
 

โครงการ 

การเรียนการสอนเพื่อเสริมประสบการณ์ 

 
ชื่อโครงการ การเกิดรูปทรงเรขาคณิตแบบสุ่มด้วยวิธีทางกลศาสตร์เชิงสถิติ 

Statistical Mechanics of Emergent Geometry in Random Graphs 

 

ชื่อนิสิต  นายภวัต อัครพิพัฒนา   เลขประจ าตัว 6033428123 

 

ภาควิชา ฟิสิกส์  

ปีการศึกษา 2563 

 

 

 

 

 

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 



Project Title  Statistical Mechanics of Emergent Geometry in Random Graphs 

By   Pawat Akarapipattana 

Field of Study Physics 

Project Advisor Thiparat Chotibut, Ph.D. 

Academic Year 2020 

                                                                                                                                

 This report is submitted to the Department of Physics, Faculty of Science, 
Chulalongkorn University, in partial fulfillment of the requirements for the degree of 
Bachelor of Science. 

 

 This report has been approved by the committee: 

 

 

….....….…………………………… Chairwoman 

(Rangsima Chanphana, Ph.D.) 

 

 

…….....……………………………… Committee 

(Asst. Prof. Pawin Ittismai, Ph.D.) 

 

 

….……………………………… Project Advisor 

(Thiparat Chotibut, Ph.D.)  

 

 

……………………………… Project Co-advisor 

(Oleg Evnin, Ph.D.)  



Statistical Mechanics of Emergent Geometry in Random Graphs

by

Pawat Akara-pipattana

A thesis submitted in conformity with the requirements
for the degree of Bachelor of Science

Department of Physics, Faculty of Science
Chulalongkorn University

© Copyright 2021 by Pawat Akara-pipattana





Statistical Mechanics of Emergent Geometry in Random Graphs

Pawat Akara-pipattana
Bachelor of Science

Department of Physics, Faculty of Science
Chulalongkorn University

2021

Abstract

How spacetime emerges from featureless nothingness is one of the most intriguing

questions in fundamental physics. In this thesis, we take on the random geometry

approach to study discretized spacetime and follow the assumption that, in the sim-

plest form, geometric structures may arise from random connections between dots

under certain rules. We study a family of random graph models called Exponential

Random Graph Models (ERGMs). Although this family was extensively investigated

in the network science community as a proxy to study real-world social networks, its

strength is in its formulation as a Gibbs-Boltzmann distribution in equilibrium sta-

tistical mechanics. Thus, one can modify, analyze, and simulate the ensemble using

familiar tools from statistical mechanics. We are interested in modifying the basic

ERGMs to arrive at a random graph model that possesses emergent geometric prop-

erties. This would serve as a proof-of-principle that geometric spacetime may emerge

from randomly connected dots.

Our study leads to novel classes of random graphs whose edges can self-assemble

themselves into both simple geometric primitives (e.g. triangles) and more complex

structures (e.g. hexagons). The number of such structures is relatively large compared

to the amount of dots and connections available in the graph. Lastly, but interestingly,

our model is free from the graph collapse problem that is often observed in the

traditional ERGMs.

ii



iii



Acknowledgments

First of all, I would like to express my gratitude toward my advisor, Dr. Thiparat

Chotibut, who introduces me to the world of complex systems and statistical physics,

and equips me with the knowledge necessary to pursue research in this field.

I owe a deep sense of gratitude to Dr. Oleg Evnin for spending his precious time

guiding and pushing me through this project. I learned a lot not only on the relating

topics but also on academic thinking and research methodology during the time I

work with him. Without him, I alone would not be able to complete this work.

I would like to also thank Extreme Condition Physics Research Laboratory and

Chula Intelligent and Complex Systems of Chulalongkorn University for providing

computational resources crucial to this project. This project would have been delayed

by months had it not had this resource. I also thank Dr. Teerachote Pakornchote

and Krittin Phornsiricharoenphant, the administrator of high-performance comput-

ing clusters of these two research groups, for their effort of maintaining the clusters

throughout this project.

I would like to thank Gephi team who develops and maintains network visualization

software Gephi [2] which is used to generate all graph visualization in this thesis.

Last but not least, I would like to thank Phanwasa Sapprasert as well as my friends

and family for staying by my side and providing mental supports during the duration

of my study and my project.

iv



Contents

1 Introduction 1

1.1 Undirected Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Exponential Random Graph Models . . . . . . . . . . . . . . . . . . . 2

1.3 Erdős–Rényi Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Two-star Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Dense Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Sparse Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Graph Collapse Problem (Degeneracy Problem) . . . . . . . . 14

2 Geometric Graph Models 15

2.1 The Modified Square Model . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Modified Triangle Model . . . . . . . . . . . . . . . . . . . . . . 16

3 Numerical Results 18

3.1 The Modified Triangle Model . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The Modified Square Model . . . . . . . . . . . . . . . . . . . . . . . 22

4 Conclusion 25

A Numerical Methods 26

A.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 26

A.1.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A.1.2 Detailed Balance . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.1.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.1.4 Acceptance Ratios . . . . . . . . . . . . . . . . . . . . . . . . 28

A.1.5 The Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . 28

A.2 Optimization of The Modified Model . . . . . . . . . . . . . . . . . . 29

B Code 31

B.1 The Erdős–Rényi Graph . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



B.2 The Two-star Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B.2.2 Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B.2.3 Full Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.3 The Modified Two-star Model . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 42

vi



List of Figures

1.1 Connectance plot as a function of J with α = −J . MF denotes mean-

field solution and MCMC denotes the result of my simulation. The

bifurcation indicate a phase transition at J = 1. The graphs (a), (b),

and (c) in the second row are quantitative visualizations of two-star

graphs at J = 0.5, J = 1.5 with high mean degree initial state, and

J = 1.5 with low mean degree initial state. The symmetry around

connectance = 0.5 is due to the edge-hole symmetry in the two-star

Hamiltonian. In the graph visualizations, edges overlap with each other

creating a visual opacity in the graph; the level of opacity can be

roughly thought of as a density of edges of the corresponding vertex. 11

1.2 Variance of node degree as a function of J along the line α = −J at

N = 300. The sharp peak at J = 1 indicates a phase transition. We

observed that the fluctuations (reflected in the error bar) is larger in

the region J < 1 than when J > 1. . . . . . . . . . . . . . . . . . . . 12

1.3 Plot of log connectivity (log 〈k〉 / logN) and log star-density (log (〈k2〉 − 〈k〉) / logN)

as a function of β for α = −0.5, and 4− 1
2

logN with N = 300. MCMC

denotes the result from the simulation, MF denotes mean-field solu-

tion, and FC denotes finite connectivity solution from Annibale’s work

(1.41), (1.42). On the last row, we have a visualization of a graph at

α = −0.5− 1
2

log 300, α = 4− 1
2

log 300 to illustrate typical configura-

tions in this sparse regime. Nodes with degree 0 are not shown in the

visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 A two-star graph at α = −2.852, β = −10, and N = 300. This graph

with mean degree 6 and degree variance exactly 0 will be used as a

baseline for non-geometric graph to be discussed further in Chapter 3. 14

vii



3.1 Typical graph configurations sampled from the modified triangle model

plotted over the parameter space β and σ. α is tuned so that the mean

degree is close to 6 (the range of mean degree in this plot is ±0.1). The

two percentages under each graph are the percentage of triangles and

hexagons respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Convergence of the mean degree, degree variance, and the percentage of

triangles, and of hexagons from the modified triangle model at α = 177,

β = −20, and σ = 100. Each quantity is re-scaled by its equilibrium

value so that they are all normalized to 1. The horizontal axis is the

Monte Carlo step count in units of 10 million steps. . . . . . . . . . . 20

3.3 The mean degree, degree variance, and the percentage of triangles and

of hexagons of the modified triangle model from Monte Carlo simula-

tion at N = 2000, α = 177, β = −20, σ = 100. The horizontal axes is

the density of Erdos-Renyi graph initial state. The green crosses are

mean values for each initial condition averaged over 10 Monte Carlo

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Diameter values of graphs in the modified triangle model plotted as

a function of graph size N . At each size, 50 samples are simulated.

The size orange dots represents the frequencies of data at each value of

the diameter. The blue line is the best fit line, which gives the scaling

law of the diameter N0.1845±0.0083. This implies that the structures of

graphs from the modified triangle model are more similar to lattice

than Erdős–Rényi graph. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 A very large modified triangle graph obtained from the simulation at

N = 5000, α = 177, β = −20, σ = 100. . . . . . . . . . . . . . . . . . . 23

3.6 The mean degree, degree variance, and the percentage of squares and

of cubes of the modified square model from Monte Carlo simulation

at N = 2000, α = 80, β = −20, σ = 100. The horizontal axes is the

density of Erdos-Renyi graph initial state. The green crosses are mean

values for each initial condition averaged over 10 Monte Carlo runs. . 24

viii



ix



Chapter 1

Introduction

The origin of spacetime is arguably one of the most important and intriguing questions

of fundamental physics. One approach that allows for the intuitive interpretation of

emergent spacetime as emergent discretized geometry is through the statistical me-

chanics formulation of random graphs. A pioneering work in this direction was put

forward by Trugenberger and Kelly; they constructed a random graph model whose

action (Hamiltonian) is based on Ollivier curvature, an analog of Ricci curvature de-

fined on a graph [3, 4, 10]. However, their models express many unnatural constraints

which raises the question whether one can construct a simpler model that still leads

to desirable emergent geometry. Our goal is to seek a minimal prescription of random

graph ensembles, such that macroscopic numbers of geometric structures can emerge

naturally in our ensembles. Without resorting to controversial assumptions of Quan-

tum Gravity, we will focus on emergent discretized geometry within the self-contained

context of random graph models.

The organization of the thesis is as follows. In this Introduction Chapter, we

shall begin by introducing random graph models. Then we will introduce and review

important properties of the two-star model, one of the simplest classes of Exponential

Random Graph Models (ERGMs) on which our models are built upon. In Chapter

2, we introduce the modifications to the original two-star model and show that these

modifications are able to meet our expectations. We then report these desirable

properties arising from our models extensively in Chapter 3. Finally, we provide a

brief comprehensive guide to the Monte Carlo algorithm used in our simulations in

Appendix A.

1



2 CHAPTER 1. INTRODUCTION

1.1 Undirected Graph

In this section we introduce background concepts and terminologies necessary to

understand random graph models. We’ll focus on an undirected graph without a

self-loop. The undirected graph G is defined on a set of nodes V and a set of edges

E ⊆ {{x, y}|x, y ∈ V and x 6= y}. This abstract definition of graph is hard to

work with, so we will instead work with a concrete matrix representation of a graph

called the adjacency matrix A. A graph with N nodes is represented by an N × N
adjacency matrix. The ij component of the adjacency matrix encodes the connection

of the graph via the following definition:

Aij =

0 if i is not connected to j

1 if i is connected to j
. (1.1)

With this, we can define the total connection of a node i known as degree

ki =
∑
j

Aij. (1.2)

A diameter of a graph is defined to be the longest shortest path between each

pair of nodes. The diameter will later play a crucial role in determining large scale

structures of a graph.

In the context of the random graph model, one may encounter the term motif.

Basically, motifs are subgraphs of interest that we encode in the Hamiltonian, which

shall be made clear in later chapters.

1.2 Exponential Random Graph Models

Random graph models have been extensively investigated by sociologists to study the

structures of real-world networks. We shall focus on a family of models known as

Exponential Random Graph Models (ERGMs). The ERGM is the least biased way to

model the probability of finding a graph in a collection of all possible graphs, formally

known as graph ensemble, without encoding a priori knowledge of the graph structure

except for the given measurable (observable) quantities such as mean degree, degree

variance, and etc. Such most noncommittal model can be realized by enforcing the

probability distribution of a graph in a graph ensemble to maximize the Shannon’s

entropy subjected to the constraints from the observables. This can be done using

the Lagrange multipliers with the following Lagrange function L, to be maximized



1.3. ERDŐS–RÉNYI GRAPH 3

with respect to P (G),

L =
∑
G

P (G) logP (G) + λ

(∑
G

P (G)− 1

)
+
∑
i

θi

(∑
G

gi(G)P (G)− g∗i

)
, (1.3)

where the Lagrange multiplier λ constrains P (G) to be a probability distribution and

must be normalized to 1, and the Lagrange multiplier θi enforces that the ensemble

average gi from the probabilistic model must reproduce the empirical average (ob-

servable) g∗i . For example, to encode the mean degree into the set of measurable con-

straints, gi would be
∑

j kj and g∗i would be the empirical mean degree obtained from

networks data of interests.1 Recalling that a graph G can be represented concretely

as its adjacency matrix configurations A ∈ {0, 1}N×N , then solving the optimization

problem (1.3) gives the probability of finding a graph with a specific configuration to

be

P (G) =
1

Z
e−Hθ(A), (1.4)

where Z =
∑
{A} e

−Hθ(A) is the partition function andHθ(A) = −
∑

i θigi(A) is called

the Hamiltonian of the graph. We shall call the entire collection of possible graphs

with its associated probability distribution a graph ensemble. Note that we end up

with a Boltzmann distribution of a graph ensemble, hence the name ERGMs, with

the temperature factor kBT = 1. The reformulation of random graphs as the equilib-

rium statistical mechanics ensemble allows us to modify the Hamiltonian fairly easily

without losing the explainablity of the probabilistic models. Namely, one can add

desirable or undesirable motifs to the graph Hamiltonian to study a graph ensemble

of interest, which we will later discuss.

1.3 Erdős–Rényi Graph

The simplest model in the ERGM family is the Erdős–Rényi graph. In this section,

we shall briefly review this model since it serves as the simplest random graph model.

Erdős–Rényi graph is defined as a random graph ensemble in which the number

of vertices is fixed and each edge has a fixed probability of being present or absent,

independently of the other edges [6]. Traditionally, the probability of finding a graph

GN,m in the Erdős–Rényi ensemble with fixed N vertices, fixed m edges with the

1Determining probabilistic model’s parameters from observable statistics is the essence of inverse modeling (sta-
tistical inference), as opposed to the forward modeling case where one would predetermine the model parameters and
study the behaviors of the model (deductive logic).



4 CHAPTER 1. INTRODUCTION

probability of any edge to be present p ≡ m
N

is

P (GN,m) = pm(1− p)(N2 )−m. (1.5)

We can rewrite the probability of the Erdős–Rényi graph in the language of ERGM

in exponential form as

P (GN,m) = exp [ m log p+ ((N2 )−m) log (1− p) ]

= exp

[
m log

(
p

1− p

)
+ (N2 ) log (1− p)

]
.

(1.6)

With a proper normalization and upon the substitution m ≡
∑

i ki, Eqn. (1.6)

translates into

P (G) =
1

Z
eα(p)

∑
i ki , (1.7)

where α(p) = log
(

p
1−p

)
. This ERGM form of the Erdős–Rényi graph also preserves

the original definition; we can see that the probability depends explicitly on the given

(fixed) number of edges in the ensemble. Note that if we scale α(p) as − logN , we

get p = 1/N and the degree is finite.

1.4 Two-star Model

In this section we review the simplest non-trivial model studied extensively in [8], the

two-star model, to familiarize the readers with techniques and characters of slightly

more complicated ERGMs. We shall focus on both analytical and numerical results to

give the readers the impression of this model. For technical details of the numerical

simulation and algorithm used please refer to Appendix A. In the two-star model,

the Hamiltonian is proportional to two quantities: total degree and total number of

two-stars. A two-star of a node i is defined as the number of path of length two

passing through the node i. For the node i with degree ki, the two-star can thus be

expressed as ki(ki − 1)/2. We can then write the Hamiltonian as

H(A) = −θ1

2

∑
i

ki(A)− θ2

2

∑
i

ki(A) (ki(A)− 1) . (1.8)

The factor 1/2 arises from the fact that the sum of degree over all nodes double-count

the edges. This Hamiltonian can be simplified further to

H(A) = −α
∑
i

ki(A)− β
∑
i

k2
i (A) (1.9)



1.4. TWO-STAR MODEL 5

where α = (θ1 − θ2)/2 and β = θ2/2 are ensemble parameters to be specified.

1.4.1 Dense Regime

Mean-field Solution

The dense regime in the two-star model had been studied analytically using mean-

field approximation [8]. The key idea of this method is to approximate all of the

interactions by an effective field with the value of the mean of all interactions. This

works well in the regime where the fluctuations is suppressed and the mean is a

good representative of overall interaction, such as in the dense regime here where

interactions are approximately all-to-all.

We begin with the Hamiltonian (1.8) in term of the adjacency matrix A

H(A) = −θ1

2

∑
i

∑
j 6=i

Aij −
θ2

2

∑
i

∑
j 6=i

∑
k 6=i,j

AijAjk

= −1

2

∑
i

∑
j

[
Aij

(
θ1 + θ2

∑
k 6=i,j

Ajk

)]

= −
∑
i

∑
j>i

Aij

(
(θ1 − θ2) + θ2

∑
k

Ajk

)

= −
∑
i<j

Aij

(
2α + 2β

∑
k

Ajk

)
.

(1.10)

To linearize the quadratic interaction in the adjacency matrix, we can adopt the mean

field approximation by replacing Ajk with its ensemble average 〈Ajk〉 = (N−1)p where

p is the probability to an edge to be present. We thus have

H(A) ≈ −λ(p)
∑
i<j

Aij, (1.11)

where

λ(p) = 2α + 2β(N − 1)p ≈ 2α + 2βNp. (1.12)

Now the partition function can be factorized as the product of the partition function

of the non-interacting systems

Z =
∑
A

eλ(p)
∑
i<j Aij =

∏
i<j

∑
A

eλ(p)Aij =
∏
i<j

(
1 + eλ(p)

)
=
(
1 + eλ(p)

)N(N−1)/2
.

(1.13)



6 CHAPTER 1. INTRODUCTION

Recalling that kBT is set to 1, then the free energy is given by

F = − logZ = −N(N − 1)

2
log
(
1 + eλ(p)

)
. (1.14)

Recall also that we can derive the expectation value of the observables from the free

energy ∑
i<j

〈Aij〉 = −∂F
∂λ

=
N(N − 1)

2

eλ(p)

1 + eλ(p)
. (1.15)

On the other hand, the expected number of edges in the network where each edge is

randomly drawn with probability p can be calculated directly from

∑
i<j

〈Aij〉 =
N(N − 1)

2
p. (1.16)

Equating (1.15) and (1.16) gives the following self-consistent equation for p

p =
eλ(p)

1 + eλ(p)
=

1

2
[1 + tanh(α + βNp)] , (1.17)

where we use the identity ex/(1 + ex) = [1 + tanh(x/2)]/2 in the second equality.

In the dense regime, it is convenient to scale βN → 2J so that the two-star term

in the Hamiltonian β
∑

i k
2
i is in the same order O(N) as the degree term. The

self-consistent equation then becomes

p =
1

2
[1 + tanh(2Jp+ α)] . (1.18)

Park and Newman show that (1.18) has one unique solution for J < 1 and three

solutions with two stable solutions for J > 1 and α sufficiently close to −J . This

leads to the bifurcation at Jc = 1 corresponding to a continuous phase transition to

a symmetry broken state with two phases: a high density phase and a low density

phase. The condition α ≈ −J is important because along this parametrization, the

Hamiltonian has an edge-hole symmetry, which means the Hamiltonian is symmetric

under the substitution of ki by N − ki, and thus can display two phases. In fact, for

any J > 1, there is a first-order phase transition between a high and a low density

phase. The two are separated by the critical line α = −J in the parameter space [8].

We display the bifurcation diagram in Fig.1.1.

Saddle Point Approximation

The mean-field approximation can only take us so far as to the regime where fluc-

tuations is negligible. To see the first-order fluctuations correction to the mean-field



1.4. TWO-STAR MODEL 7

solution, we’ll employ the saddle point approximation. To use the saddle point ap-

proximation, we first transform the Hamiltonian using the Hubbard-Stratonovich

transformation into the set of auxiliary variable {pi} with the identity

exp
(
βk2

i

)
=

√
β

π

∫ ∞
−∞

dpi exp
(
−βp2

i + 2kipiβ
)
. (1.19)

So that the partition function becomes

Z =
∑
{A}

e−H(A)

=

[
β

π

]N/2 ∫
Dp exp

(
−β
∑
i

p2
i

)
×
∑
{A}

exp

(∑
i

2(βpi + α)ki

)
,

(1.20)

where
∫
Dp indicates that the integral is performed over all field {pi}. Here, we

interpret pi as an auxiliary field as usual, but as we’ll see shortly, it can be interpreted

as the probability for the edge to be present as well.

Recalling that ki =
∑

j Aij and that A is symmetric, we can rewrite the exponent

of the last term as ∑
i

(2βpi + α)ki =
∑
ij

(2βpi + α)Aij

=
∑
i>j

(2β(pi + pj) + 2α)Aij.
(1.21)

Then we can evaluate the summation over ensemble as

∑
{A}

exp

(∑
i

2(βpi + α)ki

)
=
∏
i>j

∑
Aij=0,1

exp [(2β(pi + pj) + 2α)Aij]

=
∏
i>j

(1 + exp [2β(pi + pj) + 2α])

(1.22)

Now, we can write the partition function in the form

Z =

∫
Dp e−H(p), (1.23)

with the new Hamiltonian

H(p) = β
∑
i

p2
i −

1

2

∑
i6=j

log
(
1 + e2β(pi+pj)+2α

)
− N

2
log

(
β

π

)
. (1.24)

Now that we have transformed a discrete combinatorial counting into a continuous



8 CHAPTER 1. INTRODUCTION

scalar field counting in the partition function, we can take N →∞ limit and proceed

with the saddle point approximation. First, let’s reproduce the mean-field solution

by looking for the solution that extremizes the Hamiltonian;

∂H
∂pi

= 0 = 2βpi − β
∑
i(6=j)

(tanh(β(pi + pj) + α) + 1) . (1.25)

The solution of this equation is

p0 =
1

2
[tanh(2βNp0 + α) + 1] , (1.26)

where we substitute pi and pj with p0 for every i, j. Note that this method gives a

similar mean-field solution as the one in the previous section.

Note also that from the partition function, we can calculate the expected degree

〈k〉 =
1

N

∑
i

〈ki〉 = − 1

N

∂ log Z

∂α
=

1

2N

∑
i6=j

〈tanh(βN(pi + pj) + α) + 1〉 = (N − 1)pi,

(1.27)

and see that pi behaves like the probability for the edge to be present as in the

previous section, hence the same notation we adopted for the auxiliary variables.

To evaluate the first-order fluctuations correction to the mean-field solution, we

expand the Hamiltonian to second order in p

H(p) = H(p0) + dpᵀMdp +O(dp3), (1.28)

where dp ≡ p − p0 and M is Hessian matrix of H with respect to p, evaluated at

p0. We then change the variables to ξ ≡ Q−1dp, where Q is the eigenvector matrix

of M. Now, we can write dpᵀMdp = dpᵀQQ−1MQQ−1dp = ξᵀQ−1MQξ so M is

diagonalized under this basis transformation and, after neglecting O(dp3), so we can

write

H(p) ≈ H(p0) +
∑
i

λiξ
2
i (1.29)

with λi being the corresponding eigenvalue of the ith column of M. Notice that the

Jacobian for the change of variable to ξ coordinate is 1 (Orthogonal transformation),

we can write the partition function as

Z ≈
∫
Dξ e−H(p0)−

∑
i λiξ

2
i =

(
1√

det(M)

)
︸ ︷︷ ︸

fluctuations
correction

e−H(p0)︸ ︷︷ ︸
mean-field

. (1.30)



1.4. TWO-STAR MODEL 9

The elements of M are

Mij =

−4J2p0(1− p0) for i 6= j

(N − 1)(2J − 4J2p0(1− p0)) for i = j
(1.31)

where we write J instead of βN . This gives the determinant of M to be

det(M) = (2(N − 1)J)N (1− 2Jp0(1− p0))N−1 (1− 4Jp0(1− p0)). (1.32)

We can now calculate the mean degree 〈k〉 and the mean squared degree 〈k2〉 from

the free energy from the new Hamiltonian to give

〈k〉 = Np+
2Jp0(1− p0)(1− 2p0)

(1− 4Jp0(1− p0))(1− 2Jp0(1− p0))
, (1.33)

〈
k2
〉

= N2p2
0 +

Np0(1− p0)(1− 4Jp2
0)

(1− 4Jp0(1− p0))(1− 2Jp0(1− p0))
, (1.34)

where we use the approximation N−1 ≈ N which holds true for N � 1. The leading

order term in N are the same as the mean-field solution. The second terms are the

result of Gaussian fluctuation around mean-field which vanishes in the limit of large

N . One can compute the degree variance from

〈
k2
〉
− 〈k〉2 = N

p0(1− p0)

1− 2Jp0(1− p0)
, (1.35)

and might naively expect it to diverge at the second-order phase transition point.

However, degree variance plot in Fig.1.2 doesn’t show divergence; the variance is

continuous at the transition point. In fact, the quantity that diverges is the variance

of the number of edges in the network since it turns out to be the susceptibility of the

two-star model. The susceptibility of total degree defined as m ≡
∑

i ki is the second

derivative of the free energy F with respect to α:

〈
m2
〉
− 〈m〉2 =

∂2F

∂α2
= N

2p0(1− p0)

1− 4Jp0(1− p0)
. (1.36)

I successfully reproduce the analytical and numerical results from the work of Park

and Newman. In their work, they plot the connectance defined as 〈k〉 /(N −1) versus

the degree variance as a function of J = β(N − 1) setting α = −J and N = 1000.

Their result shows a bifurcation in connectance plot and a sharp peak in degree

variance at J = 1 indicating a second-order phase transition. I simulated graph

ensemble with the same set of parameters but only used N = 300. Fig.1.2 shows that



10 CHAPTER 1. INTRODUCTION

the simulation agree with the mean-field solution nicely.

1.4.2 Sparse Regime

The motivation behind the exploration beyond the dense regime is that, in the dense

regime, the mean connectivity is proportional to the number of nodes in the network

which is rarely observed in real-world networks; e.g. increasing the population size

does not imply one has more friends, on average, in a social network [1]. The more

reasonable model for real-world networks would have its connectivity independent of

the population size. Here we explore a more recent work by Annibale and Courney

[1] that studies the sparse regime of the two-star model.

In N � 1 limit, the leading order of the mean-field solution (1.33) is Np. If we

want 〈k〉 to be O(N0), we need to scale α→ α̂− 1
2

log(N) and set β = O(1) so that

p =
1

2

[
1 + tanh

(
βNp+ α̂− 1

2
logN

)
+ 1

]
=

1
N
e2βNp+2α̂

1
N
e2βNp+2α̂ + 1

≈ 1

N
e2βNp+2α̂

(1.37)

Setting c = pN , we get a new self-consistent equation for c

c = e2βc+2α̂, (1.38)

which is independent of N . Now substitute c in (1.33) and (1.34) and we have the

mean-field

〈k〉 = c

(
1 +

β

(1− 2βc)(1− βc)

)
, (1.39)

〈
k2
〉

= c

(
c+

1

(1− 2βc)(1− βc)

)
. (1.40)

However, the mean-field solution is not accurate in sparse regime since the fluc-

tuations is now non-negligible. The disagreement between the mean-field prediction

and the simulation is shown in Fig.1.3. Annibale and Courtney [1] solved this model

in the limit N � 1 in the finite connectivity regime and it gives

〈k〉 =

∑
k≥0 kg(k)eαk+βk2∑
k≥0 g(k)eαk+βk2

, (1.41)

〈
k2
〉

=

∑
k≥0 k

2g(k)eαk+βk2∑
k≥0 g(k)eαk+βk2

, (1.42)



1.4. TWO-STAR MODEL 11

(a) (b) (c)

Figure 1.1: Connectance plot as a function of J with α = −J . MF denotes mean-field solution and
MCMC denotes the result of my simulation. The bifurcation indicate a phase transition at J = 1.
The graphs (a), (b), and (c) in the second row are quantitative visualizations of two-star graphs at
J = 0.5, J = 1.5 with high mean degree initial state, and J = 1.5 with low mean degree initial
state. The symmetry around connectance = 0.5 is due to the edge-hole symmetry in the two-star
Hamiltonian. In the graph visualizations, edges overlap with each other creating a visual opacity in
the graph; the level of opacity can be roughly thought of as a density of edges of the corresponding
vertex.



12 CHAPTER 1. INTRODUCTION

Figure 1.2: Variance of node degree as a function of J along the line α = −J at N = 300. The sharp
peak at J = 1 indicates a phase transition. We observed that the fluctuations (reflected in the error
bar) is larger in the region J < 1 than when J > 1.

where

g(k) ≡ (c 〈k〉)k/2 e−(〈k〉+c)/2

k!
. (1.43)

Here, c is an arbitrary constant in the order O(N0). This solution also agree with

the Erdős–Rényi graph for β = 0 [1].

Again, I numerically verified Annibale’s results [1]. In the sparse regime, we need to

scale α→ α̂−1/2 log(N) to keep the connectivity in the order of O(N0). I simulated

the sparse regime for α = −0.5− 1
2

logN and α = 4− 1
2

logN with N = 300 and c = 1

in order to reproduce the result in Annibale’s work [1]. The outcome is as expected,

the simulation agrees with (1.41) and (1.42), and the mean-field solution becomes in-

accurate. Log connectivity (log 〈k〉 / logN), log star-density (log (〈k2〉 − 〈k〉) / logN),

and typical graph for both value of α is shown in Fig.1.3. We also present a two-star

graph in Fig.1.4 whose mean degree is 6 that we would use as a baseline to our model

later.

For low connectivity graph (α = −1
2
− logN), the log connectivity and log star-

density is negative meaning that there’s many nodes with no connection at all. The

opposite is true in high-connectivity graph: both values are positive and the graph

has much more connection overall.

I only show the result of β < 0 since we already explore β > 0 in the dense regime

and large β would result in a complete graph.



1.4. TWO-STAR MODEL 13

Figure 1.3: Plot of log connectivity (log 〈k〉 / logN) and log star-density
(
log
(〈
k2
〉
− 〈k〉

)
/ logN

)
as a function of β for α = −0.5, and 4 − 1

2 logN with N = 300. MCMC denotes the result
from the simulation, MF denotes mean-field solution, and FC denotes finite connectivity solution
from Annibale’s work (1.41), (1.42). On the last row, we have a visualization of a graph at α =
−0.5 − 1

2 log 300, α = 4 − 1
2 log 300 to illustrate typical configurations in this sparse regime. Nodes

with degree 0 are not shown in the visualization.



14 CHAPTER 1. INTRODUCTION

Figure 1.4: A two-star graph at α = −2.852, β = −10, and N = 300. This graph with mean degree
6 and degree variance exactly 0 will be used as a baseline for non-geometric graph to be discussed
further in Chapter 3.

1.4.3 Graph Collapse Problem (Degeneracy Problem)

Apart from our simulation results along the line α = −J , almost all graphs in the two-

star model are either very sparse or very dense. This problem is known as degeneracy

problem in the context of ERGM where it prevent sociologists from finding a unique

set of parameters to describe a real-world network [9]. It also discourages reasonable

graphs of finite mean degree since the degree in the sparse region scale like O(N−1).

This is not unique to the two-star model. In fact, the degeneracy problem is common

to the family of ERGM. Introducing naive geometric graph motifs can easily cause

the model to collapse into either of these two phases. This is shown in the Strauss’

model of a clustered network where an introduction of a triangle term cause the graph

to collapse into a sparse phase and a dense phase, where the triangles cluster together

instead of distributing evenly over the graph [7]. This degeneracy problem is the main

obstacle for traditional ERGMs to model reasonable social networks or to give rise to

emergent discrete geometric primitives, which is the focus of this thesis.



Chapter 2

Geometric Graph Models

Our goal is to generate a graph ensemble that has a finite degree with small degree

variations, also with a large number of geometric primitives, such as triangles and

squares. To this end, we start with the two-star model with a large negative two-star

parameter β, since the number of two-star relates closely with degree variance, and

modify it by adding a geometric motif term to encourage such geometric structure.

We can then control the mean degree by adjusting a degree parameter α. However, it

is evident that we cannot naively put whatever geometric graph motif terms we want

in the Hamiltonian since they can easily lead to the graph collapse problem. In this

chapter, we shall describe our solution to the graph collapse problem and its results.

2.1 The Modified Square Model

Inspired by the hard-core constraints (used in [3]), which constrains two squares to

only share an edge at most, we came up with our modification of the two-star model

where we add the following term to the Hamiltonian:

σ
∑
i>j

δ(qij, 2), (2.1)

where δ is the Kronecker symbol, σ controls the strength of this term of this term,

and qij is the square of the adjacency matrix

qij =
∑
k

AikAkj. (2.2)

15



16 CHAPTER 2. GEOMETRIC GRAPH MODELS

(2.1) term encourages subgraphs that have exactly 2 path of length 2, visualized as

(2.3)

which can be thought of as a squares. Additionally, (2.1) discourages subgraphs that

have any other number of paths of length 2 such as

and , (2.4)

so that the squares do not concentrate on the same set of nodes, thus preventing the

graph collapse problem. Our Hamiltonian is now in the form

H� =

[
−α
∑
i

ki − β
∑
i

k2
i

]
︸ ︷︷ ︸

two-star Hamiltonian

−σ
∑
i>j

δ(qij, 2) (2.5)

We expect to see a large number of squares from this model in the sparse regime

where the degree is N -independent. These geometric structures are expected to form

a 3-dimensional square lattice up to defects when the mean degree is around 6.

2.2 The Modified Triangle Model

We can apply the same idea as the modified square model to the modified triangle

model by introducing the term

σ
∑
i>j

δ(Aijqij, 2). (2.6)

Here, we element-wise multiply qij by Aij so that it encourage the following structure

, (2.7)



2.2. THE MODIFIED TRIANGLE MODEL 17

which can be thought of as 2 triangles glued together, instead of a single square.

Likewise, this term prevents clustering of triangles seen in the Struass’ model and

should resolve the graph collapse problem by discouraging the structure like

. (2.8)

The Hamiltonian of the modified triangle model is then given as

H4 =

[
−α
∑
i

ki − β
∑
i

k2
i

]
︸ ︷︷ ︸

two-star Hamiltonian

−σ
∑
i>j

δ(Aijqij, 2). (2.9)

Similar to the modified square model, we expect to see a large number of triangles

and partial hexagonal lattice when the mean degree is close to 6.



Chapter 3

Numerical Results

We simulate the modified triangle and the modified square model, which exhibit 6-

regular graphs (the degree is approximately 6 with small degree variance). This choice

of mean degree is motivated by the degree of nodes in triangular and simple cubic

lattice. The results from our simulations suggest that both models that we proposed

has achieved our goals; they form a large number of triangles and squares as well as

other geometric structures, as we will see shortly. On top of that, they do not suffer

from the graph collapse problem that plagues the standard ERGM family.

3.1 The Modified Triangle Model

To quantify the notion of “large” number of geometric primitives, we introduce the tri-

angle fraction η4 defined as the number of triangle n4, which is given by Tr(A3)[11],

divided by the maximum number of triangles of a d-regular graph with N nodes,

given by Nd(d− 1)/6. For a 6-regular graph, this quantity is equal to 5N so we can

write

η4 =
n4
5N

. (3.1)

We also count the number of hexagons nhex, which is the emergent structure we

expect to see at mean degree approximately 6. This motif is defined as subgraphs in

the form

(3.2)

with the condition that the central node strictly has degree 6 and the peripheral nodes

do not have any other connections to each other. This means that the central node

cannot connect to any other node outside the hexagon while the peripheral nodes

18



3.1. THE MODIFIED TRIANGLE MODEL 19

2.00%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

-25

0.0

32.50%  9.50%
0.0

0.2

0.4

0.6

0.8

1.0
50.0

36.00%  12.50%
0.0

0.2

0.4

0.6

0.8

1.0
100.0

39.70%  12.50%
0.0

0.2

0.4

0.6

0.8

1.0
150.0

39.10%  8.00%
0.0

0.2

0.4

0.6

0.8

1.0
200.0

2.00%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

-50

3.20%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

38.80%  8.00%
0.0

0.2

0.4

0.6

0.8

1.0

36.40%  5.00%
0.0

0.2

0.4

0.6

0.8

1.0

37.90%  10.00%
0.0

0.2

0.4

0.6

0.8

1.0

1.90%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

-75

1.60%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

3.60%  0.00%
0.0

0.2

0.4

0.6

0.8

1.0

33.60%  5.50%
0.0

0.2

0.4

0.6

0.8

1.0

36.50%  14.00%
0.0

0.2

0.4

0.6

0.8

1.0

σ

β

Figure 3.1: Typical graph configurations sampled from the modified triangle model plotted over the
parameter space β and σ. α is tuned so that the mean degree is close to 6 (the range of mean degree
in this plot is ±0.1). The two percentages under each graph are the percentage of triangles and
hexagons respectively.

can. We introduce the hexagon fraction

ηhex =
nhex
N

(3.3)

where we choose to scale it with the maximum number of hexagons which is the total

number of nodes N since every node can be a center of a hexagon.

We begin our examination of the modified triangle model by making what we

call a scan plot where we simulate several graphs of a small size to roughly explore

the parameter space. Such plot is shown in Fig.3.1. We observe that there are

2 apparently distinct regimes of the typical graph configurations. When σ is not

sufficiently large, the graph crumples up into a ball like what we observe in Fig.1.4.

The two-star graph shown in Fig.1.4 has the percentage of triangles and hexagons

comparable to that of the graphs below the diagonal of Fig.3.1. This suggests that

the two-star term dominates when σ is small. When σ is sufficiently large, above

the diagonal, the graph is more transparent and crystalline. We call this regime a

geometric graph phase. The graphs above the diagonal also have a large percentage

of triangles and a non-negligible percentage of hexagons. Note that these percentages

is huge compared to sparse Erdos-Renyi graph, in which the percentage of triangles



20 CHAPTER 3. NUMERICAL RESULTS

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

mean degree
variance
triangle percentage
hexagon percentage

steps (107)

Figure 3.2: Convergence of the mean degree, degree variance, and the percentage of triangles, and
of hexagons from the modified triangle model at α = 177, β = −20, and σ = 100. Each quantity
is re-scaled by its equilibrium value so that they are all normalized to 1. The horizontal axis is the
Monte Carlo step count in units of 10 million steps.

goes to zero in the limit of large N , let alone the percentage of hexagons. Though

we deliberately plot very small graphs, this picture is qualitatively correct up to the

biggest graph we were able to simulate (N = 5000).

The next point we would like to address is the convergence of our simulation.

According to Fig.3.2, the mean degree
∑

i ki/N is the first to converge followed by

the mean degree variance
∑

i k
2
i /N − (

∑
i ki/N)2, the percentage of triangles, and the

percentage of hexagons, respectively. After several simulations at different graph sizes,

we estimate that the steps of Monte Carlo needed for the convergence of hexagons

grow roughly like O(N2.8).

The most notable features of our model is its percentage of geometric primitives.

Fig.3.3 shows that all ranges of density of the initial state sampled from an Erdos-

Renyi graph consistently give large percentage of triangles and hexagons, although

they end up in quite different states. This behavior that different initial states evolve

into different final states and gets stuck there is known as jamming, which is also

observed in other more conventional disordered systems, such as in glassy materials

where the crystallization crucially depends on the initial configurations. Jamming

can occur when the system is trapped in a spurious meta-stable state in a high-

dimensional rugged energy landscape where it needs large energy fluctuations to get

out. It is not surprising that the modified triangle model displays jamming behavior

since it is difficult to obtain a perfect crystalline order in the final state when small



3.1. THE MODIFIED TRIANGLE MODEL 21

0.0 0.2 0.4 0.6 0.8 1.0
5.76

5.84

5.92

6.00

6.08

(a) mean degree

0.0 0.2 0.4 0.6 0.8 1.0
1.20

1.26

1.32

1.38

1.44

(b) degree variance

0.0 0.2 0.4 0.6 0.8 1.0
35.4

36.2

37.0

37.8

38.6

(c) percentage of triangles

0.0 0.2 0.4 0.6 0.8 1.0
6.8

8.2

9.6

10.9

12.3

(d) percentage of hexagons

Figure 3.3: The mean degree, degree variance, and the percentage of triangles and of hexagons of
the modified triangle model from Monte Carlo simulation at N = 2000, α = 177, β = −20, σ = 100.
The horizontal axes is the density of Erdos-Renyi graph initial state. The green crosses are mean
values for each initial condition averaged over 10 Monte Carlo runs.



22 CHAPTER 3. NUMERICAL RESULTS

400 800 1600

8

9

10

11

12

13

N

d
ia

m
et

er

Figure 3.4: Diameter values of graphs in the modified triangle model plotted as a function of graph
size N . At each size, 50 samples are simulated. The size orange dots represents the frequencies of
data at each value of the diameter. The blue line is the best fit line, which gives the scaling law of
the diameter N0.1845±0.0083. This implies that the structures of graphs from the modified triangle
model are more similar to lattice than Erdős–Rényi graph.

nucleations emerge simultaneously in various components of the graph. Indeed, once

a large number of triangles, favored by the Hamiltonian, has formed in our graph,

it is difficult to modify this configuration without paying a high energetic cost to

“unjam” the configuration. Nevertheless, all of the final graphs, regardless of their

initial states, exhibit significantly larger numbers of geometric primitives than any

other ERGMs without hard constraints and we consider this as our success!

We also fit diameter values of several graph sizes to get a scaling law for the

diameter. It is known that the diameter of sparse Erdos-Renyi graph scales as the

logarithm of its size [6]. However, the best fit line of the diameter of the modified

triangle model in Fig.3.4 suggests that it grows as N0.1845±0.0083. This result suggests

that our graph is more similar to a regular lattice or a simplicial complex, where the

diameter grows as the power of N , than to a traditional random graph.

Last but not least, we present the largest graph we are able to simulate within our

computational capability with N = 5000 at α = 177, β = −20, and σ = 10 to give a

visual impression in Fig.3.5.

3.2 The Modified Square Model

Similar to the modified triangle model, we keep track of the number of the squares

n�, which is given by (Tr(A4) + Tr(A2) − 2
∑

i k
2
i )/8 [11], in the form of square



3.2. THE MODIFIED SQUARE MODEL 23

Figure 3.5: A very large modified triangle graph obtained from the simulation at N = 5000, α =
177, β = −20, σ = 100.

fraction η� defined as

η� =
n�

15N
, (3.4)

where the denominator is now the maximum number of squares in a 6-regular graph,

given by Nd(d− 1)(d− 2)/8 which is 15N . We also count the number of cubes ncube,

which is strictly defined as a subgraph of the form

, (3.5)

as a counterpart of the number of hexagons in the modified triangle model. This

cube subgraph has no other connection between each of its member but can connect



24 CHAPTER 3. NUMERICAL RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
6.2

6.4

6.6

6.8

7.0

(a) mean degree

0.0 0.2 0.4 0.6 0.8 1.0
1.98

2.40

2.82

3.23

3.65

(b) degree variance

0.0 0.2 0.4 0.6 0.8 1.0
23.5

26.4

29.3

32.2

35.1

(c) percentage of squares

0.0 0.2 0.4 0.6 0.8 1.0
47.0

52.4

57.8

63.3

68.7

(d) percentage of cubes

Figure 3.6: The mean degree, degree variance, and the percentage of squares and of cubes of the
modified square model from Monte Carlo simulation at N = 2000, α = 80, β = −20, σ = 100. The
horizontal axes is the density of Erdos-Renyi graph initial state. The green crosses are mean values
for each initial condition averaged over 10 Monte Carlo runs.

to any other node in the graph. The cube fraction is defined like its modified triangle

model counterpart

ηcube =
ncube
N

. (3.6)

Overall, the behavior of the modified square model is very similar to the modified

triangle model. When σ is sufficiently large, it gives large a percentage of squares and

cubes. It also displays a similar jamming behavior as the modified triangle model

although the variation of the jammed final state is larger than that of the modified

triangle model. We summarize this in Fig.3.6 which is to be compared and contrasted

with Fig.3.3.



Chapter 4

Conclusion

In this thesis, we begin by reviewing the statistical mechanics framework of Exponen-

tial Random Graph Model (ERGM), a family of random graph models in which graph

ensembles are prescribed by the Hamiltonian in the Boltzmann distribution. We also

review the analytic solutions of the two-star model, the simplest model in ERGM fam-

ily that displays phase transitions. The analytic treatments of the two-star model,

studied extensively in [1, 8], have been verified by our Monte Carlo simulations.

The second part of this thesis consists of our efforts to design a random graph with

a significant number of geometric primitives without suffering from a graph collapse

phenomenon. We come up with a modified triangle and a modified square model,

where we introduce a new term(A.14) and (A.13) to the Hamiltonian of the two-

star model. In the parameter regime where these new terms are large, the graph is

populated by significant fractions of geometric primitives including triangle, hexagons,

squares, and cubes. Since we do not introduce a cube or a hexagon-counting term

to the Hamiltonian, these geometric features of our models are considered to be

emergent property. Comparing to the original Erdos-Renyi graph where these motifs

are expected to vanish in the limit of large N , we consider our model as a success.

Other notable features of our models include their jamming behaviors, in which the

equilibrium of both modified triangle and square models displays an initial state

dependency. In addition, they also show non-geometric to geometric graph phase

transition shown in Fig. 3.1. These topics require intensive analytical treatments and

are out of the scope of this thesis. To this end, we see our work as a first step to

investigate emergent geometry from random graph models.

25



Appendix A

Numerical Methods

One of the common methods to simulate a graph ensemble is to use a Metropolis-

Hastings algorithm, a class of Markov Chain Monte Carlo (MCMC) algorithm. In

short, a graph from any chosen initial state will be updated stochastically via a

Markov process and is guaranteed to reach the desired equilibrium ensemble by detail

balance and ergodicity condition. This section aims to review the Metropolis Monte

Carlo algorithm based on the book by Newman and Barkema [5] and shows how one

can optimize this algorithm.

A.1 Markov Chain Monte Carlo

In this section, we review background concepts and Metropolis Monte Carlo algo-

rithm. Monte Carlo algorithm is known as a brute force solution to hard numerical

problems. It uses a random number generator to mimic probabilistic properties of

physics systems. With a proper setup, it can be a powerful tool for various problems.

The system of our interest is the Boltzmann distributed graph ensemble. The obvi-

ous problem we face is that this distribution is dominated by small numbers of states

around the minimum(s) of the Hamiltonian. To sample from this distribution, we use

Metropolis algorithm. This algorithm makes use of Markov Chain with some con-

straints to create auxiliary dynamics that ends up with Boltzmann distributed states

in the equilibrium. In this section, we shall discuss each element of this algorithm.

A.1.1 Markov Chain

A Markov Process is defined as a process to randomly generate a new state ν from a

current state µ with the time independent probability that only depends on µ and ν

called transition probability P (µ → ν). Clearly, transition probability has to satisfy

26



A.1. MARKOV CHAIN MONTE CARLO 27

the condition ∑
ν

P (µ→ ν) = 1 (A.1)

so that the overall out-going probability is normalized.

Markov chain is a chain of Markov processes. We can choose a specific Markov

chain that eventually gives a successive chain of Boltzmann distributed states. The

constraints we shall impose on the Markov chain is called detailed balance and ergod-

icity.

A.1.2 Detailed Balance

This condition ensures that we’ll reach the desire distribution when Markov Chain

reach its equilibrium. At the equilibrium, the rate that the system evolves to µ and

from µ must be equal so one can write∑
ν

pµP (µ→ ν) =
∑
ν

pνP (ν → µ) (A.2)

or simply

pµ =
∑
ν

pνP (ν → µ). (A.3)

In a naive sense, at the equilibrium, the probability of every state should stay the

same, or in other words, be in the steady state. There is, however, a more general

kind of equilibrium known as dynamic equilibrium where the states evolve in a circular

manner called limit cycle. The limit cycle is not desirable since it shifts the probability

distribution of our system away from what we want. One way to solve this problem

is to introduce a detailed balance condition

pµP (µ→ ν) = pνP (ν → µ). (A.4)

This condition states that the system should be arriving at the state µ as likely as

departing from it. This condition is satisfied in case of simple equilibrium but in limit

cycle, where states tend to evolve with the cycle, this condition is violated.

From (A.4), given we want our system to end up in the equilibrium Boltzmann

distribution, we can write

P (µ→ ν)

P (ν → µ)
=
pν
pµ

= e−(Eν−Eµ). (A.5)



28 APPENDIX A. NUMERICAL METHODS

A.1.3 Ergodicity

Ergodicity is the condition that requires all possible states to be reachable by the

Markov process. This guarantees that every initial state will be able to reach the

equilibrium and no possible states will miss out so that we end up with Boltzmann

distribution in the equilibrium. Note that this does not mean that every state has to

be able to reach every other one, only that they should be able to reach one by at least

one path of non-zero overall probability. The proof of ergodicity of our algorithm is

out of the scope of this thesis and thus will be left out.

A.1.4 Acceptance Ratios

In practice, it is not trivial to generate a Markov processes which has the transition

probability P (µ→ ν). We instead use two separate process g(µ→ ν) and A(µ→ ν).

P (µ→ ν) = g(µ→ ν)A(µ→ ν) (A.6)

Here, g(µ → ν) is used to generate a new state from the old one. A(µ → ν) is used

to accept it.

A.1.5 The Metropolis Algorithm

From the previous section, we can see that the essence of Markov Chain Monte Carlo

is to choose a proper generating probability g(µ→ ν) and acceptance rate A(µ→ ν).

For the Metropolis algorithm, g(µ → ν) is the transition probability from µ to a

slightly different state. In this case, this is the probability to flip a single element

of the adjacency matrix which is fixed to one over the size of the adjacency matrix.

With this, (A.5) turns to
A(µ→ ν)

A(ν → µ)
= e−(Eν−Eµ). (A.7)

All we have to do now is to choose an appropriate acceptance rate. It is wise to

choose A(µ → ν) as high as possible and the other one according to the constraints

so the system gets to explore more states. We also observe that if the state ν has

lower energy than µ, the exponent of (A.5) is positive so the system tends to evolve

toward lower energy. Thus, one way to get the most efficiency out of the Markov

Chain Monte Carlo, the Metropolis algorithm suggests to choose

A(µ→ ν) =

e−(Eν−Eµ) if Eν − Eµ > 0

1 otherwise.
(A.8)



A.2. OPTIMIZATION OF THE MODIFIED MODEL 29

The non-zero probability to flip to a higher-energy state also allows our algorithm to

escape local minima in the Hamiltonian.

A.2 Optimization of The Modified Model

In essence, the algorithm of the modified triangle or the square model and the two-

star model are the same. However, we need to optimize our code since now our

Hamiltonian has more time complexity; directly computing the number of two-stars

has the complexity of that of matrix multiplication but finding the number of 2 length-

2-paths involve several matrix multiplications and searching. The goal of this section

is to derive the formula relating the change of the Hamiltonian at each step to the

change of the adjacency matrix. After that, we shall get to the results.

At each step, the ij element of the adjacency matrix is flipped from 0 to 1 or 1 to

0. This change of the element ij can be written as

∆ijcmn = δimδjn + δinδjm(1− 2cij). (A.9)

Recall that degree is defined as km =
∑

n cmn so the change of the degree due to

ij-flip is

∆ijkm = (δim + δjm)(1− 2cij). (A.10)

Substituting this into the Hamiltonian of the two-star model (1.9) gives

∆ij = −2(1− 2cij) [α + β(ki + kj)] + 2β. (A.11)

For the modified square model, the change of q is given as

∆ijqmn = (δimcjn + δjmcin + δjncim + δincjm)(1− 2cij) + (δimδin + δjmδjn). (A.12)

the modified triangle model has a more complex formulae

∆ij(cmnqmn) = qmn(∆ijcmn) + cmn(∆ijqmn) + (∆ijcmn)(∆ijqmn). (A.13)

However, ∆ijcmn is only non-zero if m = i and n = j or m = j and n = i, in these

cases, ∆ijqmn is zero so the last term vanishes. The term cmn(δimδin + δjmδjn) from

the second term also vanishes since the diagonal elements of our adjacency matrix is

zero. Thus (A.14) can be rewritten as

∆ij(cmnqmn) = qmn(δimδjn+δinδjn)(1−2cij)+cmn(δimcjn+δjncin+δjncim+δincjm)(1−2cij).

(A.14)



30 APPENDIX A. NUMERICAL METHODS

Note that both (A.13) and (A.14) only make changes to rows and columns i and j so

that we don’t have to multiply entire matrices every step. Thus, the time complexity

of our algorithm is reduced to only O(N).



Appendix B

Code

In this appendix, we describe our program used to sample our exponential random

graph ensemble. The program is written in Python with package Numpy, Matplotlib,

and Scipy.

B.1 The Erdős–Rényi Graph

At it essence, the Erdős–Rényi graph is a graph with fixed amount of node randomly

connected by a fixed amount of edges. This means we can create an adjacency

matrix of Erdős–Rényi graph by assigning 1 to each component of a zero matrix

each component with a probability equals to graph density, defined to be the ratio

of the total number of edges to the total number of nodes. Then, we can make it

undirected by mirroring the components either upper or below the diagonal. The

code for generating an Erdős–Rényi graph is the following:

1 def ini_ER (N,p):

2 state = np.triu((np.random.rand(N,N)<p).astype(’float64 ’))

3 np.fill_diagonal(state ,0)

4 return state+np.transpose(state)

B.2 The Two-star Model

Unlike the Erdős–Rényi graph, the distribution of the two-star ensemble has to be

simulated by MCMC algorithm. I divided my program into 3 parts: initialization,

Markov process, and outputs. The last one depends on styles and individual prefer-

ences so I will not get into the specific details. This section will focus on the first and

the second part of my program. The full code in shown at the end of this section.

31



32 APPENDIX B. CODE

B.2.1 Initialization

When working with MCMC algorithm, it is wise to use the initial state similar to

the expected results, if possible, to avoid falling into spurious local minima. In the

two-star program, we’ve experimented with various initial states. An empty graph

can be easily generated using zeros function from Numpy:

1 np.zeros ((N,N))

We can also create a graph with fixed degree K using the follwing code:

1 def ini_fixed(N,K):

2 state = np.zeros((N,N), dtype = ’int’)

3 set_ij = [[j,i] for i in range(1,N) for j in range(i)]

4 for ij in random.sample(set_ij ,k = K):

5 state[ij[0],ij[1]] = 1

6

7 for i in range(N):

8 for j in np.random.choice(N,size=K,replace=False):

9 state[j,i] = 1

10 for i in range (N):

11 for j in range(N):

12 if (i==j):

13 state[j,i] = 0

14 elif (i>j):

15 state[i,j] = state[j,i]

16 return state

Finally, the following code is used to create a random graph with half the edge

possible:

1 def ini_random(N):

2 state = np.random.randint(2,size = (N,N))

3

4 for i in range (N):

5 for j in range(N):

6 if (i==j):

7 state[j,i] = 0

8 elif (i>j):

9 state[i,j] = state[j,i]

10

11 return state

B.2.2 Markov Process

The function associated to MCMC is called flip. This function updates the adja-

cency matrix with the desired move, calculates the energy difference, and accepts

the move according to the metropolis algorithm described in appendix A. The moves

implemented includes, normal flip, hinge flip, edge swap, big flip, and column flip.

Hinge flip move preserves mean degree and edge swap preserves both mean degree and

the degree of affected nodes. Big flip and column flip updates a large portion of the



B.2. THE TWO-STAR MODEL 33

adjacency matrix and a column of the matrix respectively; they are useful strategies

to escape spurious local minima, if used correctly.

B.2.3 Full Code

1 def cal_energy (state ,alpha ,beta):

2 k_0 = np.sum(state ,axis =0)

3 k2_0 = np.power(k_0 ,2)

4 return -beta*np.sum(k2_0) -alpha*np.sum(k_0)

5

6 def normal_flip(N,state ,alpha ,beta):

7 E_0 = cal_energy(state ,alpha ,beta)

8

9 i = np.random.randint(1,N)

10 j = np.random.randint(0,i)

11

12 state[j,i] = 1-state[j,i]

13 state[i,j] = state[j,i]

14

15 E_n = cal_energy(state ,alpha ,beta)

16

17 if not(np.random.random () < min(1,np.exp(E_0 -E_n))):

18 state[j,i] = 1-state[j,i]

19 state[i,j] = state[j,i]

20 return E_0

21

22 return E_n

23

24 def column_flip(N,state ,alpha ,beta):

25 E_0 = cal_energy(state ,alpha ,beta)

26

27 i = np.random.randint(0,N)

28

29 state[:,i] = 1-state[:,i]

30 state[i,:] = 1-state[i,:]

31

32 E_n = cal_energy(state ,alpha ,beta)

33

34 if not(np.random.random () < min(1,np.exp(E_0 -E_n))):

35 state[:,i] = 1-state[:,i]

36 state[i,:] = 1-state[i,:]

37 # print(’not column fliped ’)

38 # print(E_0 ,E_n)

39 return E_0

40

41 return E_n

42

43 def big_flip(N,n,state ,alpha ,beta):

44 E_0 = cal_energy(state ,alpha ,beta)

45 state0 = state.copy()

46

47 set_ij = np.sort(np.random.randint(0,N,size = (n,2)))

48



34 APPENDIX B. CODE

49 for thing in set_ij:

50 i = thing [1]

51 j = thing [0]

52 if i!=j:

53 state[j,i] = 1-state[j,i]

54 state[i,j] = state[j,i]

55

56 E_n = cal_energy(state ,alpha ,beta)

57

58 if not(np.random.random () < min(1,np.exp(E_0 -E_n))):

59 state = state0.copy()

60 return E_0

61

62 return E_n

63

64 def edge_swap(N,state ,alpha ,beta):

65 E_0 = cal_energy(state ,alpha ,beta)

66

67 set_i = np.random.randint(1,high = N,size =2)

68 i1 = int(set_i [0])

69 j1 = np.random.randint(0,high = i1)

70 i2 = int(set_i [1])

71 j2 = np.random.randint(0,high = i2)

72

73 temp = state[j1,i1]

74 state[j1,i1] = state[j2,i2]

75 state[j2,i2] = temp

76 state[i1,j1] = state[j1,i1]

77 state[i2,j2] = state[j2,i2]

78

79 E_n = cal_energy(state ,alpha ,beta)

80

81 if not(np.random.random () < min(1,np.exp(E_0 -E_n))):

82 temp = state[j1,i1]

83 state[j1,i1] = state[j2,i2]

84 state[j2,i2] = temp

85 state[i1,j1] = state[j1,i1]

86 state[i2,j2] = state[j2,i2]

87 return E_0

88 return E_n

89

90 def hinge_flip(N,state ,alpha ,beta):

91 E_0 = cal_energy(state ,alpha ,beta)

92

93 i1 = np.random.randint(1,high=N)

94 j1 = np.random.randint(0,high = i1)

95 j2 = np.random.randint(0,high = i1)

96

97 temp = state[j1,i1]

98 state[j1,i1] = state[j2,i1]

99 state[j2,i1] = temp

100 state[i1,j1] = state[j1,i1]

101 state[i1,j2] = state[j2,i1]

102



B.2. THE TWO-STAR MODEL 35

103 E_n = cal_energy(state ,alpha ,beta)

104

105 if not(np.random.random () < min(1,np.exp(E_0 -E_n))):

106 temp = state[j1,i1]

107 state[j1,i1] = state[j2,i1]

108 state[j2,i1] = temp

109 state[i1,j1] = state[j1,i1]

110 state[i1,j2] = state[j2,i1]

111

112 return E_0

113 return E_n

114

115

116

117 def flip(frames , state ,N,alpha , beta , plot_t = True): #state2 has higher Temp

118 ydata = []

119 int_frames = frames

120

121

122 while(frames > 0):

123 E = normal_flip(N,state ,alpha ,beta)

124 if frames % int(int_frames /200) ==0:

125 k_0 = np.sum(state ,axis =0)

126 ydata.append(np.mean(k_0))

127 frames -= 1

128 if plot_t:

129 plt.plot(ydata)

130 plt.show()

131

132 def ini_random(N):

133 state = np.random.randint(2,size = (N,N))

134

135 for i in range (N):

136 for j in range(N):

137 if (i==j):

138 state[j,i] = 0

139 elif (i>j):

140 state[i,j] = state[j,i]

141

142 return state

143

144 def ini_fixed(N,K):

145 state = np.zeros((N,N), dtype = ’int’)

146 set_ij = [[j,i] for i in range(1,N) for j in range(i)]

147 for ij in random.sample(set_ij ,k = K):

148 state[ij[0],ij[1]] = 1

149

150 for i in range(N):

151 for j in np.random.choice(N,size=K,replace=False):

152 state[j,i] = 1

153 for i in range (N):

154 for j in range(N):

155 if (i==j):

156 state[j,i] = 0



36 APPENDIX B. CODE

157 elif (i>j):

158 state[i,j] = state[j,i]

159 return state

160

161 def p_eq(p,alpha ,beta ,N):

162 return 0.5*( np.tanh (2* beta*p + alpha)+1)-p

163

164 def from_adj (N,alpha ,beta):

165 return np.loadtxt(’adj matrix \\’+str(N)+’alpha’+str(alpha)+’ finite_twostar ’+str(

beta)+’.adj’,dtype = ’int’)

166

167

168 def save_adj(N):

169 K = np.loadtxt(’alpha_newton N=500. txt’)

170 for chosen_i in (74,):

171 alpha = K[chosen_i ,0]

172 beta = K[chosen_i ,1]

173 mean_deg = K[chosen_i ,2]

174

175

176 print(’alpha : %.4f, beta : %.4f, <k> = %.4f, N = %d’%(alpha ,beta ,mean_deg ,N)

)

177 state1 = ini_fixed(N,int(mean_deg*N/2))

178

179 k_0 = np.sum(state1 ,axis =0)

180 print(np.mean(np.power(k_0 ,2)))

181

182 flip(1e8 ,state1 ,N,alpha ,beta)

183

184 k_0 = np.sum(state1 ,axis =0)

185 print(np.mean(np.power(k_0 ,2)))

186 plt.show()

187 np.savetxt(’saved matrix \\’+str(N)+’alpha’+str(alpha)+’ finite_twostar ’+str(

beta)+’.adj’,state1)

188

189 def main (N,steps):

190 beta = np.append(np.arange (0 ,0.95 ,0.1),np.append(np.arange (0.95 ,1.05 ,0.02) ,np.

arange (1.1 ,2 ,0.1)))

191 alpha = -beta

192

193 FileName = ’ test non -sparse N= %d.txt’%(N,)

194

195 file = open(FileName ,’w’)

196

197 xdata = []

198 ydata1 = []

199 ydata2 = []

200

201 print(’N =’,N)

202 for i in range(len(beta)):

203

204 datum1 = []

205 datum2 = []

206



B.2. THE TWO-STAR MODEL 37

207

208 # =============================================================================

209 # # Initialize adj

210 # =============================================================================

211 # state1 = np.zeros ((N,N))

212 # state1 = ini_random(N)

213 state1 = ini_fixed(N, 40)

214 # state1 = from_adj(beta[i])

215 # state1 = np.float32(np.delete(np.delete(np.loadtxt(’saved matrix \\’+str(N)

+’alpha ’+str(alpha[i])+’twostar ’+str(beta[i])+’.csv ’,dtype = str ,delimiter =’;’)

,0,0) ,0,1))

216

217

218 flip(steps ,state1 ,N,alpha[i],beta[i]/(N-1))

219 for itet in (2e2 ,) *100:

220 flip(itet ,state1 ,N,alpha[i],beta[i]/(N-1),False)

221 deg = np.sum(state1 ,axis = 0)

222 datum1.append(np.mean(deg))

223 datum2.append(np.mean(np.power(deg ,2))-np.power(np.mean(deg) ,2))

224

225 data1 = np.mean(datum1)

226 data2 = np.mean(datum2)

227 error1 = np.std(datum1)

228 error2 = np.std(datum2)

229 print (beta[i], data1 ,data2)

230 xdata = np.append(xdata ,beta[i])

231 ydata1 = np.append(ydata1 ,data1)

232 ydata2 = np.append(ydata2 ,data2)

233 file.write(str(beta[i])+’\t’+str(data1)+’\t’+str(error1)+’\t’+str(data2)+’\t’

+str(error2)+’\n’)

234

235 file.close()

236

237 def plot_data ():

238 A = np.loadtxt(’non -sparse w er N= 300. txt’)

239 beta = A[:,0]

240 beta_num = np.delete(np.arange (0 ,2 ,0.01) ,100)

241 alpha = -beta

242 alpha_num = -beta_num

243 ydata1 = A[:,1]

244 ydata2 = A[:,3]

245 ydatanumer = []

246 ydatanumer1 = []

247 ydatanumer2 = []

248 N = 300

249 y_error1 = A[:,2]

250 y_error2 = A[:,4]

251

252 fig = plt.figure(figsize = (8,6))

253 ax = plt.axes()

254

255 x= np.arange (0 ,2 ,0.01)

256 plt.plot(x,[p_eq(i,-1.5,1.5,N) for i in x])

257 plt.show()



38 APPENDIX B. CODE

258

259 for i in range(len(beta_num)):

260 p = scpo.newton(p_eq ,0.5, args=( alpha_num[i],beta_num[i],N))

261 ydatanumer1.append ((N-1)*p+2* beta_num[i]*p*(1-p)*(1-2*p)/(1-4* beta_num[i]*p

*(1-p))/(1-2* beta_num[i]*p*(1-p)))

262 # p = scpo.newton(p_eq ,0,args=( alpha_num[i],beta_num[i],N))

263 # ydatanumer2.append ((N-1)*p+2* beta_num[i]*p*(1-p)*(1-2*p)/(1-4* beta_num[i]*p

*(1-p))/(1-2* beta_num[i]*p*(1-p)))

264 #ydatanumer.append(p*(1-p)/(1 -2* beta_num[i]*p*(1-p)))

265

266

267 plt.xlim (0,2)

268 # ax.set_ylim (-0.7,1)

269 # plt.errorbar(beta ,( ydata2 /(N-1)),yerr = y_error2 /(N-1),fmt = ’o’,elinewidth =

1,label = ’MCMC ’)

270 # plt.errorbar(beta ,( ydata1 /(N-1)),yerr = y_error1 /(N-1),fmt = ’o’,elinewidth =1,

label = ’MCMC ’)

271 plt.plot(beta_num ,np.array(ydatanumer1)/(N-1),’orange ’, label = ’MF’)

272 # plt.plot(beta_num ,np.array(ydatanumer2)/(N-1) ,’orange ’)

273

274 plt.xlabel(’J’,fontsize = 14)

275 plt.ylabel(’$<k>/(n-1)$’,fontsize = 14)

276 plt.legend ()

277 # plt.savefig (" non_sparse_test ")

278 plt.show()

279

280 main (50 ,20000)

281 # plot_data ()

282 #save_adj (500)

B.3 The Modified Two-star Model

At its core, the two-star and our modified model are almost the same. However, for

the modified model, we decide to reduce the code to only its working part since we

have to send many copies of it to run on cluster computers. With the optimizations

done in appendix A.2, we can directly calculate the variation of the energy of each

update allowing us to get rid of the function cal_energy and tidy up the code even

more. The following code is used to generated the modified triangle model:

1 def ini_ER (N,p):

2 state = np.triu((np.random.rand(N,N)<p).astype(’float64 ’))

3 np.fill_diagonal(state ,0)

4 return state+np.transpose(state)

5

6 def flip(step , state ,state2 ,sstate2 ,N,alpha , beta , sigma , plot_t = True):

7 ydata = [[] ,[]]

8

9 snap=step //200

10 track = 100000

11



B.3. THE MODIFIED TWO-STAR MODEL 39

12 deg = np.copy(np.diagonal(state2))

13 sstate2new=np.copy(sstate2)

14 state2new = np.copy(state2)

15 while(step > 0):

16 i = np.random.randint(1,N)

17 j = np.random.randint(0,i)

18

19 # degnew = np.copy(deg)

20

21 varij =1-2* state[i,j]

22

23 #update sstate2

24 sstate2new[j,i] += varij*state2[j,i]

25 sstate2new[i,j] = sstate2new[j,i]

26 vij=state[:,i]*state[:,j]*varij

27 sstate2new [:,i] += vij

28 sstate2new [:,j] += vij

29 sstate2new[i,:] += vij

30 sstate2new[j,:] += vij

31

32 #update state2

33 vi=varij*state[:,i]

34 vj=varij*state[:,j]

35 state2new[:,i] += vj

36 state2new[:,j] += vi

37 state2new[i,:] += vj

38 state2new[j,:] += vi

39 state2new[i,i]+=1

40 state2new[j,j]+=1

41

42 deltatwos = -sigma *(np.count_nonzero(sstate2[i ,:]==2)

43 - np.count_nonzero(sstate2new[i ,:]==2)

44 + np.count_nonzero(sstate2[j ,:]==2)

45 - np.count_nonzero(sstate2new[j ,:]==2)

46 -(np.count_nonzero(sstate2[j,i]==2)-np.count_nonzero(sstate2new[j,i]==2)))

47

48 delta = 2*( varij*(alpha+beta*(deg[i]+deg[j]))+beta)

49

50 if (np.random.random () < min(1,np.exp(deltatwos+delta))):

51 deg[i]+= varij

52 deg[j]+= varij

53 state2[:,i] = state2new[:,i]

54 state2[:,j] = state2new[:,j]

55 state2[i,:] = state2new[i,:]

56 state2[j,:] = state2new[j,:]

57 sstate2[:,i] = sstate2new [:,i]

58 sstate2[:,j] = sstate2new [:,j]

59 sstate2[i,:] = sstate2new[i,:]

60 sstate2[j,:] = sstate2new[j,:]

61 state[j,i] = 1-state[j,i]

62 state[i,j] = state[j,i]

63

64 else:

65 state2new[:,i] = state2[:,i]



40 APPENDIX B. CODE

66 state2new[:,j] = state2[:,j]

67 state2new[i,:] = state2[i,:]

68 state2new[j,:] = state2[j,:]

69 sstate2new [:,i] = sstate2[:,i]

70 sstate2new [:,j] = sstate2[:,j]

71 sstate2new[i,:] = sstate2[i,:]

72 sstate2new[j,:] = sstate2[j,:]

73

74 if step % snap ==0 and plot_t:

75 ydata [0]. append(np.mean(deg))

76 ydata [1]. append(np.var(deg))

77 step -= 1

78

79 if plot_t:

80 plt.plot(ydata [0])

81 plt.plot(ydata [1])

82 plt.plot(ydata [2])

83 plt.title(str(N)+’ beta’+str(beta)+’ sigma ’+str(sigma))

84 plt.savefig(’tri_sweep_report/’+os.path.basename(__file__)[:-3]+’%db%ds%d’%(N

,beta ,sigma)+’.png’)

85 plt.show()

86 np.savetxt(’tri_sweep_report/’+os.path.basename(__file__)[:-3]+’%db%ds%d.txt’

%(N,beta ,sigma),ydata)

87

88 return alpha ,state ,state2 ,sstate2

89 ####################################################

90 def save_adj(N,alpha ,beta ,sigma ,step ,p,sample):

91 state = ini_ER(N, p)

92 state2 = np.matmul(state ,state)

93 sstate2 = state2*state

94

95 t = time.localtime ()

96 current_time = time.strftime("%H:%M:%S", t)

97 print(current_time)

98

99 k_0 = np.sum(state ,axis =0)

100 print(step ,alpha ,np.mean(k_0),np.var(k_0))

101

102 alpha ,state ,state2 ,sstate2 = flip(step , state , state2 , sstate2 , N, alpha , beta ,

sigma)

103

104 t = time.localtime ()

105 current_time = time.strftime("%H:%M:%S", t)

106 print(current_time)

107 k_0 = np.sum(state ,axis =0)

108 print(alpha ,beta ,sigma ,np.mean(k_0),np.var(k_0))

109

110 N = 200

111 alpha = 177

112 beta = -20

113 sigma = 100

114 save_adj(N, alpha , beta , sigma , 5e5, 6/N, 1000)

For the modified square model, we only replace the variation part in the flip



B.3. THE MODIFIED TWO-STAR MODEL 41

function with the following code:

1 varij =1-2* state[i,j]

2

3 #update state2

4 vi=state[:,i]* varij

5 vj=state[:,j]* varij

6 state2new[:,i] += vj

7 state2new[:,j] += vi

8 state2new[i,:] += vj

9 state2new[j,:] += vi

10 state2new[i,i]+=1

11 state2new[j,j]+=1

12

13 delta = 2*( varij*(alpha+beta*(deg[i]+deg[j]))+beta)

14

15 deltatwos = -sigma *(np.count_nonzero(state2[i ,:]==2)

16 - np.count_nonzero(state2new[i ,:]==2)

17 + np.count_nonzero(state2[j ,:]==2)

18 - np.count_nonzero(state2new[j ,:]==2)

19 -(np.count_nonzero(state2[j,i]==2)-np.count_nonzero(state2new[j,i]==2)))

20

21

22 if (np.random.random () < min(1,np.exp(deltatwos+delta))):

23 # cube_before = count_cube(state)

24 state[j,i] = 1-state[j,i]

25 state[i,j] = state[j,i]

26 deg[i]+= varij

27 deg[j]+= varij

28 state2[:,i] = state2new[:,i]

29 state2[:,j] = state2new[:,j]

30 state2[i,:] = state2new[i,:]

31 state2[j,:] = state2new[j,:]

32 else:

33 state2new[:,i] = state2[:,i]

34 state2new[:,j] = state2[:,j]

35 state2new[i,:] = state2[i,:]

36 state2new[j,:] = state2[j,:]



Bibliography

[1] Alessia Annibale and Owen T Courtney. The two-star model: exact solution in the sparse

regime and condensation transition. Apr. 2015. url: https://arxiv.org/abs/1504.06458.

[2] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open Source Software

for Exploring and Manipulating Networks. 2009. url: http://www.aaai.org/ocs/index.

php/ICWSM/09/paper/view/154.

[3] C Kelly and C A Trugenberger. “Combinatorial Quantum Gravity: Emergence of Geometric

Space from Random Graphs”. In: Journal of Physics: Conference Series 1275 (Sept. 2019),

p. 012016. doi: 10.1088/1742-6596/1275/1/012016. url: https://doi.org/10.1088/

1742-6596/1275/1/012016.

[4] C. Kelly and C. A. Trugenberger. Combinatorial Quantum Gravity: Emergence of Geometric

Space from Random Graphs. Nov. 2018. url: https://arxiv.org/abs/1811.12905.

[5] M. E. J. Newman and G. T. Barkema. Monte Carlo methods in statistical physics. Clarendon

Press, 2011.

[6] Mark E.J Newman. Networks. Oxford University Press, 2019.

[7] Juyong Park and M. E. J. Newman. “Solution for the properties of a clustered network”.

In: Phys. Rev. E 72 (2 Aug. 2005), p. 026136. doi: 10.1103/PhysRevE.72.026136. url:

https://link.aps.org/doi/10.1103/PhysRevE.72.026136.

[8] Juyong Park and M. E. J. Newman. “Solution of the two-star model of a network”. In: Phys.

Rev. E 70 (6 Dec. 2004), p. 066146. doi: 10.1103/PhysRevE.70.066146.

[9] Garry Robins et al. “An introduction to exponential random graph (p*) models for social

networks”. In: Social Networks 29.2 (2007). Special Section: Advances in Exponential Random

Graph (p*) Models, pp. 173–191. issn: 0378-8733. doi: https://doi.org/10.1016/j.

socnet.2006.08.002.

[10] C. A. Trugenberger. “Combinatorial quantum gravity: geometry from random bits”. In: Jour-

nal of High Energy Physics 2017.9 (2017). doi: 10.1007/jhep09(2017)045.

[11] Eric W. Weisstein. Graph Cycle. url: https://mathworld.wolfram.com/GraphCycle.html.

42

https://arxiv.org/abs/1504.06458
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://doi.org/10.1088/1742-6596/1275/1/012016
https://doi.org/10.1088/1742-6596/1275/1/012016
https://doi.org/10.1088/1742-6596/1275/1/012016
https://arxiv.org/abs/1811.12905
https://doi.org/10.1103/PhysRevE.72.026136
https://link.aps.org/doi/10.1103/PhysRevE.72.026136
https://doi.org/10.1103/PhysRevE.70.066146
https://doi.org/https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1007/jhep09(2017)045
https://mathworld.wolfram.com/GraphCycle.html

	Cover (Thai)
	Accepted
	Cover (English)
	Abstract (English)
	Acknowledgments
	Contents
	Chapter 1 Introduction
	Undirected Graph
	Exponential Random Graph Models
	Erdos–Rényi Graph
	Two-star Model
	Dense Regime
	Sparse Regime
	Graph Collapse Problem (Degeneracy Problem)


	Chapter 2 Geometric Graph Models
	The Modified Square Model
	The Modified Triangle Model

	Chapter 3 Numerical Results
	The Modified Triangle Model
	The Modified Square Model

	Chapter 4 Conclusion
	Appendix
	Markov Chain Monte Carlo
	Markov Chain
	Detailed Balance
	Ergodicity
	Acceptance Ratios
	The Metropolis Algorithm

	Optimization of The Modified Model

	Bibliography



