CHAPTER IV
F-DUAL-CS-RICKART MODULES

In this chapter, we give the notions of F-dual-Rickart modules and F-dual-CS-
Rickart modules. The concept of F-dual-Rickart modules are generalized from
dual-Rickart modules given by Lee, Rizvi and Roman in [12]. We extend the idea
of being a direct summand of f(M) to /(F) for all / G End(M) after that the
ideas of F-dual Rickart modules and dual-CS-Rickart modules, defined by Abyzov
and Nhan in [1], module are combined. We integrate the idea of being a direct
summand of /(F) from F-dual-Rickart modules and the idea of lying above some
direct summand of f(M ) from dual-CS-Rickart modules for all / G End(M).

Several properties of F-dual-CS-Rickart modules and characterizations of those
are investigated in Section 4.1, We show that the intersection of two direct sum-
mands one of which contained in F of an F-dual-CS-Rickart module lies above
some direct summand. Moreover, we study when a submodule of F-dual-CS-
Rickart module is also an F'-CS-Rickart module where F' is a fully invariant sub-
module of that submodule. Relationships between F-dual-CS-Rickart modules
and F-dual-Rickart modules as well as relationships between F-dual-CS-Rickart
modules and dual-CS-Rickart modules are presented. Furthermore, we give a
notion and a characterization of strongly F-dual-CS-Rickart modules which is a
special case of F-CS-Rickart modules. Observe that the idea of F-dual-CS-Rickart
modules considers the images of endomorphism on itself. So, in Section 3.2, we
extend this idea to consider an image of a homomorphism which lies above some
direct summands.
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4.1 Properties of F-dual-CS-Rickart Modules

First, we provide the definition of an F-dual-Rickart module. Then the notion of
F-dual-CS-Rickart modules are given by extending the concept of F-dual-Rickart
modules and dual-CS-Rickart modules. We show that the sum of two submodules
of M which lie above some direct summands lies above a direct summand of M
if M is an F-dual-CS-Rickart Module and one of those submodules is contained
in F. One of main points is that any F-dual-CS-Rickart module can be written
as a direct sum of two submodules one of which is contained in F and the other
one of which is a dual-CS-Rickart module.

Lee, Rizvi and Roman provided in [12] the concept of dual-Rickart modules in
2011, A module M is a dual-Rickart module if / (M) is a direct summand of M
for any / G End(M). Thus we are interested in when /(F) is a direct summand
of M for all / G End(M) and we call the modules satisfying this condition F-
dual-Rickart modules.

Definition 4.1.1. Let F be a fully invariant submodule of M. A module M is
an F-dual-Rickart module if /(F) is a direct summand of M for any / G End(M).

Next, the notion of dual-CS-Rickart modules are introduced by Abyzov and
Nhan in 2014. A module M is a dual-CS-Rickart module if / (M) lies above direct
summand of M for any / G End(M). We combine the concepts of F-dual-Rickart
modules and dual-CS-Rickart modules as follows.

Definition 4.1.2. Let F be a fully invariant submodule of M. A module M is
an F-dual-CS-Rickart module if /(F) lies above a direct summand of M for any
| GEnd(M).

Note that M is a dual-CS-Rickart module if and only if M is an M-dual-CS-
Rickart module.

Proposition 4.1.3. Let M e an F-dual-CS-Rickart module and f ¢ End(M).
The the following statements are equivalent.
(i) There is a direct summand N of M such that N ¢ /(F) and f(F)/N <*MIN.
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() There is a direct summand N of M and a submodule K of M such that
NC/(F), /(F)=N+K andK < M.

(in) There is a decomposition M = N ® K with N ¢ /(F) and K [ (F) <c K.
(iv) f(F) = eM © (1 —e)/(F) and (1 —e)/(F) <M for some e2 = ¢ G End(M).

Proof. The proof follows from Proposition 2.3.7. I

For an F-dual-Rickart module M, any / G End(M), f (F) is a direct summand
of M sothat /(F) lies above itself. Next, we show that any F-dual-Rickart module
is always an F-dual-CS-Rickart module.

Proposition 4.1.4. Any F-dual-Rickart module is an F-dual-CS-Rickart module.

Proof. Let M be an F-dual-Rickart module. Then /(F) = eM for some e2 =
e G End(M). So /(F) lies above eM. Therefore, M is an F-dual-CS-Rickart
module. I

Observe that /(F) is a submodule of M contained in F. So we can con-
clude that M is an F-dual-CS-Rickart module if and only if any submodule of
M contained in F lies above a direct summand of M. Next, we give an example
of F-dual-CS-Rickart modules which is not an F-dual-Rickart module for some
given fully invariant submodule F of M.

Example 4.1.5. From Example 3.1.3, let M be the Z-module Z2® Z8 Then
the submodule K = 220 (4) s a fully invariant submodule of M. The following
diagram describes all submodules of F2 28 Each submodule contained in a
box is a direct summand of M but the others are not direct summands of M.
Furthermore, if @ submodule N is a small submodule of M, we write Nsmall,
otherwise; we write NeoQL- )
. Observe from the diagram that all submodules of M contained in K are (Ul.)l
U @, 2204 (|,4)Z and k. Among these, only (u l.), 22 Uand (|,4)Z
are direct summands of M, i.e., they lie above themselves, and only 0® 4 < M
but K is not a direct summand and not a small submodule of M. Moreover,

K = (22 0 (U () lies above Z2® Ubecause (U (4)) <* M by applying
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Proposition 2.3.7. We can see that any submodule of M contained in K lies above
a direct summand of M. Thus M s a if-dual-CS-Rickart module. However, M is
not a if-dual-Rickart module because 15(K) = K which is not a direct summand
of M.

22078
0 Zg Zy D 25t (1,1)Z
0 D <§> small L& ZM (T’ E)ZM
><
6 © <Z>smull ZQ D 6 (T’ Z)Z

(5.0)

Proposition 4.1.4 together with Example 4.1.5 ensure that F-dual-CS-Rickart
modules truly generalized F-dual-Rickart modules. We know that M is a dual-
CS-Rickart module if and only if M is a M-dual-CS-Rickart module. For a given
fully invariant submodule F of M, “M is an F-dual-CS-Rickart module™ does not
imply “M is a dual-CS-Rickart module”. Example 4.15 shows that Z2©z8s
a (22 (4))-dual-CS-Rickart module; however, Z2 Z8is not a dual-CS-Rickart
module shown in the next example.

Example 4.1.6. From Example 4.15, let M be the Z-module z2 z8. and
K=1220220 (4). We obtain that M is a F-dual-CS-Rickar; module. Let
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1 [ ﬁ ( End(z2 Hom(Z8ZZ)\ = End( ngnﬁi Where fo

—\6 \ Hom(Z2,Zg)  End(Z8) )
is the zero homomorphlsm on z2, /qis the zero homomorphism from z 2 into z8,

g[(y) =y and <2(j) = 2y for all § GZg. Then h{M) —(1,2)Z which does not
lie above in all direct summands of M. Thus z20 zsis not a dual-CS-Rickart
module.

Next, we provide some properties of F-dual-CS-Rickart modules.

Proposition 4.1.7. Let M be an F-dual-CS-Rickart module and p be a module.
it M is isomorphic to p by an isomorphism p : M —¥p , then p is a P(F)-dual-
CS-Rickart module.

Proof. Assume that p is an isomorphism from p to M. Let / GEnd(P). Recall
that 4&(F) <fuly p. So &f(f) G End(M). Since M is an F-dual-CS-Rickart
module, [&f(p){F) lies above a direct summand of M. So there is a decompo-
siion M —N @ K with N ¢~ f(ffj[F) and K f<fi)(F) -c K. Note that

p = —4>{N) © (J{K) so that f(N) <® p and f(K) <® p. It is clear that
4>(N) ¢ 0(0_1/0)(F) ¢ 4>(F). Since K f(GH(F) < K, it implies that
K (0-1f(f){F) <c M. By Proposition 2.3.6, ()[K f(fi) (F)) = p.

Thus HK (»_1/0) (ED) <c f(K) because (p(Kr) @ 1<5) (F)) C 4>(K) and <f(K)
is a direct summand of p. Since (pis an isomorphism, (){K (p"fp) (F)) =
P{K) fp(F). This forces that P(K) fp(F) <F P(K). Therefore, fp(F) lies
above P(N) from Proposition 4.1.3. [

The sum of any two direct summands may not be a direct summand, nor-
mally. However, dual-Rickart modules have property that the sum of two direct
summands turns to be a direct summand; moreover, dual-CS-Rickart modules
possess property that the sum of two direct summands lies above a direct sum-
mand. Similarly, we are interested in the sum of two direct summands of an
F-dual-CS-Rickart module. Next example presents that there is the sum of two
direct summands of an F-dual-CS-Rickart module which is not a direct summand
but it lies above a direct summand.
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Example 4.1.8. From Example 4.1.5, let M —Z20Zg and K = 2 2® (4). Recall
that M is an AT-dual-CS-Rickart module. Note that A = (1,4)Z and B —Zg©0
are direct summands of M. Then A+ B —z20 (4) is not a direct summand of
M but A+ B =220 (4) lies above z2 0.

Nevertheless, an F-dual-CS-Rickart module M satisfying some conditions con-
firms that the sum of two direct summands lies above a direct summand of M.
The following lemma is necessary to prove this fact.

Lemma 4.1.9. Let F ke afully invariant submodule of M. Leth2=h,¢2=¢G
End(M) and gM ¢ F. Then gF = gM and hM + gM = hM (1 —h)gM —
hM (1 —h)gF.

Proof. It is clear that gF C gM. Let XGgM ¢ F. Then X = gx Gg{F) so that
gF = gM.

Let X GhM + gM. Then there are ' G M such that X= h(u) + g(v) =
h(u) + (hg(v) + (1 —h)g(v)) = h( + <)) + (L —hjg{v) GhM (1 —h)gM.
Next, let X+y GhM (1 —h)gM where X GhM and y G (1 —h)gM. Then
X—hx andy = (1 —h)g(w) for some GM. So X+y=nh{x) + (L =h)g( ) —

h(x—=g( ))+ < )GhM +gM. Thus hM +gM =hM (L —h)gM. Therefore,
hM +gM =hM (L —h)gF because gF = gM. [

Proposition 4.1.10. Let M be an F-dual-CS-Rickart module. Then the following
statements hold.

(i) For any direct summands N and K of M, ifK ¢ F, then N + K lies aboves
M" for some direct summand M' of M .

() For any submodules N and K of M, if there are direct summands Ml and M2
of M such that N lies above MI and K lies above M2 with M2¢ F, then N + K
lies above M" for some direct summand M" of M .

(in) For any f\i  1fn GEnd(M), there is a direct summand M" of M such that
fi(F) + eoo+ fn(F) lies above M ",

Proof, (i) Assume that N and K are direct summands of M and K ¢ F. Then
N =hM and K = gM for some h2=h,g2= g GEnd(M). From Lemma 4.1.9,
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N+K —hM+gM =hM ® (1 —h)gF. Since (L —h)g G End(M) and M is
an F-dual-CS-Rickart module, ¢« —h)g{F) = eM ® ~@1 —e)(l —h)g(F)'] and
(L —e)(I —=h)g(F) M by applying Proposition 4.1.3. Thus

N+K=hM eM®AL- e)l - % (F)).

Silice eM ¢ (« —h)g(F) ¢ ¢ —h)M and M =eM (L —e)M, by Modular
Law (1 —h)M =eM ® ((1 —e)M (L —h)M) and applying Proposition 2.1.5,
(I—)Mn(l-h)M = (1—e)(lI-n)M. We can conclude that M = hM® (I-h)M =
hM®eM (o —eM (L—=h)M) =hM eM (1 —e)(l —h)M so that
hM ®eM <® M. Therefore, N + K lies above hM ® eM.

(i) Assume that N and K are submodules of M such that N lies above a
direct summand hM of M and K lies above a direct summand gM of M with
gM C F for some h2=h, g2=g GEnd(M), respectively. From Proposition 2.3.7,
we obtain N —hM® ¢ —h)N and (L—h)N <c M; moreover, K —gM ® (1—)K
and (L —g)K <*M. Asthe results of (i), \M + gM =eM (1 —e)(hM + gM)
and (1 —e){hM + gM) &M for some e2= e GEnd(M). Thus

N+K=(hM (L- ANy + (gM  (1- QKN
= (hM + &)+ ((L- )N+ (L- gKY
= (eM  (L- e)(hM + gMYj + (1 - hN + (1- 9)k)
=eM+ ({I- e){hM +gM) + (L- )N +(L-g ) .
Moreover, (1 —€)[hM + gM) + (L —h)M N) + (I —g)M K) <c M by
applying Proposition 2.3.7. Therefore, N + K lies above eM.
(iii) Let fi GEnd(M) for all i G{1,..., }. Since M is an F-CS-Rickart mod-
ule, for each i, fi(F) lies above Mi for some direct summand Mi of M. Applying

(i) repeatedly, we obtain /1(F) +-—-+fn(F) lies above direct summand M" of M
because fi(F) ¢ F for all . [

A module M is an SSP-d-CS module, given in [1], if the sum of two direct
summands lies above a direct summand of M. The sum of two direct summands
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of an F-dual-CS-Rickart module lies above a direct summand of M when one of
which contained in F shown from the previous proposition,

Corollary 4.1.11. Let M be an F-dual-CS-Rickart module. Then M is an SSP-
d-CS module provided that for all direct summands of M contained in F.

Next, we show that a direct summand of an F-dual-CS-Rickart module is
also an .F-dual-CS-Rickart module where F" is a fully invariant submodule of this
direct summand. This result is similar to property in F-CS-Rickart modules.

Theorem 4.1.12. A module M is an F-dual-CS-Rickart module if and only if N
isan (N F)-dual-CS-Rickart module for any direct summand N of M.

Proof. The sufficiency is clear because M is always a direct summand of M itself,

For the necessity, let N be a direct summand of M. Then N = eM for
some e2 = ¢ G End(M) and F ~ F is a fully invariant submodule of N. Let
K=@—eM. Then M = N®K Since M = N ®K and F <fully M, by
Proposition 218, F = (N F)® (K F). Let g GEnd(F). So ge GEnd(M).
Since M is an F-dual-CS-Rickart module, ge(F) = e\M © ((1 —ei)ge(F)) and
(1 —ei)ge(F) <c M for some (eiy2 = e\ G End(M). Since F <fully M, we have
N F = eF sothat ge(F) = g(N F) ¢ N. We obtain that e\M <® N
because e\M <® M and e\M ¢ ge(F) ¢ N. As (1 —ei)ge(F) < M and
(1—ei)ge(F) ¢ ge(F) ¢ N which isadirect summand of M, so (1—ef)ge(F) N
by applying Proposition 2.34. Thus g(N  F) = elM ({1 —ei)"e(F)) which
e\M < N and ¢ —ei)ge(F) < N. This forces that g(N  F) lies above e\M.
Therefore, N is an (N F)-dual-CS-Rickart module. I

A direct sum of F-dual-CS-Rickart modules when each summand is also a fully
invariant submodule is examined in the following result.

Theorem 4.1.13. Let Mj be afully invariant submodule of 1M and H
be a fully invariant submodule of Mj for allj G {1,..., }. Then 0 " 1 Mi is
a 0 "=t Fi-dual-CS-Rickart module if and only if Mj is an Fj-dual-CS-Rickart
module for allj G{1,.... }.
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Proof. For the necessity, assume that 0" =1 Miisa 0 =1 Fj-dual-CS-Rickart mod-
ule. Since each Mj < 0 "=t Mi, we obtain that Mj is an (Mj 0 =1 Fj)-dual-
CS-Rickart module by Theorem 4.1.12. Therefore, Mj is an Fj-dual-CS-Rickart
module because Mj 0 =tFi=Fjforallj G{1,..1 }.

To show the sufficiency, assume that M) is an Fj-dual-CS-Rickart module
forall j ¢ {1,.., }. Let/ GEnd(0"=1IM) and (xi,...,xn) ¢ ®"=1M,].
Then [ (x ..., xn) = f{x toooot [(0,...,xn) = FUEL + e + fn(xn)
where fj .= fij : Mj —» ®£_1IMi and ij is the inclusion map from Mj into
OiLi Miforallje (L,.., }. Aseach M <wuiy 0"=LMilwe obtain fj :Mj —»
M and /j(Fj) C H. Since each Mj is an Fj-dual-CS-Rickart module, fj{Fj)
lies above £]M) for some €@ = ¢ G End(Mj). That is fji{Fj) = tjM] ® (1 —
Z))fj(F)) and (L - e))fj(Fj) « Mj forallj ¢ {1,..., }. Hence /(®"=1R) =
©'=tm ) = (0i.e-M.)© ( »=1¢- «)(«)) and o 1(1-8e,)m) «
®"=1M- Therefore, ~ 1Miisa 0" =1 Fj-dual-CS-Rickart module. 0

We know that F-dual-Rickart modules are F-dual-CS-Rickart modules but the
converse is not necessary true from Example 4.1.5.

As a result, we are interested in finding conditions that make the converse
valid true. A module M is a T-noncosingular module: given in [1], if for any
[ GEnd(M), if / (M) = 0 provided / (M) is a small submodule of M. We give a
generalization of T-noncosingular modules as follows.

Definition 4.1.14. A module M is an F-T-noncosingular module, if for any
nonzero / GEnd(M), if f(F) = 0 provided f(F) is a small submodule of M.

Proposition 4.1.15. IfM is an F-dual-CS-Rickart module, then M is an F-T-
noncosingular module.

Proof. Assume that M is an T-dual-CS-Rickart module. Let / G End(M) and
I(F) « M. So/(F) = eM for some e2 = ¢ GEnd(M). Thus /(F) = 0 by
applying Proposition 2.3.1. Therefore, M is an F-T-cononsingular module. T
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Theorem 4.1.16. The following statements are equivalent.
(i) M is an F-dual-CS-Rickart module and an F-T-cononsingular module.
(i) M is an F-dual Rickart module.

Proof, (ii)=y (1) This follows from Proposition 4.1.4 and Proposition 4.1.15.
(i)— (i) Assume (i). Let / GEnd(M). Then f(F) =eM ® (1 - ¢)/(F) and
(L —e)/(F) <*M for some e2 = e GEnd(M). Hence (1 —e)f(F) —0 because
M is an F-T-noncosingular module. Hence /(F) = eM. Therefore, M is an
F-dual-Rickart module, I

Similar to F-CS-Rickart modules, each F-dual-CS-Rickart module M has a
direct summand depending on each image of F. So, for any / G End(M), there
is a submodule N of M such that M = N ® K where /(F) lies above N.

Theorem 4.1.17. IfM IS an F-dual-CS-Rickart module, then M = N®K where
N¢F,K F<*MandN isadual CS-Rickart module. The converse holds if
N is afully invariant submodule of M.

Proof. Assume that M is an F-dual-CS-Rickart module. Then F = 15(F) lies
above N for some N <® M. So there is a submodule K of M such that M =
N®K, F=N®(K F)andifnf <c M. Since A <® M and M is an
F-dual-CS-Rickart module, N is an (ArCF)-dual-CS-Rickart module by applying
Theorem 4.1.12. Thus A s a dual-CS-Rickart module because N F = N.

To show the converse is valid, assume that M = N K where N ¢ F,
K(~]F <c M, N is a dual-CS-Rickart module and A is a fully invariant submodule
of M. Thus F = A (K F) because A ¢ F. Let/ G End(M). Then
I(F) =I(A®(K F))=/(A)+f(K F)andf(K F)< M by Proposition
2.36. Since A <fully M, we obtain f\N GEnd(A) so that /jw(A) = /(A). As A
is a dual-CS-Rickart module, IN(A) = Al ® (A2 /(A)) and A2 [(A) <c A
where A = AI® A2. Thus

I(F) = I(A) + F(K F)= AL+ (A2 I(A)) +f(K F))

where Ni < M and (A2 /(A)) +/(A F) <*M. Hence /(F) lies above Al-
Therefore, M is an F-dual-CS-Rickart module. [
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Now, F-dual-CS-Rickart modules having two direct summands are considered.

Proposition 4.1.18. For every indecomposable F-dual-CS-Rickart module M,
either M is a dual-CS-Rickart module or F <c M.

Proof. Assume M is an indecomposable F-dual-CS-Rickart module. Then M =
NOK where N ¢ F, K F <c M and N is a dual CS-Rickart module. Since
M is an indecomposable module, N = O or N = M. Incase N =0, it follows
that F = 0so that K = K F <c M; otherwise, N = M implying that M s
a dual CS-Rickart module. Therefore, either M is a dual-CS-Rickart module of
F<M. I

Recall that M is a dual-CS-Rickart module if and only if M is an M-dual-
CS-Rickart module. Furthermore, we provide an example of F-dual-CS-Rickart
modules which is not a CS-Rickart module in Example 4.1.6. So we are interested
in studying when an F-dual-CS-Rickart module is a dual-CS-Rickart module, as
well as, when a dual-CS-Rickart module is an F-dual-CS-Rickart module where
f /0. Relationships between F-CS-Rickart modules and CS-Rickart modules
are provided in the following series of propositions.

Proposition 4.1.19. If M is an F-dual-CS-Rickart module and fM/fF
M/fF for allf G End(M), then M is a dual-CS-Rickart module.

Proof. Assume that M is an F-dual-CS-Rickart module and, for any / GEnd(M),
[ (M)II(F) <c M/[(F). Let/ GEnd(M). Since M is an F-dual-CS-Rickart
module, there is e2 = e G End(M) such that /(F) = eM © (1 —e)f(F) and
(1 —e)/(F) < M. It forces that M = eM ® (1 —e)M = /(F) + (1 —e)M. As
[ (F) C (M), we obtain that eM C / (M) and (1 —)f(M) — (L —e)M [ (M).
Note that M —f(F) + (L —e)M and /(F) Q f(M), applying Proposition 2.33,
(/M) (- e)M)(/(F) (L-e)M) < MI(/(F) (L- e)M). It follows
that (1 - e)/(M)/(1 - )( ) « M/(1- e)/(F). Since (1- e)/(F) « M,
by Proposition 232, (1 - e)f(M) < M. Therefore, M is a dual-CS-Rickart
module. I
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Proposition 4.1.20. 1f M is a dual-CS-Rickart module and F lies above M" for
some fully invariant direct summand M" of M Lthen M is an F -dual-CS-Rickart,

Proof. Assume that M is a dual-CS-Rickart module and F lies above M for some
fully invariant direct summand M* of M. Then M = M'©N where M' ¢ F and
N F <c M. Since M'< M and M is a dual-CS-Rickart module, M" is a
dual-CS-Rickart module. As a consequence of the converse of Theorem 4.1.17, M
is an F-dual-CS-Rickart module. [

Similar to F-CS-Rickart modules, the converse of Theorem 4.1.17, being fully
invariant submodule of M" is a necessary condition to force M to be an F-dual-
CS-Rickart module. So the images of F which lie above a fully invariant direct
summand are investigated.

Definition 4.1.21. A module M is a strongly F-dual-CS-Rickart module if for
any / GEnd(M), there is a fully invariant direct summand M"' of M such that
I(F) lies above M.

It is clear that strongly F-dual-CS-Rickart modules are F-CS-Rickart modules.
Next, we consider when a direct summand of a strongly F-dual-CS-Rickart module
is also a strongly F-dual-CS-Rickart module for some fully invariant submodule
F' of this direct summand.

Lemma 4.1.22. Let M be a strongly F-dual-CS-Rickart module. Then N is a
strongly (N F)-dual-CS-Rickart module for any direct summand N of M.

Proof. The proof is similar to one of Theorem 4.1.12. Let N be a direct summand
of M and N = eM for some e2 = ¢ G End(M). Let / G End(iV). Then
fe GEnd(M). Since M is a strongly F-dual-CS-Rickart module, there is a fully
invariant direct summand M' of M such that fe(F) = e'M © ((1 —")M  feF)
and (1 —e)M feF <c M where M" = ¢'M for some (e)2= ¢' G End(M). Note
that both e'M and (1 —e')M feF contained in N. This forces that e'M is a
fully invariant direct summand of N and (1 —e")M feF <*N. Thus f(N F)
lies above the fully invariant direct summand e'M. I
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Finally, in this section, we focus on the image of the identity endomorphism
of F which is equal to F and lies above some direct summand of M. So each
F-dual-CS-Rickart module can be written as a direct sum depending on F.

Theorem 4.1.23. The following statements are equivalent.

() M is astrongly F-dual-CS-Rickart module.

()M =AOK where A G F, N <fllyM,K F <*M and A is a strongly
dual-CS-Rickart module.

(in) M is an F-dual-CS-Rickart module and every direct summand of M contained
InF is fully invariant.

(V) M —A ©A where N ¢ F, N <fuly M, A F <* M and, for any
f GEnd(M), I(F) A lies above afully invariant direct summand of N .

Proof, (i)—»(ii) Assume (). Then M = A© A where N ¢ F,AnF <c M. Thus
A is a strongly dual-CS-Rickart module by Lemma 4.1.22 because A <® M and
A F=A

( )—(i) The proof is similar to the proof of the converse of Theorem 4.1.17.
Assume (ii). Thus F = A® (A F) because N G F. Let / GEnd(M). Then
f(F) =f(NOIK F)) = f(N)+f(K F)andf(K F)« M by Proposition
236. Since N <fully M, we obtain IN GEnd(A) so that /w(A) = f(N).
As A is a strongly dual-CS-Rickart module, /jw(A) = A1© (A2 /(A)) and
A2 [(A) <c Arwhere A = A1© A2 and Al is a fully invariant submodule of A.
Thus

I(F) = I(A) +[(A F)= AL+ (A2 I(A) +1(K F))

where Ni < M and Ni <fuly M and (A2 /(A)) + /(A F) « ill. Hence
| (F) lies above Ai. Therefore, M is a strongly F-dual-CS-Rickart module.
(i)—>(iif) Assume (i). Then M is an F-dual-CS-Rickart module. Next, let L
be a direct summand of M and L ¢ F. Then there is e2 = e GEnd(M) such that
L=eM, sothat L=L F =¢eM F = eF because F <fully M. Since M is a
strongly F-dual-CS-Rickart module, eF = A© (A e(F)) and A e(F) ¢ M
where A is a fully invariant direct summand of M and A is a submodule of M.
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Since K ¢(F) <®eF =L and L <® M, we obtain that K e(F) <® M. Thus
K e(F) = 0because K ¢(F) is both a small submodule and a direct summand
of M. Therefore, N —eF —L which is a fully invariant direct summand of M.

(i)~ —>(1) Assume (iii). Let/ GEnd(M). Then f(F) ¢ F and f(F) lies above
M" for some direct summand M' of M. By assumption, M" <fuly M. Therefore,
M is a strongly F-dual-CS-Rickart module.

(' )-»(iv) Assume (i) SoF = N®(F F). Let/ G End(M). Thus fAN G
End(A) and / (F) A =1/|k(A F)=1|k(A) because A <fully M and N ¢ F.
Silice F is a strongly dual CS-Rickart module, /|k (A) lies above a fully invariant
direct summand of N. Thus / (F) N lies above a fully invariant direct summand
of N.

(iv) = (i) Assume (iv). Thus F = N ® (K F). Let g G End(iV). Then

© £ End(M). Hence [Ok)(F) N =[gO&){N (K F)) N =
[g(N) +0K (KnF))r\N = g(N)r\N = g(Nr\F). By assumption, (# 0 )(F)OA
lies above a fully invariant direct summand of N. This implies that g(N  F) lies
above a fully invariant direct summand of N. Therefore, A is a strongly dual-CS-
Rickart module. I

4.2 Relatively F-Dual-CS-Rickart Modules

In this section, we provide a notion of relatively F-dual-CS-Rickart modules
which is generalized form F-dual-CS-Rickart modules by extended End(M) to
Hom(P, M) where p and M are modules and M is not necessary an F-dual-CS-
Rickart module. Furthermore, a direct summand of relatively F-dual-CS-Rickart
modules be a relatively F-dual-CS-Rickart module are proved.

Definition 4.2.1. Let P,M be modules and F be a fully invariant submodule
of p. Then p is an F-dual-CS-Rickart module relative to M (relatively F-dual-
CS-Rickart module) if for any / G Horn(F, M), there is a direct summand M'
of M such that /(F) lies above M".

It is clear that M is an F-dual-CS-Rickart module if and only if M is an
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F-dual-CS-Rickart module relative to M; moreover, p is a P-dual-CS-Rickart
module relative to M if and only if p is a dual-CS-Rickart module relative to
M given in [1]. Equivalent to Theorem 4.1.12, we examine direct summands of
relatively F-dual-CS-Rickart modules.

Theorem 4.2.2. Letp, M be modules and F be afully invariant submodule of p.
Then p is an F-dual-CS-Rickart module relative to M if and only iffor any direct
summand Pi ofp and any direct summand MI of M, Pi is an (Pi F)-dual-CS-
Rickart module relative to M.

Proof. The sufficiency is obvious because p and M are direct summands of itself.

Assume that p is an F-dual-CS-Rickart module relative to M. Let Pi and
MI be direct summands of p and M, respectively. Then Pi ® F2 = F for some
submodule F2 of p. Let g GHorn(FI, MI). Then/ := ®0p GHom(P, M). Since
F <wuy M, it follows that F = (PiCF)®(P2nF). So/(F) = ( ®0p) ((PiCF)®
(p2 F)) =g(Pi F) ¢ M Since p is an F-CS-Rickart module relative to M,
I(F) = eM® (1—)f(F) and (1—&)f(F) <c M for some e2 = e G End (M). Since
I(F) ¢ MI, we obtain eM < Ml and (1 —&)f(F) <«< MI. Thus (Pi F) lies
above eM. Therefore, Pi is an (PiCF)-dual-CS-Rickart module relative to MI. 1

ffP = M in Theorem 4.2.2, the following corollary is obtained.

Corollary 4.2.3. The following statements are equivalent.

() M is an F-dual-CS-Rickart module.

(a) For any direct summands N and K of M, N is an (N F)-dual-CS-Rickart
module relative to K .

(in) For any direct summands N and K of M, for any f G End(M) there is a
direct summand K" of K such that f\fir(N  F) lies above K.

Proof, () (i) This follows from Theorem 4.2.2 because M is an F-dual-CS-
Rickart module relative to M.

(i) —> (i) Assume (ii). Let N and K be direct summands M and /
Hom(M, A"). Then /lyv G Hom(N K). So f\ffl(NnF) <@ K" for some direct



summand K' of K by the definition of relatively F-CS-Rickart modules.
(i) -¥ (1) This is clear because N —M —K.
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