CHAPTER I
VERSATILE ELLIPTIC BASIS FUNCTION NEURAL NETWORK (VEBFNN)

Versatile Elliptic Basis Function Neural Network was introduced by Jaiyen et
al. [4]1, Chapter |Il, the versatile elliptic basis function, structure of VEBFNN with
basic elements, how to obtain the set of orthonormal basis vectors and the previous

VEBF learning algorithm proposed by [4] are given as follows:

21 Versatile Elliptic Basis Function (VEBF)

Given the n-dimensional space, the hyperellipsoidal equation in rectangular

coordinate system can be mathematically expressed by
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where .. is scalar representing the width value of i‘haxis for the hyperellipsoidal,

and each scalar X from Equation (1) can be viewed as the scalar projection of
vector X =[X, x2emex,]Jron to standard basis vectors , =[1 O -=m0]r, 2=[0 1---0]7
1.., , =[0 O m-1]7. Given any orthonormal basis vectors{ ,}''1l, the scalar X s

expressed as

X. =x7 , (2)

Based on Equations (1) and (2), the hyperellipsoidal equation for given orthonorm al

basis vectors { ,}'!'3l is mathem atically expressed by

From Equation (1), the ellipsoidal is located on the origin as its center. This form can

be generalized by translation of axis method. Suppose X =[x, x2eeexn]ris a vector



corresponding to the original axes. Let { ,}"=lbe the set of basis vectors. The

original axes of the hyperellipsoidal are translated from the origin to the coordinates

of C=[clc2---c,fel". The new coordinates of vector xdenoted by

x' = [X[ X2ee-XAf is written by
X'=X, - c¢1 for i =1,2,..., 4)

Therefore, the hyperellipsoidal equation in the new axes becomes

From Equation (5), the Versatile Elliptic Basis Function (VEBF) is defined as follows:
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where lis the width of the VEBF along the ilhaxis , cand { ,}",1 are the center

vector and the set of orthonormal basis vectors of the VEBF, respectively.

2.2 Structure of Versatile Elliptic Basis Function Neural Network (VEBFNN)

A Versatile Elliptic Basis Function Neural Network (VEBFNN) consists of three
distinctive layers called input, hidden and output layers. The input layer is
constituted from a data point. The number of neurons in the input layer is equal to
the number of attributes. The output layer contains a set of neurons which the
number of output neurons is equal to the number of class labels. The hidden layer
comprises of the set of sub-hidden layers. Each sub-hidden layer, containing a group
of neurons, corresponds to each class label. The structure of VEBF neural network is

illustrated in Figure 1. The dashed boxes are sub-hidden layers.
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Given an -dimensional data set with class label X ={C/tHeE"xI+|
1</, <r }, let I = {AlAZ,A"} be a hidden layer containing I sub-hidden layers.

The k'h sub-hidden layer called A*responsible for data points with the class label

Input Layer  Hidden Layer Output Layer

Subhidden Layers

Figure 1 The structure of versatile elliptic basis function neural

network.

kK and contains the group of hidden neurons expressed as A* = {Q*,Q *+me,~dd},
where Q*is the j,h hidden neuron in the Kk'h sub-hidden layer and dK is the
number of hidden neurons in the A7sub-hidden layer. The QK is identified by
Clk=(x*, *, = ,Nj), where XJ, *, * and Nj are the center vector, width vector,
covariance matrix and total number of belonging data of the neuron Q*. Each

hidden neuron applies a Versatile Elliptic Basis Function (VEBF) as an activation

function. The VEBF of Q* is expressed by

_ ) 1101, £< (*-
yfj (x:x, 1 -1 @)
/A «'y



where X* =[Xj] Xj2 mm Xjj' eK"is a center vector, *is a column matrix

of orthonorm al basis vectors corresponding to the covariance matrix * and

* =1 =, *2 ee- *1r eM "is a width vector. Based on Equation (7), the definition of

a covered data is defined by

Definition 1 For a given input vector X, sM ", it is said that X, is covered by
the neuron Q* if and only if the corresponding versatile elliptic basis function value

is less than or equal zero, i.e. (/*(X, X*, *, *.))<O.

The output of the kh output neuron 0*(X,) in the output layer is defined as

follows:

0*(x,.) = min({™*(x,),"2(X.),...~* (X))}, k =1,2,...,dk ®

The decision function Fix,)for assigning the class label of the input vectorX, is

defined by

Fix,) = min({0'(x,),02(x) .../ (x)}) (&)

For learning process, the structure of VEBF network adapts itself to data distribution
by creating the new hidden neuron or adjusting neuron parameters, incrementally
and autom atically. This process is performed repeatedly until all learning data points

are completely covered.

2.2 Orthonormal Basis Computation

this research, the set of orthonormal basis vectors of a VEBF is derived by
Principal Component Analysis (PCA) technigue. Principal Component Analysis (PCA),
also known as the Karhunen-Loeve transformation in communication theory [31], is
statistical procedure used to transform a set of data points of possibly correlated

inputs in input space into the new feature space in which linearly uncorrelated
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features, called principal components, are obtained by orthogonal transformation.
The transformation is performed in such the way that the first principal component
maximizes the variance, and then each succeeding component provides the
maximum variance under the orthogonal components condition. The concepts of

PCA and orthonorm al basis vector computation are provided:

2.2.1 Principal Component Analysis (PCA)

Let Xdenote an -dimensional random vector with zero mean

identified by

E[x] =0 (10)

where £[*]is the statistical expectation operator and Odenote the zero vector. Let

denote a unit vector onto which the vector xis to be projected. The projection is

defined by

a=x7 = 7X (11)

Based on Equation (10), the mean value of ais also zero, E[a\ =0. The variance of

ais therefore given by
(J2=£[a2?] (12)

From Equations (11) and (12), the variance is given as
<R=E£[(umx)(x7 )]

E[( x)(x7 )]

TE[XXT]u

= 7

Thus,

X2= 7 . (13)
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The n-by-n matrix is the covariance matrix of random vector X . From Equation
(13), the variance cr2of the projection ais the function of the unit vector given as:
/() =cr2= 7 (14)

The function /( ) is called a variance probe. To find the set of unit vectors along
which /( ) has extremal or stationary values with respect to a constraint on the

Euclidean norm (]JJul]). If is a unit vector such that /( ) has an extreme value, then

for any small AU, it leads to that

/ (u+Au) =/ () (15)
From Equation (14) and (15), /( + Au) is expressed as follows

/( + Au) = 7 + 2(Au)7Su+ (Au)rSAu (16)
Since the Au is a small value, the second-order term (Au)7SAu s ignored,

/( +Au)=/( ) +2(Au)7Su liry)

Flence, by applying Equations (15) and (16) implies that

(Au)7Su =o (18)

Not any Au of uis admissible. The constraint of Au is based on the Euclidean norm

of u+Au by |Jlu+ Au]] =1 or equivalently |lu+ Au||] =1.

+ Au|| = 1or (+Au)r(+Au)=1
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Since 7 = land the Auis a small value, it obtains that
(A7 =0 (19)
This means that the Au must be orthogonal to . From Equations (18) and (19), it

obtains that

(Au)7Su-/I(Au)7 =0
(Au)7( -/ 1)y =0

Su-/lu =0

=Au (20)

Equation (20) is recognized as the eigenvalue problem. The vector uand scalar A are

called the eigenvector and corresponding eigenvalue, respectively.

2.2.2 Orthonorm al basis vectors by PCA

The orthonormal basis vectors of each VEBF neuron are obtained by
the direction of data distribution captured by the set of principal components. The
original axes of the input data space are translated into the coordinate of the mean
of the data set. The translated axes are rotated by applying PCA procedure. Given a
data setXdM ", the concept of the orthonorm al basis vector by PCA procedure can

be summarized as follows:

1. Compute the mean vector (x)

2. Compute the covariance matrix ( ) of the data setX

3. Compute the set of eigenvalues and corresponding
eigenvectors {At, 1}"=L of covariance matrix , where Al >A2> > An.
The obtained eigenvectors are gathered to form a column matrix, =1, 2 eee 1,

of orthonorm al basis vectors as the local space of a VEBF neuron.
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2.3 VEBF Learning Algorithm for one incoming datum

Let X=f{(X(/Q1x(em" and /=1,2,...,.N} be a finite set of training data,
where X,is a feature vector referred to as a data vector and rtis the class label of
the vector. Let A ={Q,,Q02,...,QA}be a set of K hidden neurons in VEBFNN. Each
of Q*e{11211A} contains the center vector C* whose dimension is equal to that of the
data vector, the width vector ak, the covariance matrix 1, the number of data in
the node Nkl and the corresponding class label clk, as a 5-tuple
Q* =(c*,a*, LNk, =*). Let NObe a constant for adjusting the width vectors. If

there is no hidden neuron in the network, K is set byK =0. The 6 be a threshold
for merging the two hidden neurons in the network. The learning algorithm for

VEBFNN can be given as follows.
VEBF Learning Algorithm for one incoming datum:

Step 1 Initialize the width vector a0=[ava2,...,ani
Step 20 Present the training data with class label (X,,t]) to the VEBFNN.

Step 31 If K ~Othen find a hidden neuron QX*assigned for the class /.such

thatk = argmax(]|Ix - ¢, D

a) Compute the new center vector by

AC X,
cl =m —C AT

b) Compute the new covariance matrix 1 by

Nk C I KX ir T ckek
Sl a k 1 iAo ir,
PR ckBk" 4 ckek Sl

Else set K =K +1and create new hidden neuron by setting
a) ¢* =x(,

b) * =0 where Ois zero matrix,

c) iV*=l,
d) clk =(3
e) a* =a0,

HA=Au{Q]j}



§) Remove (x,,/7) from the training data set and go to step 8.

Step 4. Compute the orthonormal basis for based on the covariance

matrix 1
Step 5: Compute y/k(x( c[, 1, 1) based on the new center ck.
Step 6: If (/((x(:c™.,wit,Uit)<O0then update parameters of Q lby
a) If Nk >NOthen update the width vector akby
a,=«/+1«-c*)7 ,],i=\,...,n
b) Update the covariance matrix k= £,
c) Update Nk-N k+1,

d) Update the center vector ck-c'k.

Else set kK =k + land create new hidden neuron by setting
a) ¢c*=x1
b) ,1= O where 0Ois zero matrix,
0 Nk=1],
d) clk =t1,
e) ak =a0,
n a=a {Qn.

Step I: compute y/k(c,\ck,vjk,\]Jk)<Oané vy/i(ck:c,, 1, 1)<0 for
l=1,2,...,

Step 8 If y/k(c, :ck, k,Uk)<6or y/,(ck:c;, ,, 1)<6lfor | =1,2,.., then

do the following steps:

a) Merge hidden neurons Qkand Q, into one hidden neuron Q1L

1
Cr = - (Nkck+N E1),
Nk+N

" 8”=Nk+N, Sk+Nk+N, ¥+ (Nk+N,)2

- Nm=Nk+N,,
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- at="27rAt , z=1,2,...,/? where 2,is the Theigenvalue of

the covariance matrix m,

-t =t

b) Add Q minto the network and delete Q.kand Q, from the

network

c) Set K =A -!.

Step 9: If the training data set is not empty then go to Step 2, else stop

training.
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