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CHAPTER I

INTRODUCTION

A w-distance on a metric space (X, d) is a function p : X × X → [0,∞)

satisfying the following properties :

(i) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(ii) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous;

(iii) for any ε > 0, there exists a δ > 0 such that for any x, y, z ∈ X, p(z, x) ≤ δ

and p(z, y) ≤ δ imply d(x, y) ≤ ε.

In [5], Takahashi gives some examples and properties of w-distances. This

concept is used as a tool in nonlinear functional analysis and fixed-point theory.

For example, in [5], the concept of w-distance was used to generalize Caristi’s fixed

point theorem. Also, it was shown that if a mapping T from a complete metric

space X into itself is p-contractive, then T has a unique fixed point x0 ∈ X. This

is a generalization of the Banach contraction principle [5]. However, the proper-

ties of w-distances were not so clearly study. Most of the study are concentrated

on applying the concept of w-distances in nonlinear functional analysis and fixed

point theory.

Our purpose is to study the properties of w-distances. We study some rela-

tionship among w-distances, metrics, metric-preserving functions, and topological

properties. In particular, we give the notion of Cauchy w-distances and prove their

properties.

This thesis is organized as follows : In section 2.1, the definition and some

examples of w-distances are given. In section 2.2, we show that every metric
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equivalent to d is a w-distance on (X, d) if (X, d) is compact. An example is given

to show that this is not true in a general metric space. In section 2.3, it is proved

that f ◦d is a w-distance on (X, d) if f is lower semicontinuous metric preserving.

In section 3.1, the notion of p-Cauchy sequences, Cauchy w-distances, and

simple w-distances are introduced, and also some examples are given. In section

3.2, a relationship between Cauchy w-distances and metric-preserving functions

is investigated. Theorem 3.23 shows that f ◦ d is a Cauchy w-distance on (X, d) if

f is a strongly metric-preserving function or (X, d) is a uniformly discrete metric

space, and f ◦ d is a w-distance which is not Cauchy if f is not strong and (X, d)

is not discrete.

In section 4.1, it is shown that Cauchy w-distances are simple but the converse

is not true. Furthermore, Theorem 4.8 shows that Cauchy w-distances are contin-

uous. An example of discontinuous w-distance and continuous w-distance which

is not Cauchy is provided. Furthermore, Theorem 4.12 shows that f ◦ d is uni-

formly continuous Cauchy w-distance on (X, d) if f is strongly metric-preserving.

In section 4.2, the notion of w-distance topology is introduced and it is found that

the w-distance topology coincides with the metric topology if the w-distance is

Cauchy. Finally, section 4.3, we provides a characterization of Cauchy w-distances

and its consequences.



CHAPTER II

W-DISTANCES ON A METRIC SPACE

In this chapter, the precise definition of w-distance is given and some re-

lated terminologies are stated. Also examples of w-distances which will be referred

throughout our work are given.

2.1 Definitions and examples

First, let us recall the definition of metric spaces, topological spaces, and

lower semicontinuous functions.

Definition 2.1. A metric on a nonempty set X is a function d : X × X → R

satisfying the following conditions, for all x, y, z ∈ X,

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

The real number d(x, y) is called the distance between x and y, and (X, d) is

called a metric space.

Definition 2.2. Let X �= ∅. τ ⊆ P(X) is called a topology on X if it satisfies

the following conditions :

(i) X ∈ τ and ∅ ∈ τ .

(ii) If {Gα | α ∈ Λ} ⊆ τ , then
⋃
α∈Λ

Gα ∈ τ .
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(iii) If G1, G2 ∈ τ , then G1 ∩ G2 ∈ τ .

The sets in τ are called the open sets in X and (X, τ) is called a topological

space.

Definition 2.3. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis element) such that

(i) for each x ∈ X, there is at least one basis element B containing x

(ii) if x belongs to the intersection of two basis elements B1 and B2, then there

is a basis element B3 containing x such that B3 ⊆ B1 ∩ B2.

Definition 2.4. Let X be a topological space and f : X → (−∞,∞]. Then f is

said to be lower semicontinuous on X if for every a ∈ R, the set f−1(−∞, a] =

{x ∈ X | f(x) ≤ a} is closed in X.

Elementary properties of metric spaces, topological spaces, and lower semi-

continuous functions can be found in standard texts of topology and analysis. In

addition, some properties of lower semicontinuous functions are given in [5]. Now,

the precise definition of w-distance on a metric space is given.

Definition 2.5 ([5], p.40). Let (X, d) be a metric space. Then a function p :

X × X → [0,∞) is called a w-distance on X if the following are satisfied :

(i) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(ii) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous;

(iii) for any ε > 0, there exists a δ > 0 such that for any x, y, z ∈ X, p(z, x) ≤ δ

and p(z, y) ≤ δ imply d(x, y) ≤ ε.

The notion of w-distance was first introduced by Kada, Suzuki, and Takahashi

[4].

The following are examples of w-distances which are provided in [5].
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Examples 2.6. Let X be a metric space with metric d. Then p = d is a w-distance

on X.

Examples 2.7. Let X be a metric space with metric d. Then a function p :

X×X → [0,∞) defined by p(x, y) = c for every x, y ∈ X, where c is a nonnegative

number, is a w-distance on X.

Examples 2.8. Let X be a normed linear space with norm ‖·‖. Then the function

p : X × X → [0,∞) defined by

p(x, y) = ‖x‖ + ‖y‖ for every x, y ∈ X

is a w-distance on X.

Examples 2.9. Let X be a metric space and T a continuous mapping from X

into itself. Then a function p : X × X → [0,∞) defined by

p(x, y) = max{d(Tx, y), d(Tx, Ty)} for every x, y ∈ X

is a w-distance on X.

Examples 2.10. Let F be a bounded and closed subset of a metric space X.

Assume that F contains at least two points and c is a constant with c ≥ δ(F ),

where δ(F ) is the diameter of F . Then a function p : X ×X → [0,∞) defined by

p(x, y) =

⎧⎪⎨
⎪⎩

d(x, y) if x, y ∈ F ,

c if x /∈ F or y /∈ F

is a w-distance on X.

Remark 2.11. The w-distance p defined in Example 2.10 is lower semicontinuous

but may not be continuous.
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There are some examples of w-distances provided as exercises in [5]. For the

sake of completeness, the verification is given here. To do this, the following the-

orem will be helpful.

Theorem 2.12. Let X be a topological space, f and g lower semicontinuous

functions of X into (−∞,∞], and α a nonnegative number. Then sup{f, g},
f + g, and αf are lower semicontinuous.

Examples 2.13. Let X be a normed linear space with norm ‖·‖. Then p : X ×
X → [0,∞) defined by

p(x, y) = ‖y‖ for all x, y ∈ X,

is a w-distance on X.

Proof. Let x, y, z ∈ X. Then we have

p(x, z) = ‖z‖ ≤ ‖y‖ + ‖z‖ = p(x, y) + p(y, z).

It is obvious that p satisfies condition (ii) of w-distance. Let ε > 0 be arbitrary

and put δ = ε
2
. Then if p(z, x) ≤ δ and p(z, y) ≤ δ, we have

d(x, y) = ‖x − y‖ ≤ ‖x‖ + ‖y‖ = p(z, x) + p(z, y) ≤ δ + δ = ε.

This implies that p satisfies condition (iii) of w-distance.

Examples 2.14. Let (X, d) be a metric space, p1 and p2 w-distances on X. Then

max{p1, p2}, p1 + p2, and αp1(α ≥ 0) are w-distances on X.

Proof. First, we will prove that max{p1, p2} is a w-distance.

Let p(x, y) = max{p1(x, y), p2(x, y)} for every x and y in X. Let x, y, z ∈ X.
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Let i ∈ {1, 2}.

pi(x, y) ≤ pi(x, z) + pi(z, y)

≤ max{p1(x, z), p2(x, z)} + max{p1(z, y), p2(z, y)}
= p(x, z) + p(z, y).

Then p(x, y) = max{p1(x, y), p2(x, y)} ≤ p(x, z)+p(z, y), and condition (i) holds.

Since p1 and p2 are lower semicontinous, we obtain from Theorem 2.12 that

max{p1, p2} is lower semicontinuous. Let ε > 0. Then there exists a δ > 0 such

that p1(z, x) ≤ δ and p1(z, y) ≤ δ imply d(x, y) ≤ ε. If x, y, z ∈ X are such that

p(z, x) ≤ δ and p(z, y) ≤ δ, then

p1(z, x) ≤ max{p1(z, x), p2(z, x)} = p(z, x) ≤ δ,

p1(z, y) ≤ max{p1(z, y), p2(z, y)} = p(z, y) ≤ δ.

Therefore d(x, y) ≤ ε. Hence max{p1, p2} is a w-distance.

Next, let q(x, y) = p1(x, y) + p2(x, y) for every x and y in X. Let x, y, z ∈ X.

Then

q(x, z) = p1(x, z) + p2(x, z)

≤ p1(x, y) + p1(y, z) + p2(x, y) + p2(y, z)

= q(x, y) + q(y, z).

Since p1 and p2 are lower semicontinuous, we obtain from Theorem 2.12 that

p1 + p2 is lower semicontinuous. Let ε > 0. Then there exists a δ > 0 such that

p1(z, x) ≤ δ and p1(z, y) ≤ δ imply d(x, y) ≤ ε. Let x, y, z ∈ X be such that

q(z, x) ≤ δ and q(z, y) ≤ δ. Then
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p1(z, x) ≤ p1(z, x) + p2(z, x) = q(z, x) ≤ δ

p1(z, y) ≤ p1(z, y) + p2(z, y) = q(z, y) ≤ δ.

This implies that d(x, y) ≤ ε. Hence p1 + p2 is a w-distance.

Next, let r(x, y) = αp1(x, y) for every x and y in X. Let x, y, z ∈ X. Then

r(x, z) = αp1(x, z) ≤ α(p1(x, y) + p1(y, z))

= αp1(x, y) + αp1(y, z)

= r(x, y) + r(y, z).

Since p1 is lower semicontinuous, Theorem 2.12 implies that αp1 is lower semi-

continuous. Let ε > 0. Then there exists a δ > 0 such that p1(z, x) ≤ δ and

p1(z, y) ≤ δ imply d(x, y) ≤ ε. Choose δ′ = αδ. Then δ′ > 0. Let x, y, z ∈ X be

such that r(z, x) ≤ δ′ and r(z, y) ≤ δ′. Then αp1(z, x) ≤ αδ and αp1(z, y) ≤ αδ.

Therefore

p1(z, x) ≤ δ and p1(z, y) ≤ δ.

Thus d(x, y) ≤ ε. Hence αp1 is a w-distance. This completes the proof.

Examples 2.15. Let X be a metric space, let p be a w-distance on X and let f

be a function from X into [0,∞). Then a function g : X ×X → [0,∞) defined by

g(x, y) = max{f(x), p(x, y)} for all x, y ∈ X,

is a w-distance on X.
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Proof. Let x, y, z ∈ X. Then if p(x, z) ≥ f(x), we have

g(x, z) = p(x, z) ≤ p(x, y) + p(y, z)

≤ max{f(x), p(x, y)} + max{f(y), p(y, z)}
= g(x, y) + g(y, z).

In the case f(x) > p(x, z), we have

g(x, z) = f(x) ≤ f(x) + f(y)

≤ max{f(x), p(x, y)} + max{f(y), p(y, z)}
= g(x, y) + g(y, z).

This proves condition (i). Let x ∈ X. Then g(x, ·) = max{f(x), p(x, ·)}. Since

f(x) is a constant function and p(x, ·) is lower semicontinous, we obtain from

Theorem 2.12 that g is lower semicontinuous. Let ε > 0. Then there exists a δ > 0

such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε. Let x, y, z ∈ X be such

that g(z, x) ≤ δ and g(z, y) ≤ δ. Then

p(z, x) ≤ max{f(z), p(z, x)} = g(z, x) ≤ δ,

p(z, y) ≤ max{f(z), p(z, y)} = p(z, y) ≤ δ.

This implies that d(x, y) ≤ ε. Hence g is a w-distance.

Examples 2.16. Let X be a metric space with metric d, let p be a w-distance

on X and let f be a function from X into [0,∞). Then a function q from X ×X

into [0,∞) given by

q(x, y) = f(x) + p(x, y) for each (x, y) ∈ X × X

is also a w-distance.
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Proof. Let x, y, z ∈ X.

q(x, z) = f(x) + p(x, z)

≤ f(x) + p(x, y) + f(y) + p(y, z)

= q(x, y) + q(y, z).

This proves condition (i). Let x ∈ X. Then q(x, ·) = f(x) + p(x, ·). Since f(x)

is a constant function and p(x, ·) is lower semicontinous, by Theorem 2.12 q is

lower semicontinuous. Let ε > 0. Then there exists a δ > 0 such that p(z, x) ≤ δ

and p(z, y) ≤ δ imply d(x, y) ≤ ε. Let x, y, z ∈ X be such that q(z, x) ≤ δ and

q(z, y) ≤ δ. Then

p(z, x) ≤ f(z) + p(z, x) = q(z, x) ≤ δ,

p(z, y) ≤ f(z) + p(z, y) = q(z, y) ≤ δ.

Therefore d(x, y) ≤ ε. Hence q is a w-distance.

From Example 2.14, it is noted that p1 + p2, αp1(α ≥ 0), max{p1, p2} are w-

distances on (X, d) whenever p1 and p2 are. However it is not true in general that

if p1 and p2 are w-distances, then p1p2 and min{p1, p2} are w-distances on (X, d).

This is shown in the next example.

Examples 2.17. Let X = R. Let p1 be the usual metric on R. Then p1 is a

w-distance. Let T : R → R be defined by T (x) = x2. Then T is continuous. Then

as shown in Example 2.9, the function p2 : X × X → [0,∞) given by

p2(x, y) = max{|Tx − y|, |Tx − Ty|}
= max{|x2 − y|, |x2 − y2|}

is a w-distance. Let p = min{p1, p2}. It is observed that p is not a w-distance. As
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it happens that

p(−1, 1) = min{p1(−1, 1), p2(−1, 1)} = min{2, 0} = 0

p(1, 2) = min{p1(1, 2), p2(1, 2)} = min{1, 3} = 1

p(−1, 2) = min{p1(−1, 2), p2(−1, 2)} = min{3, 3} = 3.

Then p(−1, 2) � p(−1, 1) + p(1, 2), and so p is not a w-distance.

Next, we observe that p2
1 is not a w-distance. Since p2

1(1, 3) = 4, p2
1(1, 2) =

1, p2
1(2, 3) = 1, we have p2

1(1, 3) � p2
1(1, 2)+ p2

1(2, 3). Hence p2
1 is not a w-distance.

2.2 Equivalent metrics and w-distances

Let (X, d) be a metric space. Then the topology generated by the collection

{Bd(x, ε) | x ∈ X, ε > 0}

of all open balls is called the metric topology (induced by d), and is denoted by τd.

We also say that d generates the topology τd. If d1 and d2 are metrics on X which

generate the same topology on X, then it is said that d1 and d2 are equivalent.

In Example 2.6, we see that the metric d is a w-distance on (X, d). An inter-

esting question arises from this example : Is it true that if p is a metric on X

equivalent to d, then is p a w-distance on (X, d)?

Example 2.19 shows that the answer is negative. To clarify the assertion the

following lemma is needed.

Lemma 2.18 ([2], p.122). Let d and d′ be two metrics on the set X, τ and τ ′

be the topologies induced by d and d′, respectively. Then τ ′ is finer that τ if and

only if for each x in X and each ε > 0, there exists a δ > 0 such that

Bd′(x, δ) ⊆ Bd(x, ε).
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Examples 2.19. Let X = (0, 1). Let d, d′ : X × X → [0,∞) be defined by

d(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ , and

d′(x, y) = |x − y| for every x, y ∈ X.

Then it is obvious that d and d′ are metrics on X. Also the following statements

hold.

(i) d′ and d are equivalent.

(ii) d′ is not a w-distance on (X, d).

Proof. We will prove (i). Let

B = {Bd(x, ε) | x ∈ (0, 1), 0 < ε ≤ 1} and

B′ = {Bd′(x, ε) | x ∈ (0, 1), ε > 0}.

Then B and B′ are bases for the topologies generated by d and d′, respectively.

Let x ∈ (0, 1), and 0 < ε ≤ 1. We will identify the set Bd(x, ε). Let y ∈ (0, 1).

∣∣∣∣1y − 1

x

∣∣∣∣ < ε ↔
∣∣∣∣x − y

xy

∣∣∣∣ < ε

↔ |x − y|
xy

< ε

↔ |x − y| < εxy

↔ −εxy < x − y < εxy

↔ x − y > −εxy ∧ x − y < εxy

↔ x > y − εxy ∧ x < y + εxy

↔ x > y(1 − εx) ∧ x < y(1 + εx)

↔ y <
x

1 − εx
∧ y >

x

1 + εx

↔ x

1 + εx
< y <

x

1 − εx
.
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This shows that, for each x ∈ (0, 1), 0 < ε ≤ 1, we have

Bd(x, ε) =

(
x

1 + εx
,

x

1 − εx

)
∩ (0, 1). (2.1)

For each x ∈ (0, 1) and ε > 0, it is obvious that

Bd′(x, ε) = (x − ε, x + ε) ∩ (0, 1). (2.2)

From (2.1) and (2.2), it is easy to see that if Bd(x, ε) ∈ B is given, choose

δ = min
{
x − x

1+εx
, x, x

1−εx
− x, 1 − x

}
. So δ > 0 and Bd′(x, δ) ⊆ Bd(x, ε). By

Lemma 2.18, we obtain that B ⊆ B′. Next, let Bd′(x, ε) ∈ B′ be given. Let

ε′ = 1
2
min{x, 1 − x, ε}. Then ε′ > 0 and Bd′(x, ε′) ⊆ Bd′(x, ε). Let δ = ε′

x
. Then

0 < δ ≤ 1. Therefore

Bd(x, δ) =

(
x

1 + δx
,

x

1 − δx

)
∩ (0, 1) =

(
x

1 + ε′
,

x

1 − ε′

)
∩ (0, 1).

x

1 + ε′
− x =

x − x − ε′x
1 + ε′

= −ε′
(

x

1 + ε′

)
> −ε′, and

x

1 − ε′
− x =

x − x + ε′x
1 − ε′

= ε′
(

x

1 − ε′

)
< ε′.

Therefore
x

1 + ε′
> x − ε′ and

x

1 − ε′
< x + ε′. This shows that

Bd(x, δ) =

(
x

1 + ε′
,

x

1 − ε′

)
∩ (0, 1)

⊆ (x − ε′, x + ε′) ∩ (0, 1)

= Bd′(x, ε′)

⊆ Bd′(x, ε).

By Lemma 2.18, we obtain that B′ ⊆ B. Hence B = B′. That is d and d′ are

equivalent. Next, we will prove (ii). Choose ε = 1, and let δ > 0. Then there exists

an n ∈ N, such that n > 2 and
1

n − 1
< δ. Let x =

1

n + 1
, y =

1

n − 1
, and z =

1

n
.
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Then x, y, z ∈ X and we obtain that

d′(z, x) =

∣∣∣∣ 1n − 1

n + 1

∣∣∣∣ =

∣∣∣∣ 1

n(n + 1)

∣∣∣∣ ≤ δ,

d′(z, y) =

∣∣∣∣ 1n − 1

n − 1

∣∣∣∣ =

∣∣∣∣ 1

n(n − 1)

∣∣∣∣ ≤ δ, and

d(x, y) =

∣∣∣∣1x − 1

y

∣∣∣∣ =

∣∣∣∣∣
1
1

n+1

− 1
1

n−1

∣∣∣∣∣ = |(n + 1) − (n − 1)| = 2 > ε.

This shows that d′ is not a w-distance on (X, d).

Next, if the assumption that (X, d) is compact is added, then every equivalent

metric d′ of d is a w-distance on (X, d), as will be proved in Theorem 2.22. To do

this, we need Lemma 2.20 and 2.21.

Lemma 2.20. Let d and d′ be equivalent metrics on X, x ∈ X and (xn) a

sequence in X. Then (xn) converges to x in (X, d) if and only if (xn) converges

to x in (X, d′).

Proof. It follows from the fact that the identity map from (X, d) onto (X, d′) is a

homeomorphism.

Lemma 2.21 ([2], p.175 (Lebesgue number lemma)). Let A be an open

covering of a metric space (X, d). If X is compact, there is a δ > 0 such that

for each subset E of X having diameter less than δ, there exists an element of A
containing E.

Theorem 2.22. Let (X, d) be a compact metric space and d′ a metric equivalent

to d. Then d′ is a w-distance on (X, d).

Proof. Since d′ is a metric, we have d′(x, y) ≥ 0 and d′(x, z) ≤ d′(x, y) + d′(y, z).

Let x0 ∈ X. We will show that d′(x0, ·) : (X, d) → [0,∞) is continuous. Let (xn)

be a sequence in X converging to x (in (X, d)). By Lemma 2.20, (xn) converge

to x in (X, d′). Since d′ : (X, d′) × (X, d′) → [0,∞) is continuous and (x0, xn)
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converges to (x0, x) in (X, d′) × (X, d′), we have d′(x0, xn) converges to d′(x0, x).

Hence d′(x0, ·) is continuous. Next, we will verify the condition (iii) of w-distance.

Let ε > 0. Let G = {Bd(x, ε
2
) | x ∈ X}. Then G is an open cover of (X, d). Since

d′ ∼ d, we obtain that (X, d′) is compact and G is an open cover of (X, d′). By

Lemma 2.21, there is a Lebesgue number δ > 0 such that for every subset A of X

if sup{d′(x, y) | x, y ∈ A} ≤ δ then there is an l ∈ X, A ⊆ Bd(l,
ε
2
). (2.3)

Let δ′ =
δ

3
. Then δ′ > 0. Let a, b, c ∈ X be such that d′(c, a) ≤ δ′ and d′(c, b) ≤ δ′.

Since δ′ =
δ

3
<

δ

2
, we have

a ∈ Bd′(c,
δ
2
) and b ∈ Bd′(c,

δ
2
). (2.4)

Let A = Bd′(c,
δ
2
) ⊆ X. Then sup{d′(x, y) | x, y ∈ A} ≤ δ. By (2.3), there

exists an l ∈ X, such that Bd′(c,
δ
2
) ⊆ Bd(l,

ε
2
). From (2.4), we conclude that

a, b ∈ Bd(l,
ε
2
). Hence d(a, b) ≤ d(a, l) + d(l, b) ≤ ε

2
+

ε

2
= ε.

2.3 Metric-preserving functions and w-distances

Let (X, d) be a metric space. Although an equivalent metric may not be a

w-distance, there is a certain family of metrics on X which are w-distances on

(X, d). In this section, it is shown in Theorem 2.27 that the metrics of the form

f ◦ d are w-distances on (X, d) if f is a lower semicontinuous metric-preserving

functions.

First, we recall the definition of metric-preserving functions and state some of

their properties that will be useful in our investigation.

Definition 2.23 ([1], p.309). A function f : [0,∞) → [0,∞) is called metric-

preserving (respectively, strongly metric-preserving) if for all metric spaces

(X, d), f ◦ d is a metric on X (respectively, is a metric which is equivalent to d).
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Theorem 2.24 ([1], p.313). Suppose f is a metric-preserving.

(i) For each x0 > 0, there is an ε > 0 such that f(x) ≥ ε for every x ≥ x0.

(ii) If f is discontinuous at 0, there is some ε > 0 such that f(x) > ε for all

x > 0.

Theorem 2.25 ([1], p.318). Suppose f is metric-preserving. Then the following

are equivalent :

(i) f is strongly metric-preserving,

(ii) f is continuous at 0,

(iii) f is continuous on [0,∞),

(iv) for each ε > 0, there is an x > 0 with f(x) < ε.

Next, we will prove that f ◦ d is a w-distance on (X, d) if f is a lower semi-

continuous metric-preserving function. To do this, we first give the next lemma.

Lemma 2.26. Let X, Y be topological spaces, f : X → Y , and g : Y → R.

If f is continuous and g is lower semicontinuous, the g ◦ f : X → R is lower

semicontinuous.

Proof. Let f be continuous and g lower semicontinuous on X into Y . To show that

g◦f is lower semicontinuous, let a ∈ R. Then (g◦f)−1(−∞, a] = f−1(g−1(−∞, a]).

Since g is lower semicontinuous, we have g−1(−∞, a] is closed in Y . Since f is

continuous and g−1(−∞, a] is closed in Y , we obtain that f−1(g−1(−∞, a]) is

closed in X. That is (g ◦f)−1(−∞, a] is closed in X. This shows that g ◦f is lower

semicontinuous.

Theorem 2.27. Let (X, d) be a metric space. Then f ◦d is a w-distance on (X, d)

for every lower semicontinuous metric-preserving function f . In particular, if f

is strongly metric-preserving, then f ◦ d is a w-distance.
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Proof. Let f be a lower semicontiuous metric-preserving function. Then f ◦ d is a

metric on X. Therefore for every x, y, z ∈ X

f ◦ d(x, y) ≤ f ◦ d(x, z) + f ◦ d(z, y).

Since d : X × X → [0,∞) is continuous and f : [0,∞) → R is lower semicontinu-

ous, we obtain from Lemma 2.26 that f ◦d : X ×X → R is lower semicontinuous.

In particular, f ◦ d(x0, ·) : X → R is lower semicontinuous for each x0 ∈ X. Next,

we will prove that f ◦ d satisfies the condition (iii) in the definition of w-distance.

Let ε > 0. Then, by Theorem 2.24, we obtain a δ > 0 such that

for every x ≥ ε

2
, f(x) ≥ δ. (2.5)

Let δ′ =
δ

2
. Let x, y, z ∈ X be such that f(d(z, x)) ≤ δ′ and f(d(z, y)) ≤ δ′. Then

f(d(z, x)) < δ and f(d(z, y)) < δ. By (2.5), d(z, x) <
ε

2
and d(z, y) <

ε

2
. Thus

d(x, y) ≤ d(x, z) + d(z, y) ≤ ε. Therefore f ◦ d is a w-distance.

In our investigation it is observed that the continuity of f is not enough to

guarantee that f ◦ d is a w-distance on the space (X, d), as shown in the next

example.

Examples 2.28. Let X = R, and d the usual metric on R. Define

f : [0,∞) → [0,∞) by f(x) = x2.

Then f is continuous and f ◦d(x, y) = f(d(x, y)) = f(|x−y|) = |x−y|2 = (x−y)2.

Then f ◦ d(1, 3) = 4, f ◦ d(1, 2) = 1, f ◦ d(2, 3) = 1. Therefore

f ◦ d(1, 3) � f ◦ d(1, 2) + f ◦ d(2, 3).

This shows that f ◦ d does not satisfy the condition (i) of w-distance.



CHAPTER III

CAUCHY W-DISTANCES

In this chapter, the notion of Cauchy w-distances is introduced and their

properties are state and proved.

3.1 Definitions and examples

In this section, we first recall the definition of Cauchy sequences. After that

we will define p-Cauchy sequences and compare them to Cauchy sequences. Then

at the end of this section, we give the definition of complete w-distances.

Recall that a sequence (xn) in a metric space (X, d) is said to be a Cauchy

sequence if for each ε > 0 there is an N ∈ N such that

for m > n ≥ N, d(xn, xm) < ε. (3.1)

The following theorem give an equivalent definition of Cauchy sequence in

(X, d).

Theorem 3.1. Let (X, d) be a metric space, and (xn) a sequence in X. Then

(xn) is a Cauchy sequence if and only if there exists a nonnegative sequence (αn)

converging to 0 such that d(xn, xm) < αn for all m > n.

Proof. First, we will prove the “ if ”part. Assume that there is a nonnegative se-

quence (αn) converging to 0, such that for m > n, d(xn, xm) ≤ αn. Let ε > 0.

Since αn converges to 0, we have N ∈ N such that for n ≥ N, αn < ε. Then for

m > n ≥ N, d(xn, xm) ≤ αn < ε. This shows that (xn) is a Cauchy sequence.
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Now, assume that (xn) is a Cauchy sequence. Then

∀ε > 0∃N ∈ N ∀m > n ≥ N, d(xn, xm) < ε. (3.2)

Let ε = 1. Then there exists an N1 > 2 such that for m > n ≥ N1, d(xn, xm) < 1.

Let α1 = max{d(x1, x2), d(x1, x3), . . . , d(x1, xN1)+1}. Then α1 ≥ d(x1, xl) for all

1 < l ≤ N1. For l > N1,

d(x1, xl) ≤ d(x1, xN1) + d(xN1 , xl) < d(x1, xN1) + 1 ≤ α1.

Thus α1 ≥ d(x1, xl) for all l > 1.

Let ε = 1
2
. Then there exists an N2 > 3 such that for m > n ≥ N2, d(xn, xm) < 1

2
.

Let α2 = max{d(x2, x3), d(x2, x4), . . . , d(x2, xN2)+ 1
2
}. Then α2 ≥ d(x2, xl) for all

2 < l ≤ N2. For l > N2,

d(x2, xl) ≤ d(x2, xN2) + d(xN2 , xl) < d(x2, xN2) +
1

2
≤ α2.

Thus α2 ≥ d(x2, xl) for all l > 2.

For each k ∈ N, there is an Nk > k + 1 such that for m > n ≥ Nk, d(xn, xm) < 1
k
.

Let αk = max{d(xk, xk+1), d(xk, xk+2), . . . , d(xk, xNk
) + 1

k
}. Then αk ≥ d(xk, xl)

for all k < l ≤ Nk. For l > Nk,

d(xk, xl) ≤ d(xk, xNk
) + d(xNk

, xl) < d(xk, xNk
) +

1

k
≤ αk.

Thus αk ≥ d(xk, xl) for all l > k. Therefore, we obtain a nonnegative sequence

(αn) with the property that αn ≥ d(xn, xm) for all m > n. Next, we will show

that αn converges to 0. Let ε > 0. Then there exists an N ′
1 ∈ N such that for

m > n ≥ N ′
1, d(xn, xm) ≤ ε

2
and there is an N ′

2 ∈ N such that
1

N ′
2

<
ε

2
. Let

N = max{N ′
1, N ′

2}. Then
1

N
<

ε

2
and for m > n ≥ N, d(xn, xm) ≤ ε

2
. Let n > N .
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We obtain that

d(xn, xn+1), d(xn, xn+2), . . . , and d(xn, xNn−1) <
ε

2
, (3.3)

where Nn is the natural number in the construction of αn. In addition,

d(xn, xNn) +
1

n
<

ε

2
+

ε

2
= ε. (3.4)

Since αn = max{d(xn, xn+1), . . . , d(xn, xNn) + 1
n
}, we obtain from (3.3) and (3.4)

that αn < ε. This shows that αn converges to 0.

The next lemma appears in the text of Takahashi [5].

Lemma 3.2 ([5]). Let X be a metric space with metric d and let p be a w-distance

on X. Let (xn) and (yn) be sequences in X. Let (αn) and (βn)be sequences in [0,∞)

converging to 0, and let x, y, z ∈ X. Then the following hold :

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular,

if p(x, y) = 0 and p(x, z) = 0, then y = z,

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then (yn) converge to z,

(iii) if p(xn, xm) ≤ αn for any m, n ∈ N with m > n, then (xn) is a Cauchy

sequence,

(iv) if p(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

Let (xn) be a sequence in a metric space (X, d). From Lemma 3.2(iii), we

obtain that if there exists a nonnegative sequence (αn) converging to 0 and a

w-distance p on (X, d) is such that

for m > n, p(xn, xm) ≤ αn (3.5)

then (xn) is a Cauchy sequence. If p in (3.5) is replaced by the metric d, then

the result will be the same as equivalent definition of Cauchy sequence given
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in Thereom 3.1. Therefore, we can generalize the notion of Cauchy sequences in

(X, d) via w-distances by replacing the metric d in Theorem 3.1 by any w-distance

p. This motivates us to study a class of sequences called “ p-Cauchy sequence ”.

Definition 3.3. Let (X, d) be a metric space, and p a w-distance on (X, d). A

sequence (xn) in X is p-Cauchy if there exists a nonnegative sequence (αn) con-

verging to 0 such that for m > n, p(xn, xm) ≤ αn.

Let (X, d) be a metric space, and p a w-distance. If p = d, then Cauchy

sequences and p-Cauchy sequences coincide. However, if p �= d, then a p-Cauchy

sequence is certainly a Cauchy sequence (Lemma 3.2(iii)) but a Cauchy sequence

need not be a p-Cauchy sequence, as the next example shows.

Examples 3.4. Let X = R (equipped with the usual norm | · |). Let p : R×R →
[0,∞) be defined by

p(x, y) = |x| + |y|.

From Example 2.8, it is known that p is a w-distance. Let xn = 1 for all n ∈ N.

Then (xn) is a Cauchy sequence. Let (αn) be a sequence in [0,∞) converging to 0.

Therefore X, p, (xn) and (αn) satisfy the condition in Lemma 3.2(iii). However,

since αn converges to 0 and p(xn, xm) = 2 for every n, m ∈ N, the sequence (xn)

does not satisfy the condition that “ for m > n, p(xn, xm) ≤ αn ”.

Here is an immediate property of p-Cauchy sequence.

Theorem 3.5. Let (X, d) be a metric space, p a w-distance, and (xn) a sequence

in X. Then (xn) is a p-Cauchy sequence if and only if for every ε > 0 there exists

an N ∈ N such that for m > n ≥ N, p(xn, xm) < ε.

Proof. The proof of this theorem is similar to that of Theorem 3.1. Note that we

use only the triangle inequality property of d, so we can replace d by p and obtain

a proof of this theorem.
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From Lemma 3.2(iii) and Example 3.4, it is seen that the condition of p-

Cauchy sequence is stronger than that of Cauchy sequence. It may be too strong

that even a constant sequence may not be p-Cauchy. Furthermore, for a particular

w-distance p on (X, d), it may happen that there is no p-Cauchy sequences in this

space. So, we add some properties on w-distances p which make the condition of

p-Cauchy sequence more interesting.

Definition 3.6. Let (X, d) be a metric space and p a w-distance. Then p is said

to be a Cauchy w-distance if every Cauchy sequence is a p-Cauchy sequence,

and p is said to be a simple w-distance if p(x, x) = 0 for every x ∈ X.

Next, we give some examples of p-Cauchy sequences.

Notation Let (X, d) be a metric space, p a w-distance on (X, d). Denote by

Cp(X), and C(X) the set of all p-Cauchy sequences, and Cauchy sequences in X,

respectively.

Examples 3.7. Let p be the w-distance given in Example 2.6. In this case, it is

easy to see that p is a Cauchy w-distance, and

Cp(X) = C(X).

Examples 3.8. Let p be the w-distance given in Example 2.7 with c > 0. Then

p(xn, xm) = c for any sequence (xn) in X. Therefore there is no p-Cauchy sequences

in X. Hence Cp(X) = ∅ and every constant sequence is a Cauchy sequence. So

Cp(X) �= C(X), and p is not a Cauchy w-distance.

Examples 3.9. Let p be the w-distance given in Example 2.8. We will determine

Cp(X). Let (xn) ∈ Cp(X). We will show that (xn) converges to 0. Let ε > 0. Since

(xn) is a p-Cauchy, we obtain an N ∈ N such that

for m > n ≥ N, p(xn, xm) < ε. (3.6)
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Let n > N . Then by (3.6), p(xN , xn) < ε. Therefore

‖xn‖ ≤ ‖xN‖ + ‖xn‖ = p(xN , xn) < ε.

This shows that (xn) converges to 0. Conversely, if (xn) converges to 0, then ‖xn‖
converges to 0 and thus p(xn, xm) = ‖xn‖ + ‖xm‖ converges to 0 as m, n → ∞,

and hence (xn) is a p-Cauchy sequence. This shows that

Cp(X) = {(xn) | (xn) converges to 0}.

So Cp(X) �= C(X), and p is not a Cauchy w-distance.

Examples 3.10. Let p be the w-distance given in Example 2.13. Let (xn) ∈
Cp(X). We will show that (xn) converges to 0. Let ε > 0. Then there is an N ∈ N

such that

for m > n ≥ N, p(xn, xm) < ε. (3.7)

Let n > N . Then, by (3.7), we obtain that

‖xn‖ = p(xN , xn) < ε.

Hence xn converges to 0.

Conversely, if (xn) converges to 0, then p(xn, xm) = ‖xm‖ converges to 0 and

(xn) ∈ Cp(X). This shows that Cp(X) = {(xn) | (xn) converges to 0}. Therefore

Cp(X) �= C(X), and p is a not a Cauchy w-distance.

Examples 3.11. Let (X, d), F, c and p be as in Example 2.10. We will compute

Cp(X). Let (xn) ∈ Cp(X). Let ε = c
2
. Then there exists an N ∈ N such that for

m > n ≥ N, p(xn, xm) < c
2
. This implies that xn and xm are in F and

p(xn, xm) = d(xn, xm) for all m > n ≥ N. (3.8)



24

That is

xn ∈ F for all n ≥ N. (3.9)

Next, we will show that (xn) is a Cauchy sequence in (X, d). Let ε > 0. Then

there is an N ′ > N such that

for m > n ≥ N ′, p(xn, xm) < ε. (3.10)

Let m > n ≥ N ′. Then m > n ≥ N . From (3.8), we obtain that d(xn, xm) =

p(xn, xm). Also from (3.10), we have p(xn, xm) < ε. Hence d(xn, xm) < ε. This

shows that

(xn) is a Cauchy sequence in (X, d). (3.11)

From (3.9) and (3.11), we obtain that (xn) is a Cauchy sequence in X which

eventually lies in F . This shows that

Cp(X) ⊆ {(xn) | (xn) is a Cauchy sequence which eventually lies in F}.

For the converse, let (xn) be a Cauchy sequence which eventually lies in F .

Let N1 ∈ N be such that

xn ∈ F for all n ≥ N1. (3.12)

Let ε > 0. Since (xn) is a Cauchy sequence, there exists an N2 ∈ N such that

for m > n ≥ N2, d(xn, xm) < ε. (3.13)

Let N = max{N1, N2}. Let m > n ≥ N . Then m, n ≥ N1. From (3.12), we obtain

that xn, xm ∈ F and thus p(xn, xm) = d(xn, xm). Also from (3.13), we obtain that
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p(xn, xm) < ε. This show that (xn) ∈ Cp(X) and

Cp(X) = {(xn) | (xn) is a Cauchy sequence which eventually lies in F}.

If F �= X, we can choose a ∈ X � F and the constant sequence (a, a, a, . . .) is

a Cauchy sequence which does not eventually lie in F . Therefore Cp(X) �= C(X)

and p is not a Cauchy w-distance.

From this example we have the next theorem.

Theorem 3.12. Let (X, d) be a complete metric space. Then for every closed and

bounded subset F of X, there is a w-distance p on X with the property that the

set of all p-Cauchy sequences consisting of all sequences converging to a point in

F .

Proof. Let F be closed and bounded in (X, d). Define p as in Example 3.11. We

obtain that

Cp(X) = {(xn) | (xn) is a Cauchy sequence which eventually lies in F}.

Since X is complete, every Cauchy sequence is convergent. Since F is closed, the

limit of a sequence in F is in F . Therefore

Cp(X) = {(xn) | (xn) is a convergent sequence in (X, d) whose limit lies in F}.
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3.2 Sufficient conditions for Cauchy w-distance

In this section, we study relationship between Cauchy w-distances and metric-

preserving functions. The study will also give us more examples of Cauchy w-

distances. We also introduce the notion of uniformly discrete metric spaces and

give some examples.

Theorem 3.13. Let (X, d) be a metric space, and f a metric preserving function.

If f is strongly metric preserving, then f ◦ d is a Cauchy w-distance.

Proof. Assume that f is strongly metric preserving. By Theorem 2.25, f is con-

tinuous. Therefore by Theorem 2.27, f ◦ d is a w-distance on (X, d). Next, we will

prove that f ◦ d is a Cauchy w-distance. Let (xn) be a Cauchy sequence in (X, d).

To show that (xn) is f ◦d-Cauchy, let ε > 0 be arbitrary. Since f is continuous at 0,

there exists a δ > 0 such that for every x ∈ R, 0 ≤ x < δ implies |f(x)−f(0)| < ε.

Since f(0) = 0, for this δ,

if x ∈ R, and 0 ≤ x < δ then f(x) < ε. (3.14)

Since (xn) is a Cauchy sequence, there exists an N ∈ N such that for m > n ≥
N, d(xn, xm) < δ. Let m > n ≥ N . Then by (3.14)

f ◦ d(xn, xm) = f(d(xn, xm)) < ε.

This shows that (xn) is f ◦ d-Cauchy and hence f ◦ d is a Cauchy w-distance.

In Theorem 3.13, the condition that f is strongly metric preserving guarantees

that f ◦ d is a Cauchy w-distance. A natural question arise :

If f is metric-preserving function which is lower semicontinuous

then is f ◦ d a Cauchy w-distance on (X, d)? (3.15)
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Recall that, if X is a nonempty set and d : X × X → [0,∞) is defined by

d(x, y) =

⎧⎪⎨
⎪⎩

1 x �= y,

0 x = y,

(3.16)

then d is a metric which generates the discrete topology on X. We would like to

distinguish this metric from other metrics which generate the discrete topology in

the next definition.

Definition 3.14. Let d be a metric on a nonempty set X. If d is defined by (3.16),

then we call d the discrete metric and (X, d) a discrete metric space.

We also call the topology τ on X in which every subset of X is in τ the

discrete topology.

Examples 3.15. Let X = N and d is the usual metric on N. Then for each x ∈ N,

{x} = Bd(x, 1
2
). Therefore d generates the discrete topology on X. Hence d is a

discrete metric which is not of the form in (3.16)

Definition 3.16. Let (X, d) be a metric space. The metric d is said to be a

uniformly discrete metric if there is an ε > 0 such that Bd(x, ε) = {x} for all

x ∈ X. In this case, we also say that (X, d) is a uniformly discrete metric

space or (X, d) is uniformly discrete.

Examples 3.17. Let X be a nonempty set and c > 0. The metric d of the form

d(x, y) =

⎧⎪⎨
⎪⎩

c x �= y,

0 x = y,

is a uniformly discrete metric.

The metric defined in Example 3.15 is also a uniformly discrete metric.
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Theorem 3.18. Let d be a uniformly discrete metric on X. Then

(i) every Cauchy sequence (xn) in (X, d) is eventually constant,

(ii) (X, d) is a complete metric space.

Proof. Since (X, d) is uniformly discrete, there is an ε > 0 such that Bd(x, ε) =

{x} for all x ∈ X. Let (xn) be a Cauchy sequence in X. Then there exists an N ∈ N

such that for m > n ≥ N, d(xn, xm) < ε. Therefore for m ≥ N, d(xN , xm) < ε.

Thus for m ≥ N, xm ∈ B(xN , ε) = {xN}. That is for m ≥ N, xm = xN . This

proves (i). From (i), every Cauchy sequence in X is eventually constant and thus

is convergent. Therefore (X, d) is complete. This proves (ii).

There are some discrete metric which is not uniform, as shown in the following

example. And, a metric d generating the discrete topology need not assure that

(X, d) is complete.

Examples 3.19. Let X = N. Defines d : N × N → [0,∞) by d(m, n) =

∣∣∣∣ 1

m
− 1

n

∣∣∣∣
for all m, n ∈ N. It is easy to see that d is a metric on X. Claim that

(i) d generates the discrete topology,

(ii) (n) = (1, 2, 3, . . .) is a Cauchy sequence in (X, d) which is not convergent.

Proof. (i) It is easy to see that B(1, 1
3
) = {1}. Therefore {1} is open. Next, let

n ∈ N − {1}. We will show that {n} is open in (X, d). Let ε =
1

2n(n + 1)
. Then

Bd(n, ε) is open in (X, d). Let m ∈ Bd(n, ε). Then

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ < ε.

If m ≥ n + 1, then
1

m
≤ 1

n + 1
<

1

n
, and thus

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ =
1

n
− 1

m
≥ 1

n
− 1

n + 1
=

1

n(n + 1)
> ε.
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If 1 ≤ m ≤ n − 1, then
1

m
≥ 1

n − 1
>

1

n
, and therefore

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ =
1

m
− 1

n
≥ 1

n − 1
− 1

n
=

1

(n − 1)n
> ε.

Since

∣∣∣∣ 1

m
− 1

n

∣∣∣∣ < ε, we have m = n. This shows that Bd(n, ε) = {n}, and {n} is

open. This shows that d generates the discrete topology.

(ii) We can see that

d(n,m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ ≤ 1

n
+

1

m
→ 0 as n, m → ∞.

Therefore (n) = (1, 2, 3, . . .) is a Cauchy sequence. Next, we will show that this

sequence does not converge in X. Let l ∈ N. If l = 1, we can see that d(m, l) ≥ 1

2
for all m �= 1. Therefore (n) does not converge to 1. Assume that l �= 1. Let

ε =
1

2l(l + 1)
. As in the proof of (i), we see that

d(m, l) > ε for all m �= l.

Therefore (n) does not converge to l. This shows that (n) does not converge to

any point of X.

This example shows that (X, d) is not complete and there is a Cauchy sequence

in (X, d) which is not eventually constant. By Theorem 3.18, it can be concluded

that d is a discrete metric which is not uniform.

It is obvious that if X �= ∅, c > 0, and d which is defined by d(x, y) = 0 if

x = y and d(x, y) = c if x �= y, then d is a uniform discrete metric. Next is an

example of a uniform discrete metric which is not of this form.
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Examples 3.20. Let X = {1, 2, 3}. Let d : X × X → [0,∞) be defined by

d(1, 1) = d(2, 2) = d(3, 3) = 0

d(1, 2) = d(2, 1) = d(1, 3) = d(3, 1) = 1

d(2, 3) = d(3, 2) = 2.

It is to see that d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x),

for all x, y ∈ X. Next, we prove the triangle inequality. Let x, y, z ∈ X. If x = y,

then d(x, y) = 0 ≤ d(x, z) + d(z, y). Assume that x �= y. If z = x or z = y, we

can see that d(x, y) = d(x, z) + d(z, y). Assume that z �= x and z �= y. Then

d(x, z) + d(z, y) ≥ 1 + 1 = 2 ≥ d(x, y). This shows that d satisfy the triangle

inequality. Hence d is a metric on X. It is easy to see that B(x, 1
2
) = {x} for all

x ∈ X. Thus d is a strong discrete metric. However, there is no c > 0 such that

Bd(x, c) = {x} for all x ∈ X.

Next, we will answer the question in (3.15). To do this, we find give the next

lemma is needed.

Lemma 3.21. Let (X, d) be a metric space. If every Cauchy sequence in (X, d)

is eventually constant, then (X, τd) is a discrete space.

Proof. Let x ∈ X. Suppose on the contrary that for every ε > 0, Bd(x, ε)−{x} �=
∅. Therefore, for each n ∈ N, there exists xn ∈ X such that

xn ∈ B(x,
1

n
) and xn �= x. (3.17)

Consider the sequence (xn). Since xn ∈ B(x, 1
n
) for every n ∈ N, d(xn, x) <

1

n
for

all n ∈ N. Therefore (xn) converges to x. Then (xn) is a Cauchy sequence, and thus

eventually constant. Let x0 ∈ X, and N ∈ N be such that for n ≥ N, xn = x0.

Hence (xn) converges to x0. Since limit of convergent sequence in a metric space

is unique, we have x = x0. Therefore for n ≥ N, xn = x, which contradicts (3.17).
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Therefore there exists an ε > 0, such that Bd(x, ε) = {x}. That is {x} is open.

This shows that (X, τd) is a discrete space.

Theorem 3.22. Let (X, d) be a metric space and f a metric-preserving function.

(i) If f is not strongly metric-preserving and f ◦ d is Cauchy, then (X, τd) is a

discrete space.

(ii) If d is uniformly discrete, then f ◦ d is a Cauchy w-distance.

Proof. (i) Assume that f is not strongly metric-preserving and f ◦ d is a Cauchy

w-distance. Then by Theorem 2.25, f is not continuous at 0. By Theorem 2.24,

there is an ε > 0 such that f(x) > ε for all x > 0. Then for each x ∈ X,

Bf◦d(x, ε) = {y ∈ X | f(d(x, y)) < ε}
= {y ∈ X | d(x, y) = 0}
= {x}.

That is f ◦ d is a uniformly discrete metric. Since f ◦ d is Cauchy, every Cauchy

sequence in (X, d) is f ◦ d-Cauchy. Since f ◦ d is a uniformly discrete metric, a

sequence in X is f ◦d-Cauchy if it is eventually constant. Therefore every Cauchy

sequence in (X, d) is eventually constant. By Lemma 3.21, we conclude that (X, τd)

is discrete. Next, assume that d is uniformly discrete. We will first prove that f ◦d

is a w-distance. We will prove condition (i) and (iii) by using the same arguments

in Theorem 2.27. Also, for x0 ∈ X, f ◦ d(X0, ·) : (X, d) → [0,∞) is continuous

since (X, d) is discrete. Hence f ◦d is a w-distance. To show that f ◦d is Cauchy, let

(xn) be a Cauchy sequence in (X, d). Then (xn) is eventually constant. Therefore

(xn) is f ◦ d-Cauchy. Hence f ◦ d is Cauchy.
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Corollary 3.23. Let (X, d) be a metric space and f a metric-preserving function.

Then

(i) If f is strongly metric-preserving or d is uniformly discrete, then f ◦ d is

Cauchy, and

(ii) if f is not strongly metric-preserving and d is not discrete, then f ◦ d is not

Cauchy.

Proof. This corollary follows from Theorem 3.13 and 3.22.



CHAPTER IV

THEOREMS ON CAUCHY W-DISTANCE

Throughout this chapter, p is a w-distance on a metric space (X, d). A char-

acterization of Cauchy w-distance is given.

4.1 Simple w-distances, continuous functions and Cauchy

w-distances

Recall that a w-distance p is said to be simple if for each x ∈ X, p(x, x) = 0.

Theorem 4.1. p is simple if and only if for any x, y ∈ X, p(x, y) = 0 if and only

if x = y.

Proof. By the definition, we have p is simple. Assume that p is simple. Then

p(x, x) = 0 for all x ∈ X. Next, let x, y ∈ X be such that p(x, y) = 0. Since

p(x, y) = 0 and p(x, x) = 0, by Lemma 3.2(i), y = x.

Theorem 4.2. If p is a Cauchy w-distance, then p is simple.

Proof. Assume that p is a Cauchy w-distance in (X, d). Then every Cauchy se-

quence in X is p-Cauchy. Therefore every convergent sequence is p-Cauchy. In par-

ticular, every constant sequence is p-Cauchy. To show that p is simple, let x0 ∈ X.

Consider the constant sequence (x0). Then (x0) is a p-Cauchy sequence. Thus there

exists a nonnegative sequence (αn) converging to 0 such that 0 ≤ p(x0, x0) ≤ αn

for all n. This implies that p(x0, x0) = 0.

The next example demonstrates a simple w-distances which are not Cauchy.
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Examples 4.3. Let X = R, and let d be the usual metric on R. Let f be a

metric-preserving function which is lower semicontinuous. Suppose that f is not

continuous at 0. Then f is not a strongly metric-preserving function. Thus by

Theorem 2.27, f ◦ d is a w-distance. In addition, f ◦ d is simple since f ◦ d is

a metric. However by Corollary 3.23(ii), we obtain that f ◦ d is simple but not

Cauchy.

We will prove that every Cauchy w-distances is continuous. Since the domain

of a w-distance is a product space, we recall some theorems on product topology

and give a criterion to assure continuity of w-distances.

Theorem 4.4 ([2], p.118). Let x1, x2, . . . be a sequence of the points of the

product space
∏

Xα. Then this sequence converges to the point x if and only if the

sequence πα(x1), πα(x2), . . . converges to πα(x) for each α.

Theorem 4.5 ([2], p.190). Let X be a topological space.

(a) Let A be a subset of X. If there is a sequence of points of A converging to

x, then x ∈ A; the converse holds if X is first-countable.

(b) Let f : X → Y . If f is continuous, then for every convergent sequence (xn)

converges to x in X, the sequence f(xn) converges to f(x). The converse

holds if X is first-countable.

Theorem 4.6 ([2], p.191). A subspace of a first-countable space is first-countable,

and a countable product of first-countable spaces is first-countable. A subspace of

a second-countable space is second-countable, and a countable product of second-

countable spaces is second-countable.

Theorem 4.7. Let (X, d) be a metric space and Z a topological space. Then

f : X × X → Z is continuous(in the product topology) if and only if for every

sequence (xn) and (yn) in X, if xn converges to x and yn converges to y, then

f(xn, yn) converges to f(x, y).
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Proof. Since every metric space is first countable, X×X is first countable. Assume

that f is continuous, (xn) and (yn) are sequences in X converging to x and y,

respectively. By Theorem 4.4, (xn, yn) converges to (x, y) in X ×X. Therefore, by

Theorem 4.5, f(xn, yn) converges to f(x, y).

Conversely, assume that for every sequence (xn) and (yn) in X, if (xn) converges

to x and (yn) converges to y, then f(xn, yn) converges to f(x, y). To show that f is

continuous, we apply Theorem 4.5. Let (xn, yn) be sequence in X ×X converging

to (x, y). Then by Theorem 4.4, (xn) converges to x and (yn) converges to y. By

assumption, f(xn, yn) converges to f(x, y). Hence the theorem is proved.

Next, we will prove that Cauchy w-distances are continuous by applying The-

orem 4.7.

Theorem 4.8. If p is a Cauchy w-distance in (X, d), then p is continuous.

Proof. Assume that p is a Cauchy w-distance. Let (xn) and (yn) be sequences in

X converging to x and y, respectively. We will show that p(xn, yn) converges to

p(x, y) (in R). Let n ∈ N. Since p(xn, yn) ≤ p(xn, x) + p(x, y) + p(y, yn), we have

p(xn, yn) − p(x, y) ≤ p(xn, x) + p(y, yn).

Since p(x, y) ≤ p(x, xn) + p(xn, yn) + p(yn, y), we have

p(xn, yn) − p(x, y) ≥ −p(x, xn) − p(yn, y).

We obtain that

−p(x, xn) − p(yn, y) ≤ p(xn, yn) − p(x, y) ≤ p(xn, x) + p(y, yn) (4.1)

for all n ∈ N. Next, we will show that p(x, xn), p(xn, x), p(y, yn) and p(yn, y) all

converge to 0 as n → ∞. Let ε > 0. Let (an) = (x1, x, x2, x, x3, x, . . .). Then

(an) is a sequence in X such that a2n = x and a2n−1 = xn for all n ∈ N. Since (xn)
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converges to x, we obtain that (an) converges to x. Therefore (an) is a Cauchy

sequence. Since p is Cauchy, (an) is p-Cauchy. Thus there exists N ≥ 2 such that

for m > n ≥ N, p(an, am) < ε.

Let n ≥ N . Then p(xn, x) = p(a2n−1, a2n) < ε, and p(x, xn) = p(a2n−2, a2n−1) < ε.

Thus p(x, xn) and p(xn, x) converge to 0. Similarly, p(y, yn) and p(yn, y) converge

to 0. Hence

p(xn, x) + p(y, yn) and −p(x, xn) − p(yn, y) converge to 0. (4.2)

From (4.1) and (4.2), we obtain that p(xn, yn) converges to p(x, y).

The next example shows that, in general, a w-distance need not be continuous.

Examples 4.9. Let X = R, F = [0, 1], c = 2. Let p : X ×X → [0,∞) be defined

by

p(x, y) =

⎧⎪⎨
⎪⎩
|x − y| if x, y ∈ F ,

2 if x /∈ F or y /∈ F .

From Example 2.10, it is seen that p is a w-distance. Let (xn) = (1+ 1
n
) and (yn) =

(− 1
n
) for each n ∈ N. Then (xn) converges to 1 and (yn) converges to 0. Since

for every n ∈ N, xn /∈ F , we obtain that p(xn, yn) = 2 for all n ∈ N . Therefore

p(xn, yn) converges to 2. Since 1 ∈ F and 0 ∈ F , we have p(1, 0) = |1 − 0| = 1.

This shows that p(xn, yn) does not converges to p(1, 0). Hence p is not continuous.

The next example shows that a continuous w-distance need not be Cauchy.

Examples 4.10. Let p be defined as in Example 2.7. Then it is easily seen that

p is continuous. However, p is not simple and thus is not Cauchy.
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Theorem 4.11. Let (X, d) be a metric space. Define d′ : (X ×X) × (X ×X) →
[0,∞) by

d′((x, y), (a, b)) = d(x, a) + d(y, b),

for x, y, a, b in X. Then the following statements hold :

(i) d′ is a metric on X × X.

(ii) d′ generates the product topology.

We will call this metric d′ the “ taxi-cab metric ”on X × X.

Proof. (i) We will show that d′ is a metric on X × X. Let (x, y), (a, b) ∈ X × X.

1) d′((x, y), (a, b)) = d(x, a) + d(b, y) ≥ 0.

2) d′((x, y), (a, b)) = 0 ↔ d(x, a) + d(a, b) = 0

↔ d(x, a) = 0 ∧ d(y, b) = 0

↔ x = a ∧ y = b

↔ (x, y) = (a, b).

3) d′((x, y), (a, b)) = d(x, a) + d(y, b)

= d(a, x) + d(b, y)

= d′((a, b), (x, y)).

4) Let (m,n) ∈ X × X.

d′((x, y), (a, b)) = d(x, a) + d(y, b)

≤ d(x, m) + d(m, a) + d(y, n) + d(n, b)

= (d(x, m) + d(y, n)) + (d(m, a) + d(n, b))

= d′((x, y), (m, n)) + d′((m,n), (a, b)).

Hence d′ is a metric on X × X. Next, we will show that d′ generates the product
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topology. Let

B1 = {Bd′((x, y), ε) | (x, y) ∈ X × X, ε > 0} and

B2 = {Bd(m, δ1) × Bd(n, δ2) |m, n ∈ X, δ1, δ2 > 0}.

Then B1 and B2 are bases of the topology generated by d′ and the product topol-

ogy, respectively. First, we will show that

for each Bd′((x, y), ε) ∈ B1 there are m, n ∈ X, and δ1, δ2 > 0

such that (x, y) ∈ Bd(m, δ1) × Bd(n, δ2) ⊆ Bd′((x, y), ε). (4.3)

Let Bd′((x, y), ε) ∈ B1 be given. Choose m = x, n = y, δ1 = ε
2
, and δ2 = ε

2
.

Then (x, y) ∈ Bd(m, δ1) × Bd(n, δ2). Next, let (a, b) ∈ Bd(m, δ1) × Bd(n, δ2).

Then a ∈ Bd(x, ε
2
) and b ∈ Bd(y, ε

2
). Thus d(a, x) < ε

2
and d(b, y) < ε

2
. Hence

d′((a, b), (x, y)) = d(a, x) + d(b, y) < ε. Therefore (a, b) ∈ Bd′((x, y), ε). This

shows that

(x, y) ∈ Bd(m, δ1) × Bd(n, δ2) ⊆ Bd′((x, y), ε).

Next, we will prove that the product topology is finer than the topology gener-

ated by d′. To show this, it suffices to show that every set in B1 is open in the

product topology. Let Bd′((x, y), ε) ∈ B1 be given. Let (a, b) ∈ Bd′((x, y), ε). Since

Bd′((x, y), ε) is open in (X × X, d′), there is an ε1 > 0 such that Bd′((a, b), ε1) ⊆
Bd′((x, y), ε). Apply (4.3) to Bd′((a, b), ε1), we obtain m, n ∈ X, δ1, δ2 > 0 such

that

(a, b) ∈ Bd(m, δ1) × Bd(n, δ2) ⊆ Bd′((a, b), ε1) ⊆ Bd′((x, y), ε).

This shows that Bd′((x, y), ε) is open in the product topology. Next, we will prove

that the topology generated by d′ is finer than the product topology. To show this,
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we first prove that

for each Bd(m, δ1) × Bd(n, δ2) ∈ B2, there are x, y ∈ X and ε > 0

such that (m, n) ∈ Bd′((x, y), ε) ⊆ Bd(m, δ1) × Bd(n, δ2). (4.4)

Let Bd(m, δ1)×Bd(n, δ2) ∈ B2 be given. Choose x = m, y = n and ε = min{δ1, δ2}.
Then (m, n) ∈ Bd′((x, y), ε). Next, let (a, b) ∈ Bd′((x, y), ε). Then d(a, x) +

d(b, y) < ε. Thus d(a, x) < ε ≤ δ1 and d(b, y) < ε ≤ δ2. Hence a ∈ Bd(x, δ1), b ∈
Bd((y, δ2), and thus (a, b) ∈ Bd(m, δ1) × Bd(n, δ2). This shows that

(m, n) ∈ Bd′((x, y), ε) ⊆ Bd(m, δ1) × Bd(n, δ2).

Next, let Bd(m, δ1) × Bd(n, δ2) ∈ B2 be given. Let (a, b) ∈ Bd(m, δ1) × Bd(n, δ2).

Then there exist δ3, δ4 > 0 such that

Bd(a, δ3) ⊆ Bd(m, δ1) and Bd(b, δ4) ⊆ Bd(n, δ2).

Therefore Bd(a, δ3)×Bd(b, δ4) ⊆ Bd(m, δ1)×Bd(n, δ2). Apply (4.4) to Bd(a, δ3)×
Bd(b, δ4), we obtain x, y ∈ X, and ε > 0 such that

(a, b) ∈ Bd′((x, y), ε) ⊆ Bd(a, δ3) × Bd(b, δ4) ⊆ Bd(m, δ1) × Bd(n, δ2).

This shows that Bd(m, δ1) × Bd(n, δ2) is open in the topology generated by d′.

Hence d′ generates the product topology, as claimed.

Next, we show that Cauchy w-distances of the form f ◦ d are uniformly con-

tinuous if f is a strongly metric-preserving, as shown in the next theorem.

Theorem 4.12. Let (X, d) be a metric space, and d′ defined as in Theorem 4.11.

If f is strongly metric-preserving, then f ◦d is a Cauchy w-distance on (X, d) and

uniformly continuous on (X × X, d′).
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Proof. We need to prove only the uniform continuity of f ◦ d. Let ε > 0. Since f

is continuous at 0, there exists an δ > 0 such that

f(x) <
ε

2
, for all 0 ≤ x < δ. (4.5)

Let (a, b), (x, y) ∈ X × X be such that d′((x, y), (a, b)) < δ. That is d(x, a) +

d(y, b) < δ. Then d(x, a) < δ and d(y, b) < δ. By (4.5), we obtain that

f(d(x, a)) <
ε

2
and f(d(y, b)) <

ε

2
. (4.6)

Since f ◦ d(x, y) ≤ f ◦ d(x, a) + f ◦ d(a, b) + f ◦ d(b, y), we have

f ◦ d(x, y) − f ◦ d(a, b) ≤ f ◦ d(x, a) + f ◦ d(b, y).

Also f ◦ d(a, b) ≤ f ◦ d(a, x) + f ◦ d(x, y) + f ◦ d(y, b), so we obtain that

f ◦ d(x, y) − f ◦ d(a, b) ≥ −f ◦ d(a, x) − f ◦ d(y, b).

Hence

|f ◦ d(x, y) − f ◦ d(a, b)| ≤ f ◦ d(x, a) + f ◦ d(y, b)

= f(d(x, a)) + f(d(y, b))

<
ε

2
+

ε

2
by (4.6)

= ε.

This shows that f ◦ d is uniformly continuous.

The next example shows that Cauchy w-distances need not be uniformly con-

tinuous.
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Examples 4.13. Let X = [0,∞), d(x, y) = |√x−√
y|, and p(x, y) = |x− y|, for

all x, y ∈ X. Then

(i) d is a metric on X,

(ii) p is a symmetric Cauchy w-distance on (X, d),

(iii) p(0, ·) : (X, d) → (X, d) is not uniformly continuous, and

(iv) p : (X × X, d′) → [0,∞) is not uniformly continuous where d′ is defined as

in Theorem 4.11.

Proof. We will show that d is a metric on X. Let x, y ∈ X.

1) d(x, y) = |√x −√
y| ≥ 0.

2) d(x, y) = 0 ↔ |√x −√
y| = 0

↔ √
x =

√
y

↔ x = y.

3) d(x, y) = |√x −√
y| = |√y −√

x| = d(y, x).

4) Let z ∈ X.

d(x, z) = |√x −√
z| ≤ |√x −√

y| + |√y −√
z|

= d(x, y) + d(y, z).

Hence d is a metric, which proves (i). Next, we will show that p is a w-distance.

It is obvious that p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X. Let x0 ∈ X. We

will show that p(x0, ·) : X → [0,∞) is continuous. Let (xn) be sequence in X

such that (xn) converge to x (in (X, d)). Then d(xn, x) converges to 0. That is

|√xn −
√

x| converges to 0. Therefore
√

xn converges to
√

x. Thus (xn) converges
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to x (in R with the usual metric). Then

|p(x0, xn) − p(x0, x)| = ||x0 − xn| − |x0 − x||
≤ |(x0 − xn) − (x0 − x)|
= |x − xn| → 0.

Hence p(x0, xn) converges to p(x0, x). This shows that p(x0, ·) is continuous. We

will prove condition (iii) of w-distances. Let ε > 0. Since f : [0,∞) → [0,∞) given

by f(x) =
√

x is uniformly continuous, there exists a δ > 0 such that

for all x, y ∈ [0,∞), |x − y| < δ implies |√x −√
y| < ε. (4.7)

Choose δ′ =
δ

2
. Let x, y, z ∈ X be such that p(z, x) ≤ δ′ and p(z, y) ≤ δ′. That is

|z − x| ≤ δ′ and |z − y| ≤ δ′. Then |x− y| ≤ |x− z|+ |z − y| ≤ 2δ′ = δ. Hence, by

(4.7), we obtain that |√x −√
y| < ε. That is d(x, y) ≤ ε. Thus p is a w-distance

on (X, d). To show that p is Cauchy, let (xn) be a Cauchy sequence in (X, d). We

will show that there exists an M > 0 such that
√

xn ≤ M for all n ∈ N. Let

ε = 1. Since (xn) is a Cauchy sequence in (X, d), there is an N > 1 such that for

m > n ≥ N, d(xn, xm) < 1. That is for m > n ≥ N, |√xn −√
xm| < 1. Then for

all n ≥ N |√xN −√
xn| < 1. Therefore for all n ≥ N,

√
xn <

√
xN + 1. Let

M = max{√xN + 1,
√

x1, . . . ,
√

xN−1}.

Then for n ∈ N,
√

xn ≤ M . Now, we will show that (xn) is p-Cauchy. Let ε > 0.

Then ε
2M

> 0 and there exists an N ∈ N such that for m > n ≥ N,

d(xn, xm) <
ε

2M
.
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That is for m > n ≥ N, |√xn −√
xm| < ε

2M
. Let m > n ≥ N . Then

p(xn, xm) = |xn − xm|
= |(√xn −√

xm)(
√

xn +
√

xm)|
= |√xn −√

xm||√xn +
√

xm|
<

( ε

2M

)
(2M)

= ε.

This shows that (xn) is p-Cauchy. Therefore p is a Cauchy w-distance on (X, d).

The symmetric property of p is obvious. Hence (ii) is satisfied. Next, we will show

that p(0, ·) : (X, d) → [0,∞) is not uniformly continuous. That is there exists an

ε > 0 such that for δ > 0 there are x, y ∈ X, d(x, y) < δ and |p(0, x)−p(0, y)| ≥ ε.

In other words, for each ε > 0 such that for δ > 0 there are x, y ∈ [0,∞),

|√x −√
y| < δ and ||x| − |y|| ≥ ε.

Let ε = 1, and δ > 0. Choose x =

(
δ

2
+

1

δ

)2

and y =
1

δ2
. Then

|√x −√
y| =

∣∣∣∣δ2 +
1

δ
− 1

δ

∣∣∣∣ =
δ

2
< δ,

and

||x| − |y|| =

∣∣∣∣∣
(

δ

2
+

1

δ

)2

− 1

δ2

∣∣∣∣∣
=

∣∣∣∣δ
2

4
+ 1 +

1

δ2
− 1

δ2

∣∣∣∣
=

∣∣∣∣δ
2

4
+ 1

∣∣∣∣ > 1.

Thus p(0, ·) is not uniformly continuous. This proves (iii). Next, we will prove

(iv). Let d′ be defined as in Theorem 4.11. That is d′ is given by d′((x, y), (a, b)) =
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|√x −√
a| + |√y −√

b|. From (iii), we know that p(0, ·) : (X, d) → [0,∞) is not

uniformly continuous. Therefore there exists an ε > 0 such that for each δ > 0,

there are y, b ∈ X satisfying d(y, b) < δ and |p(0, y) − p(0, b)| < ε. That is for

each δ > 0, there are y, b ∈ X satisfying

|√y −
√

b| < δ and ||y| − |b|| ≥ ε. (4.8)

To show that p : (X × X, d′) → [0,∞) is not uniformly continuous, let δ > 0

be given. Then from (4.8), there are y, b ∈ X such that |√y − √
b| < δ and

||y| − |b|| ≥ ε. Let x = a = 0 ∈ X. Then (x, y), (a, b) ∈ X × X satisfying

d′((x, y), (a, b)) = |√x −√
a| + |√y −

√
b| = |√y −

√
b| < δ and

|p(x, y) − p(a, b)| = ||x − y| − |a − b|| = ||y| − |b|| ≥ ε.

This shows that p is not uniformly continuous.

4.2 W-distance topology

Recall that if (X, d) is a metric space, then the collection

B = {Bd(x, ε) | x ∈ X, ε > 0}

of all d-balls is a basis for a topology on X. This topology is called the metric

topology or topology generated by d, and is denoted by τd. In this section,

we define the notion of p-topology when p is a w-distance. In particular, we prove

that p-topology and the metric topology coincide if p is a Cauchy w-distance.

First, we give a theorem which will be used later.
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Theorem 4.14. Let (X, d) be a metric space, and p a continuous w-distance.

Let (xn) be a convergent sequence in X with lim xn = x. Then both p(xn, x) and

p(x, xn) converge to p(x, x) (in R). Furthermore, if p is a simple w-distance, then

p(xn, x) and p(x, xn) converge to 0.

Proof. Assume that (xn) is a sequence in X converging to x. By Theorem 4.4, we

obtain that (xn, x) and (x, xn) converge to (x, x). Since p is simple and continuous,

we have p(xn, x) and p(x, xn) converge to p(x, x) = 0.

Definition 4.15. Let (X, d) be metric space and p a w-distance. the p-ball of

center x, and radius ε is defined to be the set

Bp(x, ε) = {y ∈ X | p(x, y) < ε}.

The next theorem shows that the collection of all p-balls is a basis for a topol-

ogy whenever p is a simple w-distance. To do this, we first give a lemma.

Lemma 4.16. Let (X, d) be a metric space, p a w-distance, and Bp(x, ε) = {y ∈
X | p(x, y) < ε} the p-ball center at x and radius ε. Then for each y ∈ Bp(x, ε)

there exists a δ > 0 such that Bp(y, δ) ⊆ Bp(x, ε).

Proof. Let y ∈ Bp(x, ε). Then p(x, y) < ε. Let δ = ε− p(x, y). Then δ > 0. Claim

Bp(y, δ) ⊆ Bp(x, ε). Let z ∈ Bp(y, δ). Then p(y, z) < δ. Thus

p(x, z) ≤ p(x, y) + p(y, z) < p(x, y) + δ = ε.

Hence z ∈ Bp(x, ε).

Theorem 4.17. Let (X, d) be a metric space and p a simple w-distance. Let

B = {Bp(x, ε) | x ∈ X, ε > 0}. Then B is a basis for a topology on X.

Proof. Let x ∈ X. Then p(x, x) ≥ 0 and there is an n ∈ N such that p(x, x) <

n. Therefore x ∈ Bp(x, n). Let Bp(x1, ε1) and Bp(x2, ε2) be given, and x ∈
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Bp(x1, ε1) ∩ Bp(x2, ε2). Then x ∈ Bp(x1, ε1) and x ∈ Bp(x2, ε2). By Lemma

4.16, we obtain δ1, δ2 > 0 such that

Bp(x, δ1) ⊆ Bp(x1, ε1) and

Bp(x, δ2) ⊆ Bp(x2, ε2).

Let δ = min{δ1, δ2}. Then

x ∈ Bp(x, δ) ⊆ Bp(x, δ1) ∩ Bp(x, δ2) ⊆ Bp(x1, ε1) ∩ Bp(x2, ε2).

Hence B is a basis for a topology on X.

Definition 4.18. Let (X, d) be a metric space, p a w-distance. If {Bp(x, ε) | x ∈
X, ε > 0} is a basis for a topology, then the topology it generates is called p-

topology.

Examples 4.19. Let p1 and p2 be w-distances defined in Example 2.6, and 2.7,

respectively. Then p1 generated the metric topology and p2 generated indiscrete

topology.

Examples 4.20. Let p be the w-distance defined in Example 2.13. then for each

x ∈ X, ε > 0, we have

Bp(x, ε) = {y ∈ X | p(x, y) < ε} = {y ∈ X | ‖y‖ < ε}
= Bd(0, ε)

where d is the metric induced from ‖·‖. In particular when X = R and p(x, y) =

|y|, Bp(x, ε) = (−ε, ε) for any x ∈ R, and ε > 0. Then

p − topology = {∅} ∪ {(−ε, ε) | ε > 0} ∪ {R}.
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From Example 4.19 and 4.20, we can see that p-topology may finer, or coaser

than the metric topology τd, or it may be the same as the metric topology τd. The

next theorem assert that p-topology and topology generated by d coincide if p is

a Cauchy w-distance on (X, d).

Theorem 4.21. Let (X, d) be a metric space, and p a Cauchy w-distance on

(X, d). Then p and d generate the same topology.

Proof. First, we will prove the following statements :

(i) for all x ∈ X, ε > 0 there is a δ > 0 such that Bp(x, δ) ⊆ Bd(x, ε), and

(ii) for all x ∈ X, ε > 0 there is a δ > 0 such that Bd(x, δ) ⊆ Bp(x, ε).

(i) Let x ∈ X and ε > 0. Since p is a w-distance, there is a δ > 0 such that

for x, y, z ∈ X, p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε

2
. (4.9)

To show Bp(x, δ) ⊆ Bd(x, ε), let y ∈ Bp(x, δ). Then p(x, y) ≤ δ. Also p(x, x) =

0 ≤ δ since p is simple. By (4.9), we obtain that d(x, y) ≤ ε

2
< ε. Therefore

y ∈ Bd(x, ε).

(ii) Let x ∈ X and ε > 0. Suppose that for δ > 0, Bd(x, δ) � Bp(x, ε). Then for

each n ∈ N, there exists yn ∈ Bd(x, 1
n
) − Bp(x, ε). Then (yn) is a sequence in X

such that

d(x, yn) ≤ 1

n
and p(x, yn) ≥ ε for all n ∈ N. (4.10)

From (4.10), d(x, yn) ≤ 1

n
, so (yn) converges to x. Since p is simple and continu-

ous, by Theorem 4.14, we have p(x, yn) converges to 0. This is impossible, since

p(x, yn) ≥ ε for all n ∈ N. Hence there is a δ > 0 such that Bd(x, δ) ⊆ Bp(x, ε).

Now we will show that τd = p-topology. Let x ∈ X and ε > 0 be arbitrary. We will

show that Bd(x, ε) is open in the p-topology. That is there is a δ > 0 such that

Bp(x, δ) ⊆ Bd(x, ε). Let y ∈ Bd(x, ε). Since Bd(x, ε) is open in τd, there exists an
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ε1 > 0 such that Bd(y, ε1) ⊆ Bd(x, ε). Applying the condition (i) to Bd(y, ε1), we

obtain a δ > 0 such that Bp(y, δ) ⊆ Bd(y, ε1). Since p(y, y) = 0, therefore

y ∈ Bp(y, δ) ⊆ Bd(y, ε1) ⊆ Bd(x, ε).

Thus Bd(x, ε) is open in the p-topology. This implies that τd ⊆ p-topology. Now,

we will show that Bp(x, ε) is open in τd. Let y ∈ Bp(x, ε). By Lemma 4.16, there

exists an ε1 > 0 such that Bp(y, ε1) ⊆ Bp(x, ε). Applying (ii) to Bp(y, ε1), we

obtain a δ > 0 such that Bd(y, δ) ⊆ Bp(y, ε1). Then

y ∈ Bd(y, δ) ⊆ Bp(y, ε1) ⊆ Bp(x, ε).

Thus Bp(x, ε) is open in τd. This implies that p-topology is contained in τd.

4.3 Characterization of Cauchy w-distances

We give a characterization of Cauchy w-distances and its consequences. Recall

that if p is a Cauchy w-distance on a metric space (X, d), then p is simple and

continuous. Example 4.3 shows that a simple w-distance need not be Cauchy. In

addition, Example 4.10 shows that a continuous w-distance may not be Cauchy.

However, if a w-distance p is both continuous and simple and (X, d) is complete,

then p is a Cauchy w-distance, as shown in the next theorem.

Theorem 4.22 (Characterization of Cauchy w-distances). Let (X, d) be a

complete metric space, p a w-distance on (X, d). Then p is Cauchy if and only if

p is simple and continuous.

Proof. By Theorem 4.2 and Theorem 4.8, it suffices to prove only the converse.

Assume that p is simple and continuous. Let (xn) be a Cauchy sequence in (X, d).

Since (X, d) is a complete metric space, xn converges to a point x ∈ X. By

Theorem 4.14, p(xn, x) converges to 0 and p(x, xn) converges to 0. To show that
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(xn) is a p-Cauchy sequence, let ε > 0. Since p(xn, x) and p(x, xn) converge to

0, we have an N ∈ N such that for n ≥ N p(xn, x) <
ε

2
and p(x, xn) <

ε

2
. Let

m > n ≥ N ,

p(xn, xm) ≤ p(xn, x) + p(x, xm) <
ε

2
+

ε

2
= ε.

Thus (xn) is a p-Cauchy sequence. This implies that p is Cauchy.

Corollary 4.23. Let (X, d) be a compact metric space. Then every metric d′

equivalent to d, is a Cauchy w-distance on (X, d).

Proof. From Theorem 2.22, we obtain that d′ is a w-distance on (X, d). Since

(X, d) is compact, (X, d) is complete. Therefore, we can apply Theorem 4.22

to d′ and (X, d). It is clear that d′ is a simple w-distance. Next, consider d′ :

(X, d)×(X, d) → [0,∞). We will use Theorem 4.7 to prove the continuity of d′. Let

(xn) and (yn) be sequences in X converging to x and y in (X, d), respectively. By

Lemma 2.20, (xn) and (yn) also converge to x and y in (X, d′). Therefore (xn, yn)

converges to (x, y) in (X, d′)× (X, d′). Hence d′(xn, yn) converges to d′(x, y). This

shows that d′ is continuous. Thus by Theorem 4.22, d′ is Cauchy.

Theorem 4.24 ([2], p. 131). If X is a topological space, and if f, g : X → R

are continuous functions, then f + g, f − g, and f · g are continuous. If g(x) �= 0

for all x, then
f

g
is continuous.

Corollary 4.25. Let p1 and p2 are Cauchy w-distances on a complete metric

space. Then p1 + p2, αp1(α ≥ 0), and max{p1, p2} are Cauchy w-distances.

Proof. From Theorem 2.14, we know that p1 + p2, αp, and max{p1, p2} are w-

distances. Since p1 and p2 are Cauchy, they are simple and continuous. It is easy

to see that p1 +p2, αp, and max{p1, p2} are simple. By Theorem 4.24, we see that

p1 + p2, αp1, and max{p1, p2} =
|p1 + p2| + |p1 − p2|

2
are continuous. Therefore

all of them are Cauchy.
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Corollary 4.26. Let X be a complete metric space, let p be a Cauchy w-distance

on X and let f be a function from X into [0, ∞). Then a function g, q : X×X →
[0,∞) defined by

g(x, y) = max{f(x), p(x, y)} for all x, y ∈ X, and

q(x, y) = f(x) + p(x, y) for all x, y ∈ X.

Then the following are equivalent.

(i) g is Cauchy,

(ii) g is simple,

(iii) f(x) = 0 for all x ∈ X

(iv) q is Cauchy,

(v) q is simple.

Proof. (i)→(ii) and (iv)→(v) are already proved in Theorem 4.2.

g is simple → g(x, x) = 0 for all x ∈ X

→ max{f(x), p(x, x)} = 0 for all x ∈ X

→ max{f(x), 0} = 0 for all x ∈ X

→ f(x) = 0 for all x ∈ X.

This means (ii) implies (iii).

(iii)→(iv) is obvious.
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Now, q is simple → q(x, x) = 0 for all x ∈ X

→ f(x) + p(x, x) = 0 for all x ∈ X

→ f(x) = 0 for all x ∈ X

→ g = p

→ g is Cauchy.

So (v) implies (i).
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Conclusion

The following statements are the conclusion obtained from our investigation.

1. p1, p2 are w-distances ⇒ p1+p2, max{p1, p2}, and αp1(α ≥ 0) are w-distances.

2. (X, d) is compact and d′ ∼ d ⇒ d′ is a Cauchy w-distance on (X, d).

3. f is lower semicontinuous and metric-preserving ⇒ f ◦ d is a w-distance on

(X, d). In particular, f is strongly metric-preserving ⇒ f ◦ d is a w-distance on

(X, d).

4. f is strongly metric preserving ⇒ f ◦ d is a Cauchy w-distance and uniformly

continuous on (X × X, d′).

5. If f is a metric-preserving function, then

(i) f is not strongly metric-preserving and f ◦ d is Cauchy ⇒ (X, τd) is a

discrete space; and

(ii) d is uniformly discrete ⇒ f ◦ d is a Cauchy w-distance.

6. p is a Cauchy w-distance on (X, d) ⇒ (i) p is simple,

(ii) p is continuous, and

(iii) p and d generate the same topology.

7. If (X, d) is complete, then (p is Cauchy ⇔ p is simple and continuous).

8. p1, p2 are Cauchy w-distances and (X, d) is complete ⇒ p1 + p2, max{p1, p2},
and αp1(α ≥ 0) are Cauchy w-distances.

........................................
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