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Chapter 1

Preliminaries

In this chapter, we collect some elemmentary results in Z|w] and Z[i]. Most of them

are taken from Chapter 9 of [3]. The new ones come with a small proof.

1.1 Some Background in Z|w]

Let w = (=1 ++/=3)/2 and Z[w] = {a + bw : a,b € Z}. Note that w? + w + 1 = 0.
Definition 1.1 For a, b € Z, the norm of a + bw is (a + bw)(a + b@w) = a® + b% — ab €
NU{0} and is denoted by N (a+ bw). It follows that Z[w] is a Euclidean domain and
the norm map is a valuation map.

Proposition 1.2 a € Z|w]| is a unit if and only if N = 1. The units in Z[w] are
1, -1, w, —w,w?, —w?

Proposition 1.3 If 7 is a prime in Z[w], then there is a rational prime p such that
N = p or p% In former case 7 is not associate to a rational prime, in latter case =
is associate to p.

Proposition 1.4 If m € Z[w] is such that N7 = p, a rational prime, then 7 is a prime
in Z[w].

Proposition 1.5 Suppose that p and ¢ are rational primes. If ¢ = 2 mod 3, then ¢
is a prime in Zw]. If p =1 mod 3, then p = 77 where 7 is prime in Z[w]. Finally,
1 —wis a prime in Z[w].

Note that if 7 is a prime in Z|w] with N7 # 3, then Nm =1 mod 3.

Proposition 1.6 Let 7 € Z[w] be a prime. Then Z[w]/(7) is a finite field with N7

elements.



a. If m = ¢ is a rational prime congruent 2 mod 3, then {a + bw : 0 < a < ¢ and
0 < b < ¢} is a complete set of coset representatives of Z[w]/(q).

b. If p =1 mod 3is arational prime and N7 = p, then {0,1,...,p—1}is a complete
set of coset representatives of Z[w]/(m).

Lemma 1.7 Let 7 € Z[w] be a prime with N7 # 3. If a € (Z]w]/(7))*, then a, aw

and aw? are distinct elements in (Z[w]/(7))*.

Proof. We will claim that w # 41 mod 7. Since 1 +w = —w? is a unit, 7 1 (1 + w).
Since N(1—w)=1+1+1=3and Nm# 3, N7{ N(l —w), so 71 (1 —w). Hence,

we have the claim and the desired results easily follow from the claim. []

Definition 1.8 Let 7 be a prime in Z[w]. For & = a + bw where a, b € Z not both
zero, we say that

aisin@Qyifa>0and b >0

aisin@Qyifa<0<bora<b<0

aisin@sifb<a<0orb<0<a.
Lemma 1.9 Let 7 be a prime with N7 # 3 and a € (Z[w]/(7))*. If ais in @1, then
aw and aw? are in Q and @3, respectively. Similarly, if ais in Qs, then aw and aw?
are in Q3 and Q1 respectively and if a is in @3, then aw and aw? are in Q; and Qs,

respectively.

Proof. Let 7 be a prime with N7 # 3 and a € (Z[w]/(7))*. WLOG, assume that « is
in Q. Then @ = a + bw where a,b € Z,a > 0and b > 0. Thus aw = (a + bw)w =
—b+(a—b)wand aw? = (a + bw)w? = (—a+b) + (—a)w. If a > b, then —a + b
<0<a—b Henceaw=—b+(a—b)wand —b <0< a—b,so awisin Qy. Since
aw? = (—a+b)+ (—a)wand —a < —a+ b <0, aw? isin Q3. If a < b, then
a—b<0<—a+b. Hence aw=—-b+ (a —b)wand —b < a—>b<0,s0 awisin

Q2. Since aw? = (—a+b) + (—a)w and —a < 0 < —a + b, aw? is in Q3. []

Proposition 1.10 If 7 is a prime in Z[w] with N7 # 3, then the complete set of
coset representatives of (Z[w]/(m))* is divided equally into (N7 — 1)/3 elements in

Q1,Q2 and Qs.

Proof. It follows from Lemmas 1.7 and 1.9. []



1.2  Cubic Residue Symbol

Throughout this section, we let 7 be a prime in Z[w] with N7 # 3. Then the multipl-
icative group of (Z[w]/(m))* has order Nm — 1 with (N7 — 1)/3 elements in Q.
Proposition 1.11 If « € Z[w] and 7 { a, then ™1 =1 mod 7.

Proposition 1.12 If a € Z[w] and 7 { «, then there exists a unique integer

m = 0,1 or 2 such that a¥™=1/3 = ™ mod .

Definition 1.13 Let a € Z|w]. The cubic residue symbol of & modulo 7 is given by
a. (a/m)s=0if7 | a.

b. (a/7)3 = aN™V/3 mod 7 if 7 ¢ a.

Note that (a/7)3 equals to w,w? or 1.

Proposition 1.14 Let a, § € Z|w] be such that 7t af. Then

a. (a/m)3 = 1if and only if 23 = a mod 7 is solvable.

b. (a8/m)s = (a/m)3(8/m)s.

c. If 6 =amod 7, then (a/7)3 = (5/7)s.

Proposition 1.15 Let a € Z[w] be such that 7 t a. Then

a. (a/m)y = (a/m)s" = (a®/7)s.

b. (a/m)3 = (@/7)s.

Corollary 1.16 If 7 = ¢ is a rational prime congruent to 2 modulo 3, then

(@/q)s = (a®/q)3 and (n/q)3 = 1 if n is a rational integer relatively prime to gq.
Definition 1.17 If 7 is prime in Z[w], we say that 7 is primary if 7 =2 mod 3, i.e,,
either m = ¢ =2 mod 3 is a rational prime or 7 = a + bw with ¢ = 2 mod 3 and
b=0 mod 3, Nm=p =1 mod 3.

Proposition 1.18 Suppose that Nm = p = 1 mod 3. Among the six associates of 7
exactly one is primary.

Theorem 1.19 (The Law of Cubic Reciprocity). Let a and 7 be primary primes in

Zlw] with Na, N7 # 3 and Na # N7. Then

(/m)s = (7/a)s.

Theorem 1.20 (Supplement to the Law of Cubic Reciprocity). Suppose that

N7 # 3. If wis a primary and write m = a + bw where a = 3m — 1 and b = 3n, then



(1 —-w/m)3 =w?™.

1.3 Some Background in Z]i]

leti=+/—1and Z[i] ={a+ bi: a,b € Z.

Definition 1.21 For a, b € Z, the norm of a + bi is (a + bi)a + bi) = a®> + b% and is
also denoted by N(a + bi). It follows that Z[i] is a Euclidean domain and the norm
map is a valuation map.

Proposition 1.22 « € Z[i] is a unit if and only if Na = 1. The units in Z[w] are
1,—1,4,—i.

Proposition 1.23 If 7 is a prime in Z[i], then there is a rational prime p such that
7| p.

Proposition 1.24 If « € Z[i] is such that N« is prime, then « is a prime in Z[i].
Proposition 1.25 1 + i is a prime and 2 = —i(1 + 7)? is a prime factorization of 2 in
Z[1].

Proposition 1.26 If ¢ = 3 mod 4 is a prime in Z, then ¢ is a prime considered as an
element of Z[i].

Proposition 1.27 If p is a prime in Z and p = 1 mod 4, then there is a prime 7 such
that p = 7.

Proposition 1.28 Let w € Z[i]| be a prime. Then Z[i]/(n) is a finite field with N7
elements.

a. If m = ¢ is a rational prime congruent 3 mod 4, then {a + b7 : 0 < a < ¢ and

0 < b < q} is a complete set of coset representatives.

b. If p =1 mod 4 is a rational prime and N7 = p, then {0,1,...,p — 1}is a
complete set of coset representatives.

Proposition 1.29 If 7 is a prime in Z[i], N7 # 2, then the complex plane, whose

squares are delimited by the two lines
Vi={n(s—3+iz):z e R} and H, = {w(z + i(t — 3)) : z € R)}
with s and t integers. They divide the plane in semi-open squares

an:{(s+zt)7rSe[m—%,m+%),t€[n—%,n+%)}



where m, n € Z. @y is called minimal residues class modulo 7 and its elements

is divided equally into (N7 — 1)/4 elements in the 1st, 2nd, 3rd and 4th quadrants.

Figures 1.1: All 13 residue classes with their minimal residues in the square Qo for
the modulus 2 = 3+2i and z = 2 —4¢ = —i mod 3+ 21 is highlighted with yellow
dots.

1.4 Quartic Residue Symbol

Throughout this section, we let 7 be an irreducible element in Z[i] with N7 # 2.
Then the multiplicative group of (Z[i]/(7))* has order Nm — 1 with (N7 —1)/4
elements in 1st quadrant.

Proposition 1.30 If € Z[i] and 7 { , then o™~ =1 mod 7.

1,2

y

Proposition 1.31 If a € Z[i] and 7 1 a, then there exists a unique integer j =0
or 3 such that o®™1/4 = 47 mod 7.

Definition 1.32 Let « € Z[i]. The quartic residue symbol of & modulo 7 is given
by

a. (a/m)y=0if7 | a.

b. (a/7)s = aN™V/* mod 7 if 74 a.

Note that (a/7)4 equals to 4, —1,—i or 1.

Proposition 1.33 Let a, § € Z][i] be such that 7 1 af.

a. (a/m)y = 1ifand only if ! = @ mod 7 is solvable.



b. (af/m)a = (/m)a(B/7)a.

c. If 8=amod 7, then (a/7)y = (B8/7)4.

d. (a/m)s = (@/T)4.

e. If (\) = (m), then (a/N)s = (a/7)4.

Corollary 1.34 Let « € Z[i] be such that 7 { . Then (a/m), =1 or —1 if and only if

22 =« mod 7 is solvable.

Proof. (=) If 2 = o mod 7 is solvable, then z* = a? mod 7 is also solvable, so

1= (a?/n)s = (a)7)4°, e, (a)m)g =1 or —1.

(+) If (a/7)4 = 1, then 2? = a® mod 7 is solvable by Proposition 1.33 (a), so 2% =

o mod 7 is also solvable. If (a/7); = —1, then (a?/7)s = (a/n),* = 1. Thus, z* =

a? mod T is solvable by Proposition 1.33 (a). Assume that z; is a solution of z* =
2

a? mod 7 and 7? # a mod 7. Then 7> = —a mod 7 implies that (7yi)? = «

mod 7. Hence, zyi is a solution of 22 = @ mod 7. L]

Proposition 1.35 Let ¢ be a prime in Z such that ¢ = 3 mod 4. Then (a/q), = 1 for
all @ € Z with ¢ 1 a.

Definition 1.36 We say that 7 is primary if 7 =1 mod (1 + )3.

Proposition 1.37 If 7 is irreducible in Z[i], then m = a + bi is primary irreducible if
and only if either (a =1 mod 4 and b =0 mod 4) or (¢ =3 mod 4 and b = 2 mod
4).

Lemma 1.38 Let v € Z[i] be a nonunit element such that (1 + i) { a. Then there is
a unique unit « such that wa is primary.

Lemma 1.39 A primary element can be written as the product of primary primes.
Proposition 1.40 If 7 is a primary prime, then (—1/7), = (—1)(¢=Y/2 where a is the
real part of 7.

Definition 1.41 Let a € Z[i] be a nonunit element such that (1+i){a,and 8 €
Z[i]. Write a = II;\; where \; is a prime in Zl[i]. If gcd(a, B) = 1, we define (8/a)4
by

(B/a)s = T(B/ i)

Proposition 1.42 Let o € Z,a # 0, and a € Z be an odd nonunit. If ecd(a, a) = 1,
then (a/a)y = 1.



Proposition 1.43 If n # 1 is an integer and n = 1 mod 4, then (i/n), = (—1)"=V/4,
Theorem 1.44 (The Law of Quartic Reciprocity). Let « and 7 be primary primes in

Z[i] with Noo, Nm # 2 and Na # Nw. Then

(a/m)y = (7)) s(—1)((NaD/H((Nr-1)/4)

1.5 Our Objectives

Steiner [2] studied the modular divisor function 7(—, p) defined by for an
odd prime p and an integer a with p 1 a, 7(a, p) is the number of ordered pairs of

integers (z, y) such that
O<x<%p,0<y<%p7:ﬁyza mod p

He showed that if p is an odd prime and p t a, then a is a quadratic residue
modulo p if and only if 7(a, p) is odd. In addition, he used this result to give
another proof of the quadratic reciprocity law.

In this project, we define the modular divisor function 7(—, ) where 7 is a
prime in Z|w] and the modular divisor function n(—, 7) where 7 is a prime in Z[i].
We study the relation between 7(a, ) and the existence of solutions of z° = «
mod 7 and the relation between n(a, 7) and the existence of solutions of z¢ = «
mod 7. In addition, we determine many arithmetic properties of them using the
cubic and quartic residue symbols. They are presented for Z[w] in Section 2.1 and

for Z[i] in Section 2.2, respectively.



Chapter 2

Results

2.1  Modular Divisor Function 7(—, 7) on Z|w]

In this section, let w be a prime in Z|w] with N7 # 3. We begin by defining the
modular divisor function 7(—, 7) on Z[w] and study their properties.

Definition 2.1 The modular divisor function 7(—, ) on Z|w] is defined by
T(a,m) = #{(z,y,2) : z,y,z € (Z|w]/(7))* in Q1 and zyz = a mod 7}

for all @ € Z[w] and 7 £ a.
Next, we relate 7(—, m) to the cubic residue symbol.
Proposition 2.2 Let o € Z[w] be such that 7 { a. Then
a. (a/m)3 =1ifand only if 7(a,7) =1 mod 3,
b. (/)3 # 1 if and only if 7(cor,7) = 0 mod 3, and
c. 7(a,m) # 2 mod 3.
In other words,

3

a. z° = o mod 7 is solvable if and only if 7(co,7) = 1 mod 3, and

b. > = @ mod 7 is not solvable if and only if (o, 7) = 0 mod 3.

Proof. If (z,y, z) is a triple counting towards 7(«, ), then permutations of z, y, z in
it is also a triple counting towards 7(«, 7). It follows that up to a cyclic

permutation, there are 6k triple for some k£ € NU {0} where z, y, z are distinct and
there are 3! for some [ € NU {0} where z = y,z # z and y # z. Assume that z; is
the solution of 23 = o mod 7. Then zyw and xw? are also solutions. Thus there is

exactly one solution in Q. Since (a/m)3 =1 if and only if 2> = a mod = is



solvable, (a/m); = 1 if and only if 7(a, 7) = 6k + 31+ 1 for some k, 1 € NU{0} and
(a/m)3 # 1 if and only if 7(a, m) = 6k + 31 for some k, 1 € NU {0}. In other words,
(a/m)3 = 1if and only if 7(a,7) =1 mod 3 and (a/m)3 # 1 if and only if

(o, ) = 0 mod 3. In addition, 7(a, ) % 2 mod 3. []

By the cubic reciprocity law, we have the following property.
Proposition 2.3 Let o and 7w be primary primes in Z|w| with Na, N7 # 3 and
Na # Nm. Then

T(a,m) = 7(m, ) mod 3.

Proof. By Theorem 1.19, we have (a/m)3 = (7/a)s, so 7(a, ) = 7(m, ) mod 3 by
Proposition 2.2. []

Proposition 2.4 If 22=1 =1 mod 3, then
a. (a/m)3 = wif and only if 7(aw? 7) =1 mod 3, and
b. (a/7)3 = w? if and only if 7(aw,7) =1 mod 3.

Nr—1

Proof. Suppose that #2=1 =1 mod 3. Then (w?/7); = (w?) 7 = w? mod .

Proposition 2.2 and Proposition 1.14 (b) imply that

T(aw? ) =1 mod 3 & (aw?/7)3 =1 (a/7)3(W?/m)3 =14 (a/T); =w

Nm—1

Since (w/m)3 =w™ 3 =w mod m, we also have
T(aw,7) =1 mod 3 & (aw/m)3 =1 (a/7m)3(w/7); =1 & (a/7); = w?
as desired. ]

Proposition 2.5 If 221 = 2 mod 3, then
a. (a/m)3 = w if and only if 7(aw,7) =1 mod 3, and
b. (a/7)3 = w? if and only if T(aw? ) =1 mod 3.

Proof. Suppose that ¥2=1 = 2 mod 3. Then (w/7); =w” 5 = w? mod 7 and

Nn—1

(w?/m)3 = (w?)" 3 =w mod . Similar to the previous proposition, we obtain

T(aw,7) =1 mod 3 & (aw/m); =1 & (a/m)s(w/m)s =1 < (a/7); = w and

T(aw?,7) =1 mod 3 & (aw?/m)3 =1 & (a/7)3(w?/m); =1 (a/m); = W

This completes the proof. [
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Proposition 2.6 If 22=1 = 0 mod 3, then
7(a,m) = 7(aw, ) = 7(aw?, ) mod 3.

Proof. Suppose that #2=1 = 0 mod 3. Then (w/m); = w 5 =1 mod T and

(W?/7)3 = (W) "5 =1 mod . It follows that (a/7)3 = (aw /)3 = (aw? /7).
Hence, 7(a, m) = 7(aw, ) = 7(aw?, ) mod 3. []

Arithemetic properties of 7(—, ) are presented below.
Proposition 2.7 If a, f € Z[w] are such that 7{ o and 71 8 and 7(a,7) =1 mod 3,
then 7(af, ) = 7(8,7) mod 3.

Proof. Suppose that «, € Z[w] are such that 7 { @ and 7 { 5 and 7(a, 7) = 1 mod
3. Then (a/m)s =1, so (af/m); = (a/m)3(B/m)s = (B/m)s by Proposition 1.14 (b).
If (aB/m)3 =1=(8/7)3, then 7(af,7) =1 = 7(8,7) mod 3 by Proposition 2.2 (a).
I (aB/m)s = (B/7)s, (aB/)s, (B/7)s # 1 then r(af, x) = 0= (8, 7) mod 3 by
Proposition 2.2 (b). []

Proposition 2.8 If «, 5 € Z[w] are such that 7t and 71 5 and o = § mod .
Then 7(a, ) = 7(B, ) mod 3.

Proof. Suppose that a, 8 € Z[w] and a = 8 mod 7. By Proposition 1.14 (c), we have
(a/7)s = (B/7)s. If (a/7)s = 1 = (B/m)s, then 7(a,7) = 1 = 7(8,) mod 3 by
Proposition 2.2 (a). If (a/m)s = (f/7)s and (a/m)s, (B/7)3 # 1 then 7(a,7) =0 =
7(8,m) mod 3 by Proposition 2.2 (b). []

Proposition 2.9 Let a € Z[w] be such that 7 t a. Then 7(a, ) = 7(a, 7) = 7(a?,7)
mod 3.

Proof. Note that 23 = a mod 7 is solvable < 7% = @ mod 7 is solvable. Then
(a/m)3 =14 (a/T)3 = 1,50 T7(a, ) = 7(@,7) mod 3 by Proposition 2.2. In
addition, by Proposition 1.15 (a) and (b), we have (@/7)s = (a,7)s = (a2, 7)s. If
(@/7)3 = 1= (a? 7)s3, then 7(a,7) = 1 = 7(a?,7) mod 3 by Proposition 2.2 (a). If
(@/)s = (02/m)s, (@/F)s, (a2/7)s # 1, then 7(@/,7) = 0 = r(a?,7) mod 3 by

Proposition 2.2 (b). Hence 7(a, 7) = 7(a,7) = 7(a?, 1) mod 3. []
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Proposition 2.10 If m = ¢ is a rational prime congruence to 2 modulo 3 and n is a

rational integer relatively prime to ¢, then 7(n, ¢) =1 mod 3
Proof. By Corollary 1.16, (n/q)3 =1, so 7(n, ¢) =1 mod 3. []

Next, we assume that 7 = a + bw is a primary prime in Z[w]. Then
a =2 mod 3and b =0 mod 3. Write 7 = (3m — 1) 4+ 3nw for some m, n € Z.
Thus, Nm = 9m? +9n? — 9mn — 6m + 3n + 1 and % =3m?+ 3n? — 3mn—
2m +n=m+ n mod 3.
Lemma 2.11 Let 7 be a primary prime in Z[w]. Then

a. If m = ¢ is a rational prime congruent to 2 modulo 3, then
(w/q)s =w'ifand only if ¢ =3¢t —1 mod 9

for all ¢ € {0, 1, 2}.

b. If Nm = pis a rational prime congruent to 1 modulo 3, then
(w/m)s = w' if and only if (t =3t — 1 — 3n(1 —w) mod 9 for some n € {0,1,2})
forall ¢ € {0,1,2}.

Proof. a. Suppose that m = ¢ is a rational prime congruent to 2 modulo 3 and write

q = 3m — 1 for some m € N. Then

Ng—1 q2—1 (377171)271
3

W/@s=w 5 =w's =w Sm-2m =

=w w™ mod gq.

Thus, for ¢ € {0, 1,2}, we have (w/q); = w' if and only if w* = w™ mod ¢ if and
only if t =m mod 3 if and only if 3t = 3m mod 9 if and only if ¢ =3¢t —1 mod 9
because ¢ = 3m — 1.

b. Suppose that N7 = p is a rational prime congruent to 1 modulo 3. Since 7 is
primary, write 7 = a 4+ bw = (3m — 1) + 3nw for some m, n € Z. Then
Nr=Bm—1)2-3m—1)(3n)+ (3n)? = 9m? — 6m + 1 — 9mn + 3n + 9n? and

(w/m)3 = Wi =

w3m2 —2m—3mn+n+3n?2 — | m+n

w mod 7.

Thus, for ¢ € {0, 1,2}, we have (w/7)3 = w" if and only if w! = w™""™ mod = if and
onlyif t=m+n mod 3ifandonly if 3t — 1 =3m — 1 4+ 3n mod 9 if and only if

3t—1=7m—3nw+3n mod 9ifand only if =3t —1—3n(l —w) mod 9. Since
we consider modulo 9, n € {0, 1,2}. [
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Proposition 2.12 Let 7 be a primary prime in Z[w]. Then
a. If m = ¢ is a rational prime congruent to 2 modulo 3, then

i. 7(w,¢) =1 mod 3ifand only if ¢ = —1 mod 9, and

i. 7(w,¢q) =0 mod 3ifand onlyif ¢ =2 or5 mod 9.
b. If Nm = pis a rational prime congruent to 1 modulo 3, then

i. 7(w,m) =1 mod 3ifand only if (1 = —1 — 3n(1 — w) mod 9) for some
n € 4{0,1,2}, and

i. 7(w,m) =0 mod 3ifandonlyif(r=2—-3n(l —w)orb5—3n(l —w)
mod 9 for some n € {0, 1, 2}).

Proof. a. Suppose that m = ¢ is a rational prime congruent to 2 modulo 3. By
Lemma 2.11 (a), we have (w/q); = 1 ifand only if ¢ = —1 mod 9 and (w/q)s # 1 if
and only if ¢ =2 or 5 mod 9. Hence, 7(w, ¢) =1 mod 3 if and only if ¢ = —1

mod 9 and 7(w, ¢) =0 mod 3 if and only if ¢ =2 or 5 mod 9 by Proposition 2.2.
b. Suppose that Nm = p is a rational prime congruent to 1 modulo 3. By Lemma
2.11 (b), we have (w/m)3 = 1lifand only if 7 = —1 — 3n(1 —w) mod 9 and

(w/m)s # Lifandonlyif 1 =2 —3n(l —w) or 5 —3n(l —w) mod 9. Hence,
T(w,p) =1 mod 3ifand only if r = -1 —3n(l —w) mod 9 and 7(w,p) =0 mod 3
ifand only if =2 —3n(1 —w) or 5 —3n(1 —w) mod 9 by Proposition 2.2. []

Lemma 2.13 Let 7 be a primary prime in Z[w]. Then
(1 —w/m)3 =w'if and only if (r = =3¢t — 1 4+ 3nw mod 9 for some n € {0, 1,2})
forall ¢ € {0,1,2}.

Proof. Suppose that 7 be a primary prime in Z[w]. Write 7 = (3m — 1) + 3nw for

some m,n € Z. By Theorem 1.20, we have (1 —w/m)3 = w?™, so (1 —w/7)3 = w' if
and only if w! = w?™ if and only if t = 2m mod 3 if and only if —3¢ = 3m mod 9 if
andonly if =3t —1=3m —1 mod 9if and only if =3t — 1+ 3nw =3m — 1 + 3nw

= m mod 9. Since we consider modulo 9, n € {0, 1, 2}. []

Proposition 2.14 Let 7 = a + bw be a primary prime in Z[w]. Then
a. 7(1 —w,7) =1 mod 3 if and only if (t = —1 4+ 3nw mod 9 for some n € {0, 1,
2}), and



13

b. 7(1 —w,7) =0 mod 3 if and only if 7 =2 + 3nw or 5+ 3nw mod 9 for some
n € {0,1,2}.

Proof. By Lemma 2.13, we have (1 —w/m)3 = 1 if and only if 7 = —1 + 3nw mod 9
and (1 —w/m)3 # 1ifand only if 7 =2+ 3nw + 3 or 5 + 3nw mod 9. Therefore,
7(1 —w,7) =1 mod 3ifand only if r= -1+ 3nw mod 9and 7(1 —w,m) =0
mod 3 if and only if 7 =2+ 3nw or 5+ 3nw mod 9 by Proposition 2.2. []

Lemma 2.15 Let 7 be a primary prime in Z[w]. Then
(3/m)3 = w' if and only if (r = (3m — 1) — 3tw mod 9 for some m € {0, 1,2})
forall ¢t € {0, 1,2}.

Proof. Suppose that 7 be a primary prime in Z[w|. Write 7 = (3m — 1) + 3nw for
some m, n € Z. Note that (1 — w)? = —3w, we have ((1 —w)/7)s” = ((1 — w)?/7)s
= (3/m)3(w/m)3(—1/m)3 by Propositions 1.14 (b) and 1.15 (a). Thus, (1 —w/7)3 =
(3/m)3%(w/m)5°. By Lemma 2.11 and Theorem 1.20, we have (w/7); = w™*" and
(1 —w/m)5 = w?™. It follows that w?™ = (3/7)35°w?™ 2" Hence (3/7)s” = w", 50
(3/m)3 = w?™. This implies that (3/7)3 = w' if and only if w® = w?* mod = if and
only if £ =2n mod 3 if and only if 3tw = —3nw mod 9 if and only if (3m —1) — 3tw
= (3m — 1) + 3nw = 7 mod 9. Since we consider modulo 9, m € {0, 1, 2}. ]

Proposition 2.16 Let 7w be a primary prime in Z[w]. Then
a. 7(3,7) =1 mod 3if and only if # = 3m — 1 mod 9 and
b. 7(3,7) =0 mod 3ifand only if 7 = (3m — 1) 4+ 3w or (3m — 1) + 6w mod 9

for some m € {0, 1, 2}.

Proof. By Lemma 2.15, we have (3/m)3 = 1 if and only if 7 = 3m — 1 mod 9 and
(3/m)s # Lifand only if 7 = (3m — 1) 4+ 3w or (3m — 1) 4+ 6w mod 9. Therefore,
7(3,7) =1 mod 3ifand only if r=3m — 1 mod 9 and 7(3,7) =0 mod 3 if and
only if 7 = (3m — 1) + 3w or (3m — 1) 4+ 6w mod 9 by Proposition 2.2. []
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2.2 Modular Divisor Function n(—, ) on Z|i]

Throughtout this section, let 7 be an irreducible element in Z[i] with N7 # 2.

Definition 2.17 The modular divisor function n(—, 7) on Z[i] is defined by

n(a,m) =#{(z,y,z,w) : z,y,z,w € (Z[1]/(r))* in the 1st quadrant, and

ryzw = o mod 7}

for all a € Z[i] and 7 1 cv.

Proposition 2.18 Let a € Z[i] be such that 7 { a. Then

a. (a/m)y = 1if and only if n(a, 7) is odd, and

b. (a/m)s # 1if and only if n(a, ) is even.

In other words,

a. ¥ = a mod 7 is solvable if and only if n(«, ) is odd, and

b. ¥ = @ mod 7 is not solvable if and only if n(a, 7) is even.

Proof. If (z,y, z,w) is a pair counting towards n(«, 7), then permutations of
z,y,z,w in it is also a pair counting towards n(«, 7). It follows that there are 24k
pairs for some k € NU {0} where z, y, z, w are distinct and there are 121 pairs for
some [ € NU {0} where z = y and z, z, w are distinct, 4m pairs for some m € N
U{0} where z = y = z and z, y, z # w, 6n pairs for some n € NU {0} where

T =1y,2=wand z # z. Assume that zy is the solution of 2* = o mod 7. Then
791, —x9 and —xp7 are also solutions. Thus, there is exactly one solution in the 1st
quadrant. Since (/)4 = 1if and only if z* = @ mod 7 is solvable, (a/7), = 1if
and only if n(a, ) = 24k + 121 + 4m + 6n + 1 for some k, [, m,n € N U {0} and
(a/m)y # 1if and only if n(a, ) = 24k + 121 4+ 4m + 6n for some k,l,m,n € NU
{0}. In other words, (a/7)4 = 1 if and only if n(a, 7) is odd and (a/7)4 # 1 if and
only if n(a, ) is even. []

Corollary 2.19 Let a € Z[i] be such that 71 a and (a/7), = £i. Then
n(a,7) =0 mod 4.

Proof. Suppose that a € Z[i] is such that 7 f a and («/7)4 = £i. By Corollary 1.34,

we have 72 = a mod 7 is not solvable, so z* = a mod 7 and z?y? = o mod = is
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not solvable. Thus the pairs (z, z,y, y) and (z, z, z, z) are not counting towards
n(c, m). Hence n(a, ) = 24k + 121 + 4m = 0 mod 4 for some
k,l,m e NU{0}. []

From the quartic reciprocity law, we have the following proposition.
Proposition 2.20 Let a and 7 be primary primes in Z[i] with Na, N7 # 2 and
Na # N7. Then

n(a, ) = n((—1)Na=/DNT=D/N 7 o) mod 2.

Proof. By Theorem 1.44, we have (a/m)y = (m/a),(—1)" 7 "o . If Na=l Nil g
not both odd integers, then (a/m)s = (7/a)4, so n(a, ) = n(7,a) mod 2 by

f Ma=l N1=1 are both odd integers, then (a/m)s = —(7/a)y =

Proposition 2.18. |
(—1/a)y(m/a)y = (—7‘(‘/(1/)4 by Proposition 1.33 (b), so n(«, 7) = n(—m,a) mod 2 by

Proposition 2.18. []

Next, we study arithmetic properties of n(—, ).

Proposition 2.21 If «, 5 € Z[i] are such that 7 t & and 7 1 8 and n(«, 7) is odd, then
n(aB, ) = (B, ) mod 2.

Proof. Suppose that a, § € Zli], 7t o, w1 8 and n(a, ) is odd. Then (a/7)s =1,
so (aB/m)y = (a/m)4(B/7)s = (B/7)4 by Proposition 1.33 (o). If (aﬁ/w) =1=
(B/m)1, then n(aB,7) =1 =n(B, ) mod 2 by Proposition 2.18 (a). If (af/m)4 =

(B/m)y and (afB/m)4, (B/7)s # 1 then n(ap, m) =0 = n(B, ) mod 2 by Proposition
2.18 (b). []

Proposition 2.22 If «, 8 € Z]i] are such that T aand 74 § and o = 8 mod T,
then n(a, ) = n(B,7) mod 2.

Proof. Suppose that «, 8 € Z[i], 7t a, 71 f and o = 8 mod . By Proposition 1.33
(d), we have (a/m)y = (B/7)s. If (a/7)s = 1= (B/7)4, then n(a, ) =1 =n(5,n)
mod 2 by Proposition 2.18 (@). If (a/m)s = (5/7)4, (a/7)a, (B/7)a # 1 then n(a, )
=0 = 75(3,7) mod 2 by Proposition 2.18 (b). []

Proposition 2.23 Let a € Z[i] be such that 7 { a. Then n(a,7) = n(a,7) mod 2.
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Proof. Suppose «a € Z[i] with 7 { .. Note that 2! = o mod 7 is solvable & 7* =
@ mod 7 is solvable. Then (a/7)s =1 < (@/T)s = 1, so n(a,7) = n(a@,7) mod 2

by Proposition 2.18. []

Proposition 2.24 Let m and \ € Z[i] be primes and (7) = (A) and « € Z[i] with
mtaand A fa. Then n(a, ) = n(a, A) mod 2.

Proof. Suppose that m, A € Z][i] are primes and () = (\) and « € Z[i] with 7 1 «
and At a. By Proposition 1.33 (e), we have (a/m)y = (a/A)y. If (a/7)s=1=
(a/A)g, then n(a, ) =1 = n(a, \) mod 2 by Proposition 2.18 (a). If (a/m)y =
(/N)yg, (a/m)y, (a/N)g # 1 then n(a,7) =0 =n(a/,\) mod 2 by Proposition 2.18
(b). ]

Proposition 2.25 Let a € Z, # 0, and a € Z an odd nonunit element. If
gcd(a, a) = 1, then n(a, a) is odd.

Proof. Suppose that o € Z[i],a« # 0 and a € Z is an odd nonunit element and
gcd(«, a) = 1. By Proposition 1.42, we have (a/a), = 1, so n(a, q) is odd by
Proposition 2.18 (a). []

Proposition 2.26 Let m = ¢ be a rational prime congruent to 3 modulo 4. Then
a. n(t, q) is odd if and only if ¢ = 8k — 1 for some m € Z, and
b. n(i, q) is even if and only if ¢ = 81 + 3 for some [ € Z.

Proof. Suppose that m = ¢ is a rational prime congruent to 3 modulo 4. Write

 Ng—1 g%-1 16428t A12_94
2 =

q=4t —1forsomet € Z. Then (i/q)s =i 1 =i = =i 1 =

it =

(—1)" mod . Thus, (i/q)s = 1 if and only if ¢ is even if and only if ¢ = —1 mod 8,

so (i, q) is odd if and only if ¢ = 8k — 1 for some k € Z by Proposition 2.18 (a) and
(i/q)s = —1if and only if ¢ is odd if and only if ¢ =3 mod 8, so n(i, q) is even if
and only if ¢ = 81 + 3 for some [ € Z by Proposition 2.18 (b). [

In what follows, we assume that 7 = a + bi is a primary prime in Z[i]. Then
(a=1 mod 4and b =0 mod 4) or (a =3 mod 4 and b =2 mod 4) by Proposition
1.37.

p—1

Lemma 2.27 Let 7 = a + bi be a primary prime with N7 = p. Then a = (—1)1
mod4and b=1— (—l)pT_1 mod 4.
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Proof. Suppose that m = a + bi be a primary prime with N7 =p .

Case 1. a =1 mod 4 and b =0 mod 4. Write 7 = (4k + 1) + 4li for some k, [ € Z.
We claim that 21 is even. Note that p = N = (4k + 1)? + (41)? = 16k>

+8k + 1+ 1612, so pT_l = 4k% + 2k + 41% is even. Hence, we have the claim.

Case 2. a =3 mod 4 and b =2 mod 4. Write 7 = (4k + 3) + (41 + 2)1 for some
k,l € Z. We claim that 271 is odd. Note that p = Nm = (4k + 3)> + (41 + 2)* =
16k2 + 24k + 9 + 161> + 161 + 4, so 2% = 4k? 4 6k + 41> + 41 + 3 is odd. Hence, we
have the claim.

The desired results easily follow from the above two cases. []

Proposition 2.28 Let m = a + bi be a primary prime with Nm = p. Then

a. n(i,m) is odd if and only if 7 = 1 + 4li mod 8 for some [ € {0, 1}, and

b. n(i, ) is even if and only if (1 = 5+ 4li mod 8 or m = 3 + 2¢ mod 4 for some
[ € {0,1}).

Proof. Suppose that m = a + bi is a primary prime with N7 = p.
Case 1. a =1 mod 4 and b =0 mod 4. Write 7 = (4k + 1) + 4li for some k, [ € Z.
Then Nm = (4k + 1)? + (41)? = 16k* + 8k + 1 + 16/% and

(i/m)g =i T = Wk = 2k — (_1)k mod 7.

Thus, for t € {0,1}, we have (i/7), = (—1)! if and only if (—1)" = (—1)* mod = if
andonly if t = k£ mod 2 if and only if 4t + 1 =4k + 1 mod 8 if and only if 4¢ + 1+
4li = 4k + 1+ 4li = m mod 8. Hence, (i/m)y = 1 if and only if 7 = 1 + 4li mod 8§,
and (i/m)y = —1if and only if # =5+ 4li mod 8.

Case 2. a =3 mod 4 and b =2 mod 4. Write 7 = (4k + 3) + (41 + 2)i for some
k,l € Z. Then Nm = (4k + 3)* + (41 +2)? = 16k% + 24k + 9 + 16/> + 16 + 4 and

Nr—1

(i/m)y =5

Hence, (i/m)4 # 1.

4 k2 2 : 1
— ARPHOR AR — 2643 — (_1)kj mod .

The desired results easily follow from the above two cases and Proposition

2.18. L]

Proposition 2.29 If p is a rational prime congruent to 1 modulo 4, then (i/p), =

(—1)"=Lm+1 where 1 is primary prime with N = p.
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Proof. Suppose that p is a rational prime congruent to 1 modulo 4. Then there
exists a primary prime m = a + bi € Z[i] such that N7 = p. By Proposition 1.40, we
have (i/p)s = (—1)". Thus, (i/p)s = 1 if and only if 2% is even if and only if a =
1 mod 4 and b =0 mod 4 (by Lemma 2.26) if and only if n(—1,7) is odd (by
Proposition 2.27 (a)), and (i/p)s = —1 if and only if £ is odd if and only if a = 3
mod 4 and b =2 mod 4 (by Lemma 2.26) if and only if n(—1, ) is even (by
Proposition 2.27 (b)). Hence (i/p), = (—1)7-1m+1, []

Proposition 2.30 Let m be a primary prime. Then
a. n(—1,m) is odd if and only if 7 = 1 mod 4, and
b. n(—1,7) is even if and only if 7 = 3 + 2¢ mod 4.

Proof. Suppose that 7 is a primary prime. By Proposition 1.37, we have

(~1/m)a = (~1)fe2

where a is the real part of 7. Then (—1/7)4 = (=1) if and only if (=1)“2 = (1)
mod  if and only if 4% =t mod 2 if and only if @ = 2¢ + 1 mod 4. Thus,
(=1/m)y=1ifand only if a =1 mod 4 and (—1/7)4 = —1 if and only if

a =3 mod 4. It follows by Proposition 1.37 that (—1/7), = 1 if and only if
a=1mod 4and b =0 mod 4ifandonly if =1 mod 4 and (—1/7), = —1if
and only if 7 = 3 4 24 mod 4. Hence n(—1, ) is odd if and only if 7 = 1 mod 4,
and n(—1, ) is even if and only if 7 = 3 4+ 2i mod 4 (by Proposition 2.18). []
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Background and Rationale

For n € N, we let 7(n) denote the number of positive divisors of n. It is well
known that /7 is an integer if and only if 7(n) is odd. Steiner[2] studied a modular
divisor function 7(—, p) defined by for an odd prime p and an integer a with p 1 a,

7(a, p) is the number of ordered pairs of integers (z, y) such that
O<x<%p,0<y<%p,xyza mod p.

He showed that if p is an odd prime and p 1 a, then a is a quadratic residue
modulo p if and only if 7(a, p) is odd. In addition, he used this result to give
another proof of the quadratic reciprocity law.

Let Z|w] ={a+ bw : a,b € Z and w? +w + 1 = 0}. For a, b € Z, the norm of
a+ bwis (a + bw)a + bw) = a® + b? — ab and is denoted by N(a + bw). It follows
that Z[w] is a Euclidean domain and the norm map is a valuation map. Let 7 be a
prime in Z[w] and « € Z[w]. The field Z|w]/7Z|w] has order N7 and the group of

units in Z[w]/7Z[w] has order N7 — 1. Thus, if 7 a, then ™! =1 mod 7.
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Moreover, if N7 # 3 and 7 t «, then there exists a unique integer m = 0,1 or 2
such that o™= 1/3 = ;™ mod . Assume that N« # 3. The cubic residue symbol

of & modulo 7 is given by

(a/m)s =01if 7 | @ and

Nn—-1)/3

ol = (a/m)3 mod 7, with (a/7)3 equals to w, w? or 1.

We note that « is a cubic residue modulo 7 if and only if (a/7)3 = 1. The
cubic reciprocity law is stated as follows.

Theorem. [1] Let m; and my be primes in Z|w] with m; = 2 mod 3 and
7y =2 mod 3, Nmy, Nmy # 3 and Nmy # Nma. Then (my/ms)y = (m2/71)5.

Let Z[i] ={a+ bi: a,b € Z and i* + 1 = 0}. For a, b € Z, the norm of a + bi
is (a + bi)a + bi) = a®> + b* and is also denoted by N(a + bi). It follows that Z[i] is
a Euclidean domain and the norm map is a valuation map. Let 7 be a prime in Z][i]
and « € Z[i]. The field Z[i|/7Z]i] has order N7 and the group of units in
Z[i]/=Z[i] has order N7 — 1. Thus, if 7 { a, then V™! =1 mod 7. Moreover, if
(m) # (14 4) and 7 1 o, then there exists a unique integer j = 0, 1,2 or 3 such that

Nﬂ-*l)/4 = Zj

al mod 7. Assume that 7 is an irreducible, N7 # 2. The quartic

residue symbol of a modulo 7 is given by

(a/m)y =01if 7|  and

Nm—1)/4

al = (a/m)y mod 7, with (a/7)4 equals to i, -1, —i or 1.

We note that a is a quartic residue modulo  if and only if (a/7)4, = 1. The
quartic reciprocity law is stated as follows.
Theorem. [1] Let m; and 7, be primes in Z[i] with 7, = 1 mod (1 + )3 and
7y =1 mod (1+1)® and Nmy # Nmy. Then
(mo/m1)s = (Wl/W2)4(_1)((N7r1—1)/4)((N7r2—1)/4).

We plan to define modular divisor functions on Z[w] and Z[i] similar to
Steiner’s 7—function and use their properties to prove the cubic and quartic

reciprocity laws.
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Objectives

1. Define and study modular divisor functions on Z[w] and Z[i] similar to

Steiner’s T—function which relate cubic and quartic residues.

2. Use the modular divisor functions to prove the cubic and quartic reciprocity

laws.

Project Activities

1. Review quadratic residues, Legendre symbols and the quadratic reciprocity

law.

2. Study cubic and quartic residues along with cubic and quartic residue symbols

and their reciprocity laws.

3. Study Steiner’s work on a modular divisor function and the quadratic

reciprocity law.

4. Define and study modular divisor functions on Z[w] and Z[i] similar to

Steiner’s 7—function.
5. Prove the cubic and quartic reciprocity laws.

6. write a report.
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Duration
Procedue August 2019 - April 2020
Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.
1.Review quadratic

residues, Legendre sym-
bols and the quadratic

reciprocity law.

2.Study cubic and quartic
residues along with cubic
and quartic residue sym-
bols and their reciprocity

laws.

3.Study Steiner’s work on
a modular divisor function
and the quadratic reci-

procity law.

4.Define and study mod-
ular divisor functions on
Z|w] and Z[i] similar to

Steiner’s 7—function.

5Prove the cubic and

quartic reciprocity laws.

6.write a report.
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Benefits

1. Learn about cubic and quartic residues and their reciprocity laws.

2. Obtain some relationship between modular divisor functions and cubic and

quartic residues.

3. Obtain other proofs of the cubic and quartic reciprocity laws.

Equipments
1. Ad paper and stationary

2. Computer

3. Printer
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