02
5 1.25 + 0.03*
75 1.39 + 0.02*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples + SEM. *refers
significant difference versus non-treated control (o < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 19 The relative protein of Racl-GTP determined by western blot analysis after
AR cells were pretreated with TCS (0-7.5 pM) for 24 h in detached

condition and then attached on conventional culture dishes for 4 h

The concentrations of TCS Relative Racl-GTP level
(pM) (Mean + SB)
0 1.00 £ 0.00
25 101 £ 0.01
5 1.54 + 0.06*
75 2.00 £ 0.10*

Mean data from independent experiments are normalized to the level of (3-actin
protein. Values are means of three independent triplicate samples £ SEM. *refers
significant difference versus non-treated control (e < 0.05) determined by One-way

ANOVA and Tukey’s test.
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Table 20 The relative protein of RhoA-GTP determined by western blot analysis after
AR cells were pretreated with TCS (0-7.5 pM) for 24 h in detached condition

and then attached on conventional culture dishes for 4 h

The concentrations of TCS Relative RhoA-GTP level
(pM) (Mean + SE)
0 1.00 + 0.00
25 1.02 £ 0.01
5 1.07 + 0.02
75 1.06 + 0.02

Mean data from independent experiments are normalized to the level of (3-actin

protein. Values are means of three independent triplicate samples + SEM.
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