SUSTAINED RELEASE OF DRUG FROM CHITOSAN AND SILK FIBROIN BLEND FILMS

Ms. Supattra Limpapat

A Thesis Submitted in Partial Fulfillment of the Reqiurements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2003

ISBN 974-17-2341-5

Thesis Title:

Sustained Release of Drug from Chitosan/Silk Fibroin

Blend Films

By:

Supattra Limpapat

Program:

Polymer Science

Thesis Advisors:

Asst. Prof. Ratana Rujiravanit

Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyahint.

College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Ratana Rujiravanit)

(Prof. Alexander M. Jamieson)

(Assoc. Prof. Sujitra Wongkasemjit)

(Assoc. Prof. Suwabun Chirachanchai)

ABSTRACT

4472022063 POLYMER SCIENCE PROGRAM

Supattra Limpapat: Sustained Release of Drug from Chitosan/Silk

Fibroin Blend Films.

Thesis Advisors: Asst. Prof. Ratana Rujiravanit and Prof. Alexander

M. Jamieson, 97 pp. ISBN 974-17-2341-5

Keywords : Chitosan, Silk fibroin, Blend film, Degree of swelling,

Theophylline, Salicylic acid, Diclofenac sodium, Amoxicillin

trihydrate, Drug release, Kinetic

Chitosan/silk fibroin blend films were prepared by solution casting using glutaraldehyde as crosslinking agent. Drug release properties of chitosan and blend films of various blend compositions were investigated in vitro using a modified Franz Diffusion Cell at 37°C and pH 5.5. Pig skin was used as material representing human skin. Theophylline, salicylic acid, diclofenac sodium and amoxicillin trihydrate were used as model drugs. The order of drugs from the highest release to the lowest release was as follows: salicylic acid > theophylline > diclofenac sodium > a moxicillin trihydrate. F or all model drugs, the b lend films with 80% c hitosan gave the maximum drug release. In addition, an increase in thickness of the films resulted in a decrease in the amount of drug released. All model drug release data could be fitted to either zero order or Higuchi's model indicating that the releases of model drugs from chitosan and the blend films were either rate-controlling or diffusion-controlled releases. It was expected that the chitosan/silk fibroin blend films could be used as matrix for sustained release of a drug for a transdermal drug delivery system.

บทคัดย่อ

สุพัตรา ลิ้มปภัทร : การศึกษาการปลดปล่อยของยาจากฟิล์มของพอลิเมอร์ผสมระหว่าง ใคโตซานและซิลค์ไฟโบรอิน (Sustained Release of Drug from Chitosan/Silk Fibroin Blend Films) อ. ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ รัตนา รุจิระวานิช และ ศาสตราจารย์ อเล็กซาน เดอร์ เอ็ม เจมิสัน 96 หน้า ISBN 974-17-2341-5

งานวิจัยนี้ศึกษาการเตรียมฟิล์มระหว่างใคโตซานและซิลค์ไฟโบรอินแล้วผสมค้วยยา ในอัตราส่วนของใคโตซานและซิลค์ไฟโบรอินต่างๆ โดยเปรียบเทียบปริมาณยาที่ถูกปลดปล่อย ออกมาจากแผ่นฟิล์มในระบบอินวิโทร ซึ่งใช้หนังหมูเป็นแบบจำลองแทนผิวหนังมนุษย์และใช้ที่โอไฟลีน, ซาลิกไซลิกเอสิด, ไดโครฟีแนคโซเคียมและแอมมอกซีซิลินไตรไฮเดรตเป็นตัวอย่างยา ในการทคลอง ในงานวิจัยนี้ใช้กลูตารัลคีไฮค์เป็นสารก่อการเชื่อมในพอลิเมอร์ผสมระหว่างไคโต ซานและซิลค์ไฟโบรอิน จากผลการวิจัย พบว่า ลำคับปริมาณการปลดปล่อยของยาจากปริมาณมากไปยังปริมาณน้อยเป็นคังนี้ ซาลิกไซลิกเอสิด, ทีโอไฟลีน, ไคโครฟีแนคโซเคียมและแอมม อกซีซิลินไตรไฮเครต ซึ่งการปริมาณการปลดปล่อยสูงสุดของยาทุกชนิดพบที่พอลิเมอร์ผสมที่มี ใคโตซาน 80 เปอร์เซนต์ นอกจากนี้ การใช้ฟิล์มที่มีความหนามากขึ้นส่งผลให้ปริมาณยาที่ ปลดปล่อยออกมาน้อยลง ในด้านจลนพลศาสตร์ พบว่า แผ่นฟิล์มผสมระหว่างไคโตซานและ ซิลค์ไฟโบรอินสามารถควบกุมการปลดปล่อยของยาได้โดยการควบกุมอัตราการปลดปล่อยหรือ ควบคุมโดยการแพร่ คังนั้น แผ่นฟิล์มผสมระหว่างไคโตซานและซิลค์ไฟโบรอินสามารถใช้ ประโยชน์ในด้านการให้ยาผ่านทางผิวหนังแก่ผู้ป่วยได้

ACKNOWLEDGEMENTS

I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University, where I have gained my knowledge and enriched my skill in polymer science. I would also like to acknowledge Suraphon Food Public Co., Ltd. for their support in supplying shrimp shells, K PT C opperation (Thailand) for supply of sodium hydroxide 50% w/w solution.

I would like to express grateful appreciation to my advisors, Asst. Prof. Ratana Rujiravanit and Prof. Alexander M. Jamieson for their invaluable suggestion and criticism.

I am also indebted to my family and friends for their encouragement and understanding during my studies and thesis work.

TABLE OF CONTENTS

		PAGI
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xii
CHAPTER		
1	INTRODUCTION	1
	1.1 Theoretical Background	3
	1.1.1 Transdermal Drug Delivery System	3
	1.1.2 Chitosan	9
	1.1.3 Silk Fibroin	12
п	LITERATURE SERVEY	14
	2.1 Chitosan Based Polymer Blends	14
	2.2 Silk Fibroin Based Blend Films	15
	2.3 Chitosan/Silk Fibroin Blend Films	16
	2.4 Chitosan Based Material for Drug Studies	18
	2.5 Silk Fibroin-Based Material for Controlled Release	
	Studies	21
Ш	EXPERIMENTAL	22
	3.1 Materials	22
	3.2 Equipments	22
	3.2.1 Capillary Viscometer	22
	3.2.2 FTIR Spectrophotometer	22

CHAPTER		PAGE
	3.2.3 UV-Visible Spectophotometer	23
	3.3 Methodology	23
	3.3.1 Chitin Preparation	23
	3.3.2 Chitosan Preparation	23
	3.3.3 Degree of Deacetylation of Chitosan	24
	3.3.4 Viscosity-Average Molecular Weight of	
	Chitosan	24
	3.3.5 Chitosan Solution Preparation	25
	3.3.6 Crosslinked Drug-Contained Blend Films	
	Preparation	25
	3.3.7 Skin Preparation	25
	3.3.8 Spectrophotometric Analysis of Model	
	Drug	26
	3.3.9 In-vitro Skin Permeation of Drug	26
	3.3.10 Kinetics	27
IV	RESULTS AND DISCUSSION	28
	4.1 Effect of Blend Composition on Drug Release	28
	4.2 Effect of Drug Nature on Drug Release	31
	4.3 Effect of Releasing Time on Drug Release	43
	4.4 Effect of Thickness on Drug Release	46
	4.5 Kinetics	47
V	CONCLUSIONS	57
	REFERENCES	58
	APPENDICES	63
	Appendix A Preparation of chitosan	63
	Appendix B Characterization of chitosan	64

CHAPTER		PAGE
	Appendix C Determination of molecular weight of	
	chitosan	65
	Appendix D UV Spectrum of model drugs and	
	glutaraldehyde	67
	Appendix E Calibration curve of model drugs	70
	Appendix F Data of drug release	74
	Appendix G Data of drug release with different	
	thickness	94
CURI	RICULUM VITAE	97

LIST OF TABLES

TABLE		PAGE
4.1	Drug release and degree of swelling of chitosan and	
	the blend films of chitosan and silk fibroin	29
4.2	FTIR characteristic absorption bands of chitosan	36
4.3	FTIR characteristic absorption bands of silk fibroin	36
4.4	FTIR characteristic absorption bands of theophylline	37
4.5	FTIR characteristic absorption bands of salicylic acid	37
4.6	FTIR characteristic absorption bands of diclofenac	
	sodium	37
4.7	FTIR characteristic absorption bands of amoxicillin	
	trihydrate	37
4.8	The analysis of model-drug release kinetics	56
A1	Yields of chitin produced from shrimp shell	63
A2	Conversion of chitosan from chitin	63
B1	FTIR characteristic absorption bands of chitosan	64
C1	Running time of solvent and chitosan solution	65
C2	Data of relative viscosity (η_{rel}), specific viscosity	
	$(\eta_{sp}),$ and reduced viscosity (η_{red}) of chitosan solution	
	with various concentrations	65
D1	Summary of maximum wavelength (λ_{max}) of each	
	type of model drugs and glutaraldehyde	69
E1	Data of calibration curve of theophylline solution	70
E2	Data of calibration curve of diclofenac sodium	
	solution	71
E3	Data of calibration curve of salicylic acid solution	72
E4	Data of calibration curve of amoxicillin trihydrate	
	solution	73
F1	Release of theophylline from the blend films with	
	100% chitosan content at 37°C, pH 5.5	74

TABLE		PAGE
F2	Release of theophylline from the blend films with	
	80% chitosan content at 37°C, pH 5.5	75
F3	Release of theophylline from the blend films with	
	60% chitosan content at 37°C, pH 5.5	76
F4	Release of theophylline from the blend films with	
	50% chitosan content at 37°C, pH 5.5	77
F5	Release of theophylline from the blend films with	
	40% chitosan content at 37°C, pH 5.5	78
F6	Release of diclofenac sodium from the blend films	
	with 100% chitosan content at 37°C, pH 5.5	79
F7	Release of diclofenac sodium from the blend films	
	with 80% chitosan content at 37°C, pH 5.5	80
F8	Release of diclofenac sodium from the blend films	
	with 60% chitosan content at 37°C, pH 5.5	81
F9	Release of diclofenac sodium from the blend films	
	with 50% chitosan content at 37°C, pH 5.5	82
F10	Release of diclofenac sodium from the blend films	
	with 40% chitosan content at 37°C, pH 5.5	83
F11	Release of salicylic acid from the blend films with	
	100% chitosan content at 37°C, pH 5.5	84
F12	Release of salicylic acid from the blend films with	
	80% chitosan content at 37°C, pH 5.5	85
F13	Release of salicylic acid from the blend films with	
	60% chitosan content at 37°C, pH 5.5	86
F14	Release of salicylic acid from the blend films with	
	50% chitosan content at 37°C, pH 5.5	87
F15	Release of salicylic acid from the blend films with	
	40% chitosan content at 37°C, pH 5.5	88
F16	Release of amoxicillin from the blend films with	
	100% chitosan content at 37°C, pH 5.5	89

TABLE		PAGE
F17	Release of amoxicillin from the blend films with	
	80% chitosan content at 37°C, pH 5.5	90
F18	Release of amoxicillin from the blend films with	
	60% chitosan content at 37°C, pH 5.5	91
F19	Release of amoxicillin from the blend films with	
	50% chitosan content at 37°C, pH 5.5	92
F20	Release of amoxicillin from the blend films with	
	40% chitosan content at 37°C, pH 5.5	93
G1	Release of theophylline from the 80% chitosan	
	content blend films with the thickness of 20-30 μm	
	at 37°C, pH 5.5	94
G2	Release of theophylline from the 80% chitosan	
	content blend films with the thickness of 50-60 μm	
	at 37°C, pH 5.5	95
G3	Release of theophylline from the 80% chitosan	
	content blend films with the thickness of 100-120	
	μm at 37°C, pH 5.5	96

LIST OF FIGURES

FIGUR	E	PAGE
1.1	Horizontal-type skin permeation system, small cell	
	volume	7
1.2	Horizontal-type membrane permeation system, large	
	solution volume	8
1.3	Franz diffusion cell	8
1.4	Modified Franz diffusion cell	9
1.5	Rotating-disc-type membrane permeation cell	9
1.6	Chemical structure of chitosan	10
1.7	Chemical structure of silk fibroin	12
4.1	Comparison of the percentages of drug released from	
	chitosan and the blend film with 80% chitosan content.	
	(■) 100% chitosan content, (図) 80% chitosan content	30
4.2	Formation of hydrogen bond between chitosan (CS)	
	and silk fibroin (SF) in the semi-interpenetrating	
	network and the dissociation of chitosan and silk	
	fibroin by breaking down the hydrogen bond in the	
	acidic medium. (Chen et al., 1997b)	30
4.3	Structure of salicylic acid	34
4.4	Structure of theophylline	34
4.5	Structure of diclofenac sodium	35
4.6	Structure of amoxicillin trihydrate	35
4.7	Interaction between salicylic acid and chitosan	36
4.8	FTIR spectra of (a) chitosan film, (b) silk fibroin film,	
	(c) blend film with 80% chitosan content,	
	(d) theophylline-loaded blend films with 80%	
	chitosan content and (e) theonhylline	38

FIGUR	E	PAGE
4.9	FTIR spectra of (a) chitosan film, (b) silk fibroin film,	
	(c) blend film with 80% chitosan content,	
	(d) salicylic acid-loaded blend films with 80%	
	chitosan content and (e) salicylic acid	39
4.10	FTIR spectra of (a) chitosan film, (b) silk fibroin film,	
	(c) blend film with 80% chitosan content,	
	(d) diclofenac sodium-loaded blend films with 80%	
	chitosan content and (e) diclofenac sodium	40
4.11	FTIR spectra of (a) chitosan film, (b) silk fibroin film,	
	(c) blend film with 80% chitosan content,	
	(d) amoxicillin trihydrate-loaded blend films with 80%	
	chitosan content and (e) amoxicillin trihydrate	41
4.12	Drug release profile for pure chitosan and the blend	
	films. (♦) 100% chitosan content, (■) 80% chitosan	
	content, (\triangle) 60% chitosan content, (\triangle) 50%	
	chitosan content and (O) 40% chitosan content	42
4.13	Effect of releasing time on releasing of theophylline.	
	(♦) 100% chitosan content, (■) 80% chitosan	
	content, (\blacktriangle) 60% chitosan content, (\triangle) 50% chitosan	
	content and (O) 40% chitosan content	43
4.14	Effect of releasing time on releasing of salicylic acid.	
	(♦) 100% chitosan content, (■) 80% chitosan content,	
	(\blacktriangle) 60% chitoan content, (\triangle) 50% chitosan content	
	and (O) 40 % chitosan content	44
4.15	Effect of releasing time on releasing of diclofenac	
	sodium. (♠) 100% chitosan content, (■) 80%	
	chitosan content, (\triangle) 60% chitosan content, (\triangle)	
	50% chitosan content and (()) 40% chitosan content	44

FIGURI	E	PAGE
4.16	Effect of releasing time on releasing of amoxicillin	
	trihydrate. (♠) 100% chitosan content, (■) 80%	
	chitosan content, (\triangle) 60% chitosan content, (\triangle)	
	50% chitosan content and (O) 40% chitosan content	45
4.17	Degree of swelling of chitosan/silk fibroin blend	
	films as a function of time (�) 100% chitosan content,	
	(■) 80% chitosan content, (▲) 60% chitosan content,	
	(\triangle) 50% chitosan content, (\bigcirc) 40% chitosan content	45
4.18	Drug release profile for theophylline-loaded blend	
	films with 80% chitosan content. The thickness of	
	the films were (•) 20-30 μm, (o) 50-60 μm and	
	(■) 100-120 µm	46
4.19	Normal plot of releasing of theophylline from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	48
4.20	Higuchi plot of releasing of theophylline from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	49
4.21	Normal plot of releasing of salicylic acid from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	50
4.22	Higuchi plot of releasing of salicylic acid from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	51
4.23	Normal plot of releasing of diclofenac sodium from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	52
4.24	Higuchi plot of releasing of diclofenac sodium from	
	chitosan/silk fibroin blend films with different blend	
	composition at 37°C and pH 5.5	53

FIGUR	E	PAGE
4.25	Normal plot of releasing of amoxicillin trihydrate	
	from chitosan/silk fibroin blend films with different	
	blend composition at 37°C and pH 5.5	54
4.26	Higuchi plot of releasing of amoxicillin trihydrate	
	from chitosan/silk fibroin blend films with different	
	blend composition at 37°C and pH 5.5	55
B1	FTIR spetrum of chitosan	64
C1	Plot of reduced viscosity (η_{sp}/c) and $ln((\eta_{rel})/c)$ versus	
	concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and	
	$\circ = \ln((\eta_{\rm rel})/c)$	66
D1	UV spectrum of theophylline	67
D2	UV spectrum of diclofenac sodium	67
D3	UV spectrum of salicylic acid	68
D4	UV spectrum of amoxicillin trihydrate	68
D5	UV spectrum of glutaraldehyde	69
E1	Calibraton curve of theophylline solution	70
E2	Calibration curve of diclofenac sodium solution	71
E3	Calibration curve of salicylic acid solution	72
E4	Calibration curve of amoxicillin trihydrate solution	73