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CHAPTER I

PRELIMINARIES

This chapter contains some terminologies and backgrounds from algebraic graph

and hypergraph theory, linear algebra, finite abelian groups, and field extensions.

We also discuss many elementary results on hypergraphs.

1.1 Cayley graphs

We recall some terminologies of spectra of graphs. Let G be a graph with the

vertex set {v1, . . . , vn}. The adjacency matrix of G, denoted by A(G), is the n×n

matrix whose entry aij = 1 when vi and vj are adjacent and aij = 0 otherwise for

all 1 ≤ i, j ≤ n. The spectrum of a graph G, denoted by Spec(G), is the multi-set

of all eigenvalues of its adjacency matrix including multiplicity. A graph is called

integral if all eigenvalues are integers.

Let (G, ·) be a finite group with the identity e and S a subset of G∖ {e} such

that S = S−1. The Cayley graph of G over S is the graph whose vertex set is

G and for any x, y ∈ G, x and y are adjacent if and only if y−1x ∈ S. Next, we

discuss spectra of Cayley graphs.

Cayley graphs, as known as Cayley color graphs or Cayley color diagrams, were

first introduced by Cayley [4] in 1878. They have been regularly studied and have

many applications. Harary and Schwenk [10] asked “Which graphs have integral

spectra?”. From this question, the integral Cayley graphs have been widely studied,

e.g., [15], [12], [13], [14] and [22]. For a finite commutative ring (R,+, ·), a well-

studied Cayley graph of (R,+) over S is to set S = R× where R× denoted the

set of all units in R and is called the unitary Cayley graph of R. This graph has

the integral spectrum. Klotz and Sander [15] studied combinatorial properties of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

the unitary Cayley graph of Zn. They explored the chromatic number, the clique

number, the independence number, the diameter and the vertex connectivity of this

graph. In addition, they showed that the gcd-graphs are integral (gcd-graphs are

introduced in Section 2.1). A few year later, Ilić [12] determined the energy of the

unitary Cayley graph of Zn which is the sum of absolute values of its eigenvalues.

He also provided that the energy of the unitary Cayley graph of Zn is greater than

2n − 2. Kiani et al. [14] worked on the eigenvalues of the unitary Cayley graph

of finite local rings and extended the result to finite commutative rings. So [22]

completely characterized integral Cayley graphs of (Zn,+). He showed that the

Cayley graph of Zn over S is integral if and only if S is a union of some Gn(d)’s,

where d | n and Gn(d) = {k ∈ {1, 2, . . . , n − 1} : gcd(k, n) = d}. This result is

important on spectra of Cayley graphs and there are many works from So which

study spectra of Cayley graphs in other approaches.

For non-integral graphs, Mönius et al. [17] defined the algebraic degree of

a graph G to be the degree extension of the splitting field of the characteristic

polynomial of its adjacency matrix A(G) over Q. They studied a relation between

the diameter of arbitrary graph and its algebraic degree (the diameter is defined

in Section 1.3). They showed that a graph with large diameter has large algebraic

degree. Later, Mönius [18] determined the algebraic degree of Cayley graphs of

Zp where p is a prime number. He showed that the algebraic degree of the Cayley

graphs of Zp over S is p−1
m

where m is the maximum number of M ∈ {1, 2, . . . , |S|}

such that M divides gcd(|S| , p − 1) and S =
∪|S|/M

l=1 Sl where |Sl| = M and for

each l ∈ {1, 2, . . . , |S| /M}, kM = (k′)M mod p for all k, k′ ∈ Sl by using Galois

theory. Recently, Mönius [19] extended his work to Cayley graphs of Zn. He

studied other properties of spectra of Cayley graphs and provided a deep connection

between Schur rings and the splitting fields of Cayley graphs of Zn. By using this

connection, the algebraic degree of Cayley graphs of Zn is demonstrated (see more

details in Section 3.3).

For a generalization of the Cayley graphs, Buratti [3] extended the notion of

Cayley graphs to Cayley hypergraphs in 1994 as mentioned in Section 2.1. Since



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Cayley hypergraphs are generalizations of Cayley graphs and we have known from

the above discussion that the integrality and the algebraic degree of Cayley graphs

are well-studied, these reasons motivate us to attempt results on the integral Cayley

hypergraphs and their algebraic degree.

1.2 Spectra of circulant matrices

Throughout this section, we let n ∈ N and a matrix A = [aij]n×n. A matrix A

is called a symmetric matrix if aij = aji for all 1 ≤ i, j ≤ n. The spectrum of

A, denoted by Spec(A), is a multi-set of all eigenvalues of A including multiplici-

ties. It is well-known that all eigenvalues of a real symmetric matrix are real, see

[9]. Hence, its spectrum contains only real eigenvalues recorded in the following

theorem.

Theorem 1.2.1. The spectrum of a real symmetric matrix contains only real

eigenvalues.

Example 1.2.2. Let A =



0 1 3 0 5

1 −1 2 0 0

3 2 2 1 1

0 0 1 0 2

5 0 1 2 0


. By computing its eigenvalues, we

have Spec(A) = {7.46, 1.42,−0.04,−2.11,−5.74}. Note that all of the eigenvalues

are approximated by rounding these numbers to two decimal places.

A circulant matrix is a square matrix in which each row is obtained by a right

cyclic shift of the preceding row. In other word, a matrix is circulant if and only

if it is in the following form



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4



a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

... ... ... . . . ...

a1 a2 a3 · · · a0


.

Note that if A is a circulant matrix, then it suffices to know only the first row of

A. From now on, we shall write only the first row of a circulant matrix A. We

now find the spectrum of a circulant matrix A. For any j ∈ {0, 1, . . . , n − 1}, we

let vj =
[
1 e2πji/n (e2πji/n)2 · · · (e2πji/n)n−1

]t
where i is the imaginary unit

defined by i2 = −1. Then

Avj =



a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

... ... ... . . . ...

a1 a2 a3 · · · a0





1

e2πji/n

(e2πji/n)2

· · ·

(e2πji/n)n−1



=
n−1∑
k=0

ak(e
2πji/n)k



1

e2πji/n

(e2πji/n)2

· · ·

(e2πji/n)n−1


= λjvj

where λj =
∑n−1

k=0 ak(e
2πji/n)k for all j ∈ {0, 1, . . . , n− 1}. We conclude this result

in the theorem below.

Theorem 1.2.3. The spectrum of a circulant matrix with the first row

[
a0 a1 a2 · · · an−1

]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

is the multi-set {λj : j ∈ {0, 1, . . . , n − 1}} where λj =
∑n−1

k=0 ak(e
2πji/n)k for all

j ∈ {0, 1, . . . , n− 1}.

Example 1.2.4. Let A be a circulant matrix with the first row
[
0 1 0 0 1

]
.

This means a0 = 0, a1 = 1, a2 = 0, a3 = 0, a4 = 1 and hence

λ0 =
4∑

k=0

ak(e
2π(0)i/5)k =

4∑
k=0

ak = 2

λ1 =
4∑

k=0

ak(e
2π(1)i/5)k =

4∑
k=0

ak(e
2πi/5)k = e2πi/5 + (e2πi/5)4 = 2 cos

(
2π

5

)

λ2 =
4∑

k=0

ak(e
2π(2)i/5)k =

4∑
k=0

ak(e
4πi/5)k = e4πi/5 + (e4πi/5)4 = 2 cos

(
4π

5

)

λ3 =
4∑

k=0

ak(e
2π(3)i/5)k =

4∑
k=0

ak(e
6πi/5)k = e6πi/5 + (e6πi/5)4 = 2 cos

(
6π

5

)

λ4 =
4∑

k=0

ak(e
2π(4)i/5)k =

4∑
k=0

ak(e
8πi/5)k = e8πi/5 + (e8πi/5)4 = 2 cos

(
8π

5

)
.

By Theorem 1.2.3,

Spec(A) =
{
2, 2 cos

(
2π

5

)
, 2 cos

(
4π

5

)
, 2 cos

(
6π

5

)
, 2 cos

(
8π

5

)}
.

1.3 Hypergraphs

This section contains terminologies about hypergraphs following [1]. This includes

the adjacency, Laplacian and distance matrix of a hypergraph. We discuss spec-

tra, L-spectra and D-spectra of hypergraphs. In addition, the spectra of product

hypergraphs are presented at the end of this section.

A hypergraph H is a pair (V (H), E(H)), where V (H) is a finite set, called the

vertex set of H, and E(H) is a family of subsets of V (H), called the edge set

of H. The elements in V (H) are called vertices and the elements in E(H) are

called hyperedges. In particular, if E(H) consists only of 2-subsets of V (H), then

H is a simple graph. For v ∈ V (H), we write D(v) for the set of all hyperedges

containing the vertex v and the number of elements in D(v) is the degree of the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

vertex v, denoted by deg v. A hypergraph in which all vertices have the same

degree k ≥ 0 is called k-regular and it is said to be regular if it is k-regular for

some k ≥ 0. A hypergraph in which all hyperedges have the same cardinality l ≥ 0

is an l-uniform hypergraph. A path of length s in H is an alternating sequence

v1E1v2E2v3 . . . vsEsvs+1 of distinct vertices v1, v2, . . . , vs+1 ∈ V (H) and distinct

hyperedges E1, E2, . . . , Es ∈ E(H) satisfying vi, vi+1 ∈ Ei for any i ∈ {1, 2, . . . , s}.

The distance between two vertices v and w, denoted by d(v, w), is the smallest

length of a path from v to w. If there is no path from v to w, we define d(v, w) = ∞.

The diameter of H is diam(H) = max{d(v, w) : v, w ∈ V (H)}. A hypergraph H is

connected if diam(H) < ∞.

Example 1.3.1. An example of a hypergraph H is shown in the following figure.

The vertex set of H is {v1, v2, . . . , v6} and the edge set of H is {E1, E2, E3, E4}

where E1 = {v1, v2, v3}, E2 = {v4, v5}, E3 = {v3, v4, v5} and E4 = {v5, v6}. Since

|E1| = |E3| = 3 and |E2| = |E4| = 2, we have that H is not uniform. Note that

deg v1 = deg v2 = deg v6 = 1, deg v3 = deg v4 = 2 and deg v5 = 3. Then H is not

regular. Moreover, it is easy to check that diam(H) = 3 and hence H is connected.

v1

v2

v3
v4

v5

v6E1

E3

E2

E4

Figure 1.1: A hypergraph H

From the above discussion, we have known some structural definitions of hy-

pergraphs, we shall move to spectral properties of hypergraphs. We start with the
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spectrum of a hypergraph as follows.

For a hypergraph H with vertex set {v1, . . . , vn}, the adjacency matrix of H,

denoted by A(H), is the n × n matrix whose entry aij, i ̸= j, is the number of

hyperedges that contain both of vi and vj and aii = 0 for all 1 ≤ i, j ≤ n.

This concept was investigated by Bretto [2]. Evidently, it is a generalization of

the adjacency matrix of a graph. An equivalent definition of the adjacency matrix

is given in [8] by using the bipartite graph associated to H which is the graph

whose vertex set is the union of two independent sets V (H) and E(H) and for any

v ∈ V (H) and E ∈ E(H), they are adjacent whenever v ∈ E. In particular, if H

is an l-uniform hypergraph, there is another way to define an adjacency matrix

by using hypermatrix, see [5] and [11]. In this work, our hypergraphs may not be

l-uniform, so we follow Bretto’s.

The adjacency matrix is one of matrices represented by a hypergraph. There

are other matrices that can be used to explain some properties of a hypergraph e.g.,

Laplacian matrix and distance matrix. They are also related to spectral properties

of a hypergraph. This version of Laplacian matrix was introduced by Rodríguez

[21].

For a hypergraph H with vertex set {v1, . . . , vn}, the Laplacian matrix of H,

denoted by L(H), is the n×n matrix defined by L(H) = D(H)−A(H) where D(H)

is the diagonal matrix
[
deg vi

]
1≤i≤n

. Moreover, if H is connected, the distance

matrix of H, denoted by D(H), is the n × n matrix in which entry dij = d(vi, vj)

for all 1 ≤ i, j ≤ n.

Example 1.3.2. Let H be a hypergraph defined in Figure 1.1. Then

A(H) =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 2 0

0 0 1 2 0 1

0 0 0 0 1 0


, L(H) =



1 −1 −1 0 0 0

−1 1 −1 0 0 0

−1 −1 2 −1 −1 0

0 0 −1 2 −2 0

0 0 −1 −2 3 −1

0 0 0 0 −1 1


,
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and D(H) =



0 1 1 2 2 3

1 0 1 2 2 3

1 1 0 1 1 2

2 2 1 0 1 2

2 2 1 1 0 1

3 3 2 2 1 0


.

The spectrum of H, denoted by Spec(H), is the multi-set of all eigenvalues of

A(H) including multiplicity. Similarly, we can define Lspec(H) and Dspec(H) as

the multi-sets of all eigenvalues of L(H) and D(H), respectively.

Observe that A(H) is a real symmetric matrix, so Spec(H) contains only real

eigenvalues by Theorem 1.2.1. By the definition of the adjacency matrix A(H), we

have known that the diagonal entries of A(H) are zero. Then the characteristic

polynomial of A(H) is monic with integral coefficients, so its rational roots are

integers. From this fact, a hypergraph which its spectrum contains only integral

eigenvalues is defined to be an integral hypergraph.

A hypergraph is integral if all eigenvalues of this hypergraph are integers. Also,

an L-integral hypergraph is a hypergraph with integral Laplacian eigenvalues and

a D-integral hypergraph is a hypergraph with integral distance eigenvalues.

Example 1.3.3. Let H be the hypergraph defined in Example 1.3.2. We have the

following results by computing the eigenvalues of A(H), L(H) and D(H), respec-

tively.

1. Spec(H) = {3.10, 1.52, 0.07,−1,−1.44,−2.24}

2. Lspec(H) = {4.76, 3.29, 2, 1.11, 0,−1.15}

3. Dspec(H) = {8.60,−0.57,−0.83,−1,−1.88,−4.31}

Hence, H is not integral, not L-integral and not D-integral.
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Example 1.3.4. Let H be a hypergraph with a vertex set V (H) = {v1, v2, v3, v4}

and E(H) = {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}}. Then

A(H) =


0 2 2 2

2 0 2 2

2 2 0 2

2 2 2 0

 , L(H) =


3 −2 −2 −2

−2 3 −2 −2

−2 −2 3 −2

−2 −2 −2 3

 , and D(H) =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

By computing the eigenvalues of A(H), L(H) and D(H), we have

1. Spec(H) = {6,−2,−2,−2},

2. Lspec(H) = {−3, 5, 5, 5}, and

3. Dspec(H) = {3,−1,−1,−1}.

Hence, H is integral, L-integral and D-integral.

Several properties of hypergraphs have been studied such as diameter, con-

nectivity and chromatic number. Spectral and combinatorial properties of hy-

pergraphs are widely related (see for example [6], [8], [15] and [21]). Feng and

Li [8] showed the relation between the diameter of H and its eigenvalues. They

proved that if {Hn}n∈N is a collection of k-regular and l-uniform hypergraphs with

limn→∞ |V (Hn)| = ∞, then limn→∞ diam(Hn) = ∞ by using the second largest

eigenvalue of Hn. Later, Rodríguez [21] showed that if b + 1 is the number of

distinct Laplacian eigenvalues of a connected hypergraph H, then diam(H) ≤ b.

Now, we have known the way to compute spectrum of hypergraphs and some

related works. We next give the spectrum of some products of hypergraphs. In

this thesis, we focus only Cartesian and tensor products of hypergraphs. These

two products will be used to classify integral Cayley graphs in Theorem 2.2.5.

For hypergraphs H1 and H2, the Cartesian product of H1 and H2, denoted by

H1□H2, is the hypergraph with V (H1□H2) = V (H1)× V (H2) and E(H1□H2) =

{{x} × E ′ : x ∈ V (H1), E
′ ∈ E(H2)} ∪ {E × {y} : E ∈ E(H1) and y ∈ V (H2)}.
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Observe that A(H1□H2) = (A(H1) ⊗ I|V (H2)|) + (I|V (H1)| ⊗ A(H2)) where A ⊗ B

denotes the Kronecker product of matrices A and B. Therefore,

Spec(H1 □H2) = {λ+ β : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (1.1)

Let H1 and H2 be t-uniform hypergraphs. Following Pearson [20], the ten-

sor product of H1 and H2, denoted by H1⊗H2, is the t-uniform hypergraph with

V (H1 ⊗H2) = V (H1) × V (H2) and E(H1 ⊗H2) = {{(xi1 , yj1), . . . , (xit , yjt)} : {xi1 ,

. . . , xit} ∈ E(H1), {yj1 , . . . , yjt} ∈ E(H2)}. It follows that the number of hyperedges

containing both of two vertices (xi, yl) and (xj, ym) in H1 ⊗H2 is (t − 2)!aijblm

where aij is the number of hyperedges containing both of xi and xj and blm is

the number of hyperedges containing both of yl and ym. Hence, A(H1⊗H2) =

(t− 2)!A(H1)⊗ A(H2). Consequently,

Spec(H1⊗H2) = {(t− 2)!λβ : λ ∈ Spec(H1) and β ∈ Spec(H2)}. (1.2)

Example 1.3.5. Let H1 and H2 be hypergraphs with V (H1) = {v1, v2, v3, v4}, and

E(H1) = {{v1, v2, v3}, {v2, v4}}, V (H2) = {w1, w2} and E(H2) = {{w1, w2}}. Then

H1□H2 is a hypergraph with V (H1□H2) = V (H1)× V (H2) and

E(H1□H2) ={{(v1, w1), (v1, w2)}, {(v2, w1), (v2, w2)}, {(v3, w1), (v3, w2)},

{(v4, w1), (v4, w2)}} ∪ {{(v1, w1), (v2, w1), (v3, w1)},

{(v1, w2), (v2, w2), (v3, w2)}}.

v1 v2 v3

v4

w1 w2

Figure 1.2: Hypergraphs H1 (left) and H2 (right)
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(v1, w1) (v2, w1) (v3, w1)

(v4, w1)

(v1, w2) (v2, w2) (v3, w2)

(v4, w2)

Figure 1.3: A hypergraph H1 □H2

Example 1.3.6. Let H be a 3-uniform hypergraph with V (H) = {v1, v2, v3} and

E(H) = {{v1, v2, v3}}. Then H⊗H is a hypergraph with V (H⊗H) = V (H)×V (H)

and

E(H⊗H) ={{(v1, v1), (v2, v2), (v3, v3)}, {(v1, v1), (v2, v3), (v3,2 )},

{(v1, v2), (v2, v1), (v3, v3)}, {(v1, v2), (v2, v3), (v3, v1)},

{(v1, v3), (v2, v2), (v3, v1)}, {(v1, v3), (v2, v1), (v3, v2)}.

1.4 Background in algebra

We recall some useful properties from algebra quoted from [7] and [16]. This

section contains the structure theorem for finite abelian groups, field extensions

and Galois theory.

Let G be a finite abelian group. We have known that G is isomorphic to a

direct product of its Sylow p-subgroups (a maximal subgroup of G in which the

order of every element is a power of p) where p is a prime number dividing |G|.

Since any abelian Sylow p-subgroup is a direct product of cyclic groups of p-power

order, we have that G is a direct product cyclic groups of p-power order. By this

fact, we can prove that G is a direct product of cyclic groups as follows.
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Theorem 1.4.1 (Structure Theorem for Finite Abelian Groups). Let G be a finite

abelian group. Then there exist integers n1, . . . , nr > 1 such that n1 | n2, n2 |

n3, . . . , nr−1 | nr and

G ∼= Zn1 × Zn2 × · · · × Znr ,

where these integers are uniquely defined by G. More precisely, if m1,m2, . . . ,ms

are positive integers greater than 1 such that m1 | m2,m2 | m3, . . . ,ms−1 | ms, and

G ∼= Zn1 × Zn2 × · · · × Znr
∼= Zm1 × Zm2 × Zms ,

then r = s, and n1 = m1, n2 = m2, . . . , nr = mr.

Example 1.4.2. Let G be a finite abelian group of order 36. Note that 36 = 22 ·32.

By Theorem 1.4.1, G is isomorphic to one of the following groups:

1. Z22 × Z32
∼= Z36

2. Z22 × Z3 × Z3
∼= Z3 × Z12

3. Z2 × Z2 × Z32
∼= Z2 × Z18

4. Z2 × Z2 × Z3 × Z3
∼= Z6 × Z6.

Next, we recall the definition of an extension field and some important prop-

erties as follows.

Let F and K be fields. A field K is said to be an extension of F if F is a subfield

of K. If K is an extension of F , we can consider K as a vector space over F . The

degree of K over F , denoted by [K : F ], is the dimension of K as a vector space

over F . An extension is called finite if its degree is finite, and infinite otherwise.

The theorem below shows one important property of a finite field extension.

Theorem 1.4.3. Let L,K and F be fields such that F ⊆ K ⊆ L. If [L : K] and

[K : F ] are finite, then [L : F ] is finite and

[L : F ] = [L : K][K : F ].
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Let F be a field and f(x) a monic polynomial in F [x]. An extension field E of

F is a splitting field of f(x) over F if

f(x) = (x− r1) · · · (x− rn)

in E[x] and

E = F (r1, . . . , rn),

that is, E is generated by the roots of f(x).

We recall the existence and uniqueness of the splitting field in the following

theorems.

Theorem 1.4.4 (Existence of Splitting Fields). Let f(x) be a monic polynomial

of degree n ≥ 1. Then there exists an extension field E of F such that [E : F ] ≤ n!

and E contains n roots of f(x) counting multiplicities. Hence, in E[x], f(x) =

c(t − r1) · · · (t − rn) for some c ∈ F and r1, . . . , rn ∈ E, so that r1, . . . , rn are n

roots of f(x) in E.

Theorem 1.4.5 (Uniqueness of Splitting Fields). Let f(x) be a monic polynomial

of degree n ≥ 1. If K an E are splitting fields of f(x) over F , then there is an

isomorphism η : K → E extending the identity map of F .

Example 1.4.6. The following examples show some splitting fields over Q.

1. Let F = Q and f(x) = x4 − 1. Note that f(x) = (x− 1)(x + 1)(x2 + 1). A

field Q(i) is a splitting field of F over Q with degree 2.

2. Let F = Q and f(x) = (x2−2)(x2−3). A field Q(
√
2,
√
3) is a splitting field

of f(x) over Q with degree 4.

Let E be an extension field of a field F . The Galois group of E over F denoted

by Gal(E/F ) is the group

{φ ∈ AutE : φ(a) = a for all a ∈ F}
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where AutE denotes the set of all automorphisms of E.

Let G be a subgroup of AutE where E is a field. Then the field of G-invaraint

of E or the fixed field of G on E is the field

{a ∈ E : φ(a) = a for all φ ∈ G} .

It is denoted by EG.

Now, we recall the Fundamental Theorem of Galois Theory and the Galois

group of Q(ω) over Q when ω = e2πi/n as follows.

Theorem 1.4.7 (Fundamental Theorem of Galois Theory). Let E be a finite

dimensional Galois extension of a field F and let G = Gal(E/F ). Let Γ = {H},

the set of subgroups of G, and Σ, the set of intermediate fields between E and F .

Then the map H 7→ EH and K 7→ Gal(E/K), H ∈ Γ, K ∈ Σ, are inverse of each

other. In particular, they are one-to-one correspondences between Γ and Σ.

Theorem 1.4.8 (Galois Group of Q(ω)). Let ω = e2πi/n. The Galois group of

Q(ω) over Q is isomorphic to Z×
n . Explicitly, the elements of the Galois group are

the automorphisms σy for y ∈ Z×
n defined by σy(ω) = ωy.

1.5 Objectives

In this thesis, we study the algebraic degree of spectra of t-Cayley hypergraphs. In

Chapter 2, we present t-Cayley hypergraphs of G over S when G is a finite abelian

group and t ≥ 2. We show combinatorial properties of t-Cayley hypergraphs,

i.e., conectivity, size of hyperedges and regularity. Integral Cayley graphs are

determined in Section 2.2. We recall criteria on S of a Cayley graph of Zn to be

integral. By using facts on integral Cayley graphs of Zn, spectra of product graphs

and Theorem 1.4.1, we explore integral Cayley graphs of G. In Chapter 3, we

study the t-Cayley hypergraphs of G over S when t ≥ 2. We specify criteria on

S of this hypergraph to be integral, L-integral and D-integral by considering its

adjacency, Laplacian and distance matrix, respectively. For t-Cayley hypergraphs,
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we show a condition on S for integral t-Cayley hypergraphs of Zn generalized So’s

result. The gcd-hypergraphs of Zn are defined to be the t-Cayley hypergraphs

of Zn over S where S =
∪

d∈D Gn(d) and D is a set of divisors of n. We show

that gcd-hypergraphs of Zn are integral, L-integral and D-integral by clarifying

the first row of its adjacency matrix. In addition, we see that the well-known

unitary Cayley hypergraph of Zn is associated with gcd-hypergraphs. In Section

3.2, non-integral hypergraphs are discussed. We compute the algebraic degree of

t-Cayley hypergraphs of Zn for all n ≥ 3 which generalizes Mönius’ results [18] and

provides an answer to his outlook. Our combinatorial approach is different from

him and presented in Lemma 3.2.1. The results have been published in Discrete

Applied Mathematics [23]. Moreover, we focus on the algebraic degree of Cayley

graphs of Zn by comparing two approaches which are by using Corollary 3.2.3 and

by using a Schur ring from Mönius’ result [19] presented in Section 3.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

t-CAYLEY HYPERGRAPHS

In this chapter, we introduce t-Cayley hypergraphs of a finite group. Some com-

binatorial properties of this hypergraph are presented in the first section. Next, in

Section 2.2, we study integral Cayley graphs of a finite abelian group.

2.1 t-Cayley hypergraphs

We start this section with the definition of the t-Cayley hypergraph. We recall

some well-known properties of this hypergraph. In addition, we show that the

t-Cayley hypergraph is regular. Moreover, we classify integral Cayley graphs of

finite abelian groups in the last theorem of this section.

Throughout this section, we let (G, ·) be a finite group with the identity e and

a subset S of G∖ {e} such that S = S−1.

For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley hypergraph H = t-

Cay(G,S) of G over S is a hypergraph with vertex set V (H) = G and E(H) =

{{yxi : 0 ≤ i ≤ t− 1} : x ∈ S and y ∈ G}. Here, o(x) denotes the order of x in G.

The 2-Cayley hypergraph of G over S is a Cayley graph of G over S.

Example 2.1.1. Consider a finite group (Z6,+) and a subset S = {1, 3, 5}. Then

max{o(x) : x ∈ S} = max{6, 2} = 6. The following hypergraphs are the t-Cayley

hypergraphs for all t ∈ N with 2 ≤ t ≤ max{o(x) : x ∈ S}.

1. A hypergraph H1 = 2-Cay(Z6, S) has a vertex set V (H1) = {0, 1, 2, 3, 4, 5}

and E(H1) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 0}, {0, 3}, {1, 4}, {2, 5}}.

2. A hypergraph H2 = 3-Cay(Z6, S) has a vertex set V (H2) = {0, 1, 2, 3, 4, 5}

and E(H2) = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 0}, {5, 0, 1}, {0, 3},

{1, 4}, {2, 5}}.
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3. A hypergraph H3 = 4-Cay(Z6, S) has a vertex set V (H3) = {0, 1, 2, 3, 4, 5}

and E(H3) = {{0, 1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 0}, {4, 5, 0, 1},

{5, 0, 1, 2}, {0, 3}, {1, 4}, {2, 5}}.

4. A hypergraph H4 = 5-Cay(Z6, S) has a vertex set V (H4) = {0, 1, 2, 3, 4, 5}

and E(H4) = {{0, 1, 2, 3, 4}, {1, 2, 3, 4, 5}, {2, 3, 4, 5, 0}, {3, 4, 5, 0, 1},

{4, 5, 0, 1, 2}, {5, 0, 1, 2, 3}, {0, 3}, {1, 4}, {2, 5}}.

5. A hypergraph H5 = 6-Cay(Z6, S) has a vertex set V (H5) = {0, 1, 2, 3, 4, 5}

and E(H5) = {{0, 1, 2, 3, 4, 5}, {0, 3}, {1, 4}, {2, 5}}.

0 1

2

34

5

Figure 2.1: H1 = 2-Cay(Z6, S)

0 1

2

34

5

· · ·

Figure 2.2: H2 = 3-Cay(Z6, S)
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Example 2.1.2. For m = (m1, . . . ,mr) and n = (n1, . . . , nr) in Zr, we define

the greatest common divisor of m and n to be the vector d = (d1, . . . , dr) where

di = gcd(mi, ni) for all i ∈ {1, . . . , r}. Now, let n = (n1, . . . , nr) ∈ Zr and a divisor

tuple d = (d1, . . . , dr) ∈ Zr
n of n, i.e., di | ni for all i ∈ {1, . . . , r}. Define

Gn(d) = {x = (x1, . . . , xr) ∈ Zn1 × · · · × Znr : gcd(x,n) = d}.

Let D be a set of divisor tuples of n not containing the zero vector of Zn1×· · ·×Znr

and S =
∪

d∈D Gn(d). For t ∈ N and 2 ≤ t ≤ max{o(x) : x ∈ S}, the t-Cayley

hypergraph of Zn1 × · · · × Znr over S is called a gcd-hypergraph and the 2-Cayley

hypergraph of Zn1 × · · · × Znr over S is called a gcd-graph.

Some properties of t-Cayley hypergraphs quoted from [3] are as follows.

Proposition 2.1.3. Let H = t-Cay(G,S).

1. H is connected if and only if ⟨S⟩ = G.

2. For any x ∈ S, y ∈ G, |{yxi : 0 ≤ i ≤ t− 1}| =

t if t ≤ o(x),

o(x) if t > o(x).

3. H is t-uniform if and only if t ≤ o(x) for any x ∈ S.

Clearly, a Cayley graph 2-Cay(G,S) is |S|-regular. We study a Cayley hy-

pergraph t-Cay(G,S). For any y ∈ G, we have that all hyperedges (may not be

distinct) containing y are

{yx−(t−1), yx−(t−2), . . . , yx−1, y}, {yx−(t−2), yx−(t−3), . . . , y, yx}, . . . ,

{y, yx, . . . , yxt−2, yxt−1}

where x ∈ S. This implies

deg y =
∣∣{{yxi−j : 0 ≤ i ≤ t− 1} : 0 ≤ j ≤ t− 1, x ∈ S}

∣∣
=
∣∣{{xi−j : 0 ≤ i ≤ t− 1} : 0 ≤ j ≤ t− 1, x ∈ S}

∣∣ .
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for all y ∈ G. Hence, we have shown

Proposition 2.1.4. A t-Cayley hypergraph of G over S is regular of degree equal

to the number of distinct subsets {xi−j : 0 ≤ i ≤ t − 1} where 0 ≤ j ≤ t − 1 and

x ∈ S.

2.2 Integral Cayley graphs

The main purpose of this section is to classify integral Cayley graphs of finite

abelian groups. We first recall So’s result [22] on integral Cayley graphs of Zn as

follows.

Theorem 2.2.1. The Cayley graph 2-Cay(Zn, S) is integral if and only if S is a

union of some Gn(d)’s, where d | n and Gn(d) = {k ∈ {1, 2, . . . , n−1} : gcd(k, n) =

d}.

Remark 2.2.2. From the above theorem, the Cayley graph 2-Cay(Zn, S) is inte-

gral if and only if it is a gcd-graph.

Example 2.2.3. Consider a finite group (Z6,+) and a subset S = {1, 3, 5}. Let

H = 2-Cay(Z6, S) a Cayley graph of Z6 over S. Since S = {1, 3, 5} = G6(1) ∪

G6(3), by Theorem 2.2.1 we can conclude that H is integral. In fact, V (H) =

{0, 1, 2, 3, 4, 5} and E(H) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 0}, {0, 3}, {1, 4},

{2, 5}}. Then A(H) is a circulant matrix with the first row
[
0 1 0 1 0 1

]
.

By computation its eigenvalues, we have Spec(H) = {3, 0, 0, 0, 0,−3}.

Example 2.2.4. Consider a finite group (Z9,+) and a subset S = {1, 3, 6, 8}.

Let H = 2-Cay(Z9, S) a Cayley graph of Z9 over S. Since S = {1, 3, 6, 8} cannot

be written as a union of G9(d) where d is a proper divisor of 9, by Theorem 2.2.1

we can conclude that H is not integral. In fact, V (H) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and

E(H) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 0}, {0, 3}, {1, 4},

{2, 5}}, {3, 6}, {4, 7}, {5, 8}, {6, 0}}. Then A(H) is a circulant matrix with the

first row
[
0 1 0 1 0 0 1 0 1

]
. By computation its eigenvalues, we have

Spec(H) = {4, 1, 1, 0.53, 0.53,−0.65,−0.65,−2.88,−2.88}.
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To characterize integral Cayley graphs of finite abelian groups, we first discuss

the Cayley graph of the group (Zn1 × Zn2 ,+). Let S = S1 × S2 be a subset of

Zn1 × Zn2 ∖ {(0, 0)} such that S = −S. The Cayley graph 2-Cay(Zn1 × Zn2 , S)

can be distinguished into three cases.

1. Kn1□ 2-Cay(Zn2 , S2) if S1 = {0} and S2 ̸= {0}, where Kn denotes the empty

graph on n vertices.

2. 2-Cay(Zn1 , S1)□ Kn2 if S1 ̸= {0} and S2 = {0}.

3. 2-Cay(Zn1 , S1)⊗ 2-Cay(Zn2 , S2) if S1 ̸= {0} and S2 ̸= {0}.

It is clear that the eigenvalues of an empty graph are zero. By Equations (1.1),

(1.2) and a Cayley graph always has an integral eigenvalue, the Cayley graph 2-

Cay(Zn1×Zn2 , S) is integral if and only if for any i ∈ {1, 2} such that Si ̸= {0}, the

2-Cay(Zni
, Si) is integral. By the fundamental theorem of finite abelian groups, a

finite abelian group is a direct product of finite cyclic groups. We can obtain a

characterization of the integral Cayley graphs of finite abelian groups similar to

the above discussion.

Theorem 2.2.5. Let G be a finite abelian group and S a subset of G∖ {e} such

that S = S−1. Suppose G = Zn1×· · ·×Znr and S = S1×· · ·×Sr. The Cayley graph

2-Cay(G,S) is integral if and only if for any i ∈ {1, . . . , r} such that Si ̸= {0}, the

2-Cay(Zni
, Si) is integral.

Example 2.2.6. Consider a finite abelian group (Z3 × Z6,+) and a subset S =

{(1, 3), (3, 3)}. Let H = 2-Cay(Z3 × Z6, S) a Cayley graph of Z3 × Z6 over S.

Note that S = {1, 3} × {3} = S1 × S2. From the above discussion, we observe

that H = 2-Cay(Z3, S1)⊗ 2-Cay(Z6, S2). Since S1 = G3(1) and S2 = G6(3), by

Theorem 2.2.1 we can conclude that 2-Cay(Z3, S1) and 2-Cay(Z6, S2) are integral.

By Theorem 2.2.5, we have 2-Cay(Z3 × Z6, S) is integral.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

ALGEBRAIC DEGREE OF SPECTRA OF t-CAYLEY

HYPERGRAPHS

In this chapter, we determine algebraic degree of spectra of t-Cayley hypergraphs.

The main purpose of Section 3.1 is Theorem 3.1.2. This theorem shows all t-

Cayley hypergraphs of algebraic degree one. We also study gcd-hypergraphs of Zn

in this section. We find the first row of its adjacency matrix mentioned in Theorem

3.1.5. Next, in Section 3.2 we compute the algebraic degree of spectra of t-Cayley

hypergraphs of Zn when t ≥ 2 referred in Theorem 3.2.2. In addition, we focus

the algebraic degree of Cayley graphs of Zn in Section 3.3.

3.1 Integral t-Cayley hypergraphs of Zn

From Section 2.1, we classify integral Cayley graphs over finite abelian groups.

In this section, we give a criterion for integral t-Cayley hypergraphs where t ≥ 2

over Zn. In addition, we also discuss the first row of adjacency matrix of a gcd-

hypergraph of Zn. Moreover, we prove that a gcd-hypergraph of Zn is integral.

Recall that a circulant matrix is a square matrix in which each row is obtained by

a right cyclic shift of the preceding row. From now on, we let n ≥ 2 and H = t-

Cay(Zn, S). By the natural labeling {0, 1, . . . , n − 1} of Zn, it is easy to see that

A(H) = [aij]0≤i,j≤n−1 is circulant. To work on the adjacency matrix A(H), it suffices

to compute the first row of A(H). Let C be the set of vertices adjacent to the vertex

0. Since all hyperedges containing 0 are of the form {(i − j)x : 0 ≤ i ≤ t − 1}

where x ∈ S and 0 ≤ j ≤ t− 1, and S = −S, we have the union of all hyperedges
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containing 0 is

∪
0≤i,j≤t−1

(i− j)S =
∪

−(t−1)≤k≤t−1

kS = S ∪ 2S ∪ · · · ∪ (t− 1)S.

It follows that C = S ∪ 2S ∪ · · · ∪ (t − 1)S ∖ {0}. Since A(H) is circulant, by

Theorem 1.2.3, the eigenvalues of H are

λj =
∑
k∈C

a0,k(e
2πji/n)k

where 0 ≤ j ≤ n− 1. We recall some useful properties taken from [22].

Proposition 3.1.1. 1. If d is a proper divisor of n and x is an nth root of

unity, then
∑

k∈Gn(d)
xk is an integer.

2. Let ω = e2πi/n and

F =


ω1·1 ω1·2 · · · ω1·(n−1)

ω2·1 ω2·2 · · · ω2·(n−1)

... ... . . . ...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

 .

If A = {v ∈ Qn−1 : Fv ∈ Qn−1}, then A is a vector space over Q. Moreover,

A = Span{vd : d | n and d < n} where vd is the (n− 1)-vector with 1 at the

kth entry for all k ∈ Gn(d) and 0 elsewhere.

Now, we prove a criterion for integral t-Cayley hypergraphs.

Theorem 3.1.2. Let H = t-Cay(Zn, S). Then H is integral if and only if C is a

union of some Gn(d)’s where for each d, there is cd ∈
{
1, 2, . . . ,

(
n

t−2

)}
such that

a0,k = cd for all k ∈ Gn(d).

Proof. Let d1, . . . , ds be all proper divisors of n. Without loss of generality, we

assume that C = Gn(d1) ∪ · · · ∪ Gn(dl) for some l ∈ {1, . . . , s}. Clearly, λ0 =∑
k∈C a0,k ∈ Z. For any 1 ≤ j ≤ n − 1, by the assumption and Proposition
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3.1.1 (1),

λj =
∑
k∈C

a0,k(e
2πji/n)k

=
∑

k∈Gn(d1)

a0,k(e
2πji/n)k + · · ·+

∑
k∈Gn(dl)

a0,k(e
2πji/n)k

= cd1
∑

k∈Gn(d1)

(e2πji/n)k + · · ·+ cdl
∑

k∈Gn(dl)

(e2πji/n)k ∈ Z.

Conversely, suppose that H is integral. Then λj ∈ Z for any 0 ≤ j ≤ n − 1. We

consider the vector v ∈ Qn−1 with a0,k for the kth entry for any k ∈ C and 0

elsewhere. Then

Fv =


ω1·1 ω1·2 · · · ω1·(n−1)

... ... . . . ...

ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)




a0,1

a0,2
...

a0,n−1



=



∑
k∈C a0,kω

1·k∑
k∈C a0,kω

2·k

...∑
k∈C a0,kω

(n−1)·k



=


λ1

λ2

...

λn−1

 ∈ Zn−1.

It follows that v ∈ A in Proposition 3.1.1 (2), and hence v =
∑

d|n,d<n cdvd for

some rational coefficients cd’s. The definition of v implies that the coefficient

cd ∈
{
0, 1, . . . ,

(
n

t−2

)}
. Therefore, C is a union of some Gn(d)’s where for each such

d, we have a0,k = cd for all k ∈ Gn(d).

Remark 3.1.3. In particular, for t = 2, we have S = C. Theorem 3.1.2 implies

that H = 2-Cay(Zn, S) is integral if and only if S is a union of some Gn(d)’s and for
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which d, a0,k = 1 for all k ∈ Gn(d). This coincides So’s result recalled in Theorem

2.2.1.

Example 3.1.4. Consider a finite group (Z6,+) and a subset S = {1, 3, 5}. Let

H = 3-Cay(Z6, S) a 3-Cayley hypergraph of Z6 over S. We note that V (H) =

{0, 1, 2, 3, 4, 5} and E(H) = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 0}, {5, 0, 1},

{0, 3}, {1, 4}, {2, 5}}. Then C = {1, 2, 3, 4, 5} = {1, 5} ∪ {2, 4} ∪ {3} = G6(1) ∪

G6(2) ∪G6(3). This implies a0,1 = a0,5 = 2, a0,2 = a0,4 = 1 and a0,3 = 1. By Theo-

rem 3.1.2, we can conclude that H is integral. In fact, A(H) is a circulant matrix

with the first row
[
0 2 1 1 1 2

]
and we have Spec(H) = {7, 0, 0,−2,−2,−3}.

Let H = t-Cay(Zn, S) be a gcd-hypergraph. We shall use Theorem 3.1.2 to

show that H is integral. By Example 2.1.2, S =
∪

e∈D Gn(e) for some set D of

proper divisors of n. Since lGn(e) = Gn(gcd(le, n)) for any l ∈ {1, 2, . . . , t − 1},

we have C = S ∪ 2S ∪ · · · ∪ (t − 1)S ∖ {0} equals
∪

d∈D′ Gn(d) for some set D′

of proper divisors of n and D ⊆ D′. For each d ∈ D′, we aim to show that a0,k’s

are identical for all k ∈ Gn(d). Let d ∈ D′ and k, k′ ∈ Gn(d). There is u ∈ Gn(1)

such that k′ = uk. Since hyperedges containing 0 are {(i − j)x : 0 ≤ i ≤ t − 1}

where x ∈ S and 0 ≤ j ≤ t− 1, we count such hyperedges containing k. For each

e ∈ D, let Nd,k(e) be the number of hyperedges containing 0 and k of the form

{(i − j)x : 0 ≤ i ≤ t − 1} with x ∈ Gn(e). For any e, f ∈ D with e ̸= f , such

hyperedges with x ∈ Gn(e) and x ∈ Gn(f) are distinct, so

a0,k =
∑
e∈D

Nd,k(e).

Let Sk = {l : 1 ≤ l ≤ t − 1 and k ∈ lGn(e)}. Since Gn(d) = lGn(e) for all l ∈ Sk

and k′ = uk, it follows that Nd,k(e) = Nd,k′(e). Hence,

a0,k =
∑
e∈D

Nd,k(e) =
∑
e∈D

Nd,k′(e) = a0,k′ .

Therefore, we can conclude that H is integral by Theorem 3.1.2. We record this

result in the following theorem.
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Theorem 3.1.5. Let H = t-Cay(Zn, S) be a gcd-hypergraph of Zn where S =∪
e∈D Gn(e) for some set D of proper divisors of n and C = S ∪ 2S ∪ · · · ∪ (t −

1)S ∖ {0} =
∪

d∈D′ Gn(d) for some set D′ of proper divisors of n and D ⊆ D′. Let

d ∈ D′ and k ∈ Gn(d). For each e ∈ D, let Nd,k(e) be the number of hyperedges

containing 0 and k of the form {(i− j)x : 0 ≤ i ≤ t− 1} with x ∈ Gn(e). Then

a0,k =
∑
e∈D

Nd,k(e).

Moreover, a0,k’s are identical for all k ∈ Gn(d) and H is an integral hypergraph.

For d ∈ D′, k ∈ Gn(d) and e ∈ D in Theorem 3.1.5, we can compute Nd,k(e)

as the remark below.

Remark 3.1.6. Let d ∈ D′, k ∈ Gn(d) and e ∈ D. If k ̸∈ lGn(e) for all l ∈

{1, 2, . . . , t−1}, then hyperedges containing 0 of the form {(i−j)x : 0 ≤ i ≤ t−1}

where x ∈ Gn(e) and 0 ≤ j ≤ t − 1 do not contain k, so Nd,k(e) = 0. Assume

that Sk = {l : 1 ≤ l ≤ t − 1 and k ∈ lGn(e)} ̸= ∅. Note that o(x) = n
e

for

all x ∈ Gn(e). If n
e
≤ t, then {(i − j)x : 0 ≤ i ≤ t − 1} = ⟨x⟩ = eZn for all

x ∈ Gn(e) and 0 ≤ j ≤ t − 1, so we have only one hyperedge containing 0 and k

and Nd,k(e) = 1.

Suppose that n
e
> t. Let l ∈ Sk. Since k ∈ lGn(e), there is x ∈ Gn(e) such

that k = lx. We wish to find the number of elements y in Gn(e) such that k = ly.

Since k ∈ lGn(e), we have d = gcd(le, n), so

Gn(d) = Gn(gcd(le, n)) = lGn(e) = leGn
e
(1).

Suppose that k = lx = leu for some u ∈ Gn
e
(1). To find the number of such y’s

in Gn(e), it is equivalent to find the number of elements v in Gn
e
(1) such that

k = lev. Now, we count such v’s. For any v ∈ Gn
e
(1) with k = lev, we have

lev ≡ leu mod n, so l(v − u) ≡ 0 mod n
e
. If v − u ≡ 0 mod n

e
, then l · 0 ≡ 0

mod n
e
, and if v − u ̸≡ 0 mod n

e
, then there are q ∈ Z and r ∈ {1, 2, . . . , n

e
− 1}

such that v = u + n
e
q + r. Consequently, l(v − u) ≡ 0 mod n

e
if and only if
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lr ≡ 0 mod n
e
. Thus, the number of v in Gn

e
(1) such that k ≡ lev mod n equals

to the number of r in {0, 1, . . . , n
e
− 1} such that lr ≡ 0 mod n

e
. Note that

|Gn(e)| = ϕ
(
n
e

)
if e is a divisor of n. Since this number is independent of k,

there are exactly ϕ(n/e)
ϕ(n/d)

elements, say v1, v2, . . . , v ϕ(n/e)
ϕ(n/d)

, in Gn
e
(1) such that k = levi

for all i ∈
{
1, 2, . . . , ϕ(n/e)

ϕ(n/d)

}
. Let yi = evi for all i ∈

{
1, 2, . . . , ϕ(n/e)

ϕ(n/d)

}
. Since

o(yi) =
n
e
> t, the sets

{(l − t+ 1)yi, (l − t+ 2)yi, . . . , 0, . . . , lyi},

{(l − t+ 2)yi, (l − t+ 3)yi, . . . , 0, . . . , lyi, (l + 1)yi}, . . . ,

{0, . . . , lyi, (l + 1)yi, . . . , (t− 1)yi}

are hyperedges of H containing 0 and k for all i ∈
{
1, 2, . . . , ϕ(n/e)

ϕ(n/d)

}
. Thus,

Nd,k(e) =

∣∣∣∣∣∪
l∈Sk

{
{(i− j)ym : 0 ≤ i ≤ t− 1} : 0 ≤ j ≤ t− 1− l, 1 ≤ m ≤ ϕ(n/e)

ϕ(n/d)

}∣∣∣∣∣
if n

e
> t. However, these hyperedges may not be distinct, it follows that Nd,k(e) ≤∑

l∈Sk
(t− l) · ϕ(n/e)

ϕ(n/d)
.

From Theorem 3.1.5 and the above discussion, we have a0,k for all k ∈ C. It

can be used in computing the spectrum of gcd-hypergraphs of Zn as mentioned

before Proposition 3.1.1.

Example 3.1.7. By Theorem 2.2.1, an integral 2-Cay(Zn, S) is a gcd-graph. How-

ever, an integral t-Cay(Zn, S) may not be a gcd-hypergraph when t ≥ 3. For

example, if H = 5-Cay(Z5, {±1}) which is not a gcd-hypergraph of Z5, then

E(H) = {{0, 1, 2, 3, 4}}. Hence, C = Z5 ∖ {0} = G5(1) and a0,k = 1 for any

k ∈ C, but H is integral by Theorem 3.1.2.

Finally, we study L-integral and D-integral t-Cayley hypergraphs. We start

with a simple result on L-integral t-Cayley hypergraphs obtained by Proposition

2.1.4, Theorems 3.1.2 and 3.1.5. Let H = t-Cay(Zn, S). By Proposition 2.1.4, H

is regular, so there exists d ∈ N such that deg k = d for any 0 ≤ k ≤ n − 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

It follows that

L(H) = D(H)− A(H) = dIn − A(H).

Hence,

Lspec(H) = {d− λ : λ ∈ Spec(H)}.

By Theorems 3.1.2 and 3.1.5, we easily get

Corollary 3.1.8. Let H = t-Cay(Zn, S). Then H is L-integral if and only if H is

integral. In particular, a gcd-hypergraph of Zn is L-integral.

Now, we consider D-integral t-Cayley hypergraphs. For t = 2, Ilić [13] showed

that a gcd-graph of Zn is D-integral. Assume that H = t-Cay(Zn, S) is connected.

That is, ⟨S⟩ = G by Proposition 2.1.3 (1). By the natural labeling in D(H), it is

clear that D(H) is circulant. Thus, it suffices to consider the first row of D(H).

Since H is connected, the set {k : d(0, k) ̸= 0} = {1, 2, . . . , n − 1}. Hence, we get

a characterization of D-integral t-Cayley hypergraphs similar to Theorem 3.1.2.

Theorem 3.1.9. Assume that H = t-Cay(Zn, S) is connected. Then H is D-

integral if and only if for each d | n, there is cd ∈ {1, 2, . . . , diam(H)} such that

d(0, k) = cd for all k ∈ Gn(d).

Let H = t-Cay(Zn, S). We observe that d(0, k) is the distance between 0 and

k in 2-Cay(Zn, C) where C = S ∪ 2S ∪ · · · ∪ (t − 1)S ∖ {0}. Hence, the distance

matrix D(H) = D(2-Cay(Zn, C)). If H is a gcd-hypergraph, then 2-Cay(Zn, C) is

also a gcd-graph. This implies that 2-Cay(Zn, C) is D-integral [13]. Consequently,

H is D-integral and we obtain the following theorem.

Theorem 3.1.10. A gcd-hypergraph of Zn is D-integral.

Remark 3.1.11. Let S = S1 × S2 be a subset of Zn1 × Zn2 ∖ {(0, 0)} such that

S = −S and H = t-Cay(Zn1 × Zn2 , S). Suppose that S1 ̸= {0} and S2 ̸= {0}.
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We observe that t-Cay(Zn1 × Zn2 , S1 × S2) is a subgraph of t-Cay(Zn1 , S1) ⊗ t-

Cay(Zn2 , S2). Fix two vertices (x1, y1), (x2, y2) ∈ Zn1 × Zn2 . Let {x + ix′ : 0 ≤

i ≤ t − 1} be a hyperedge in t-Cay(Zn1 , S1) containing both of x1 and x2 and

let {y + iy′ : 0 ≤ i ≤ t − 1} a hyperedge in t-Cay(Zn2 , S2) containing both

of y1 and y2. Then {(x, y) + i(x′, y′) : 0 ≤ i ≤ t − 1} is a hyperedge in t-

Cay(Zn1 × Zn2 , S1 × S2). But when t ≥ 3, the problem is that it may not contain

(x1, y1) and (x2, y2). This means that A(t-Cay(Zn1 ×Zn2 , S1 ×S2)) may not equal

to A(t-Cay(Zn1 , S1) ⊗ t-Cay(Zn2 , S2)) when t ≥ 3. Hence, a characterization of

integral t-Cayley hypergraphs of finite abelian groups is still an open problem

when t ≥ 3.

3.2 Algebraic degree of spectra of t-Cayley hypergraphs

of Zn

The main purpose of this section is Theorem 3.2.2 which shows the algebraic degree

of spectra of t-Cayley hypergraphs of Zn. To prove this theorem, we shall recall

basic properties and give a lemma which is useful to prove Theorem 3.2.2. In

addition, we give formulas of algebraic degree of specific cases in Corollary 3.2.3

and 3.2.5.

Firstly, we define the algebraic degree of a hypergraph as follows.

Let H be a hypergraph on m vertices and f(x) = det(xIm − A(H)) ∈ Z[x] the

characteristic polynomial of A(H). Let Ef be the splitting field of f(x) over Q.

The algebraic degree of H is [Ef : Q] and denoted by deg H.

By Theorem 3.1.2, we have a characterization of integral t-Cayley hypergraphs

of Zn. They are hypergraphs of Zn of algebraic degree one. We study the algebraic

degree of t-Cayley hypergraphs of Zn in this section.

Let n ≥ 3 and H = t-Cay(Zn, S). Recall from the beginning of Section 2 that

the eigenvalues of H are

λj =
∑
k∈C

a0,k(e
2πji/n)k =

∑
k∈C

a0,kω
jk
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where C = {k : a0,k ̸= 0} = S ∪ 2S ∪ · · · ∪ (t − 1)S ∖ {0}, j ∈ {0, 1, . . . , n − 1}

and ω = e2πi/n, a primitive nth root of unity. By Theorems 1.4.4 and 1.4.5, the

splitting field is Q(λ0, λ1, . . . , λn−1) and Q ⊆ Q(λ0, λ1, . . . , λn−1) ⊆ Q(ω). By

Theorems 1.4.3, 1.4.7 and 1.4.8,

deg H = [Q (λ0, λ1, . . . , λn−1) : Q] =
ϕ(n)

|Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1))|
, (3.1)

where Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)) = {σ ∈ Aut(Q(ω)) : σ is a Q-automorphism

and σ(λj) = λj for all j ∈ {0, 1, . . . , n − 1}}. We shall determine the size of this

group and obtain the algbraic degree of H.

Lemma 3.2.1. Let y ∈ {0, 1, . . . , n − 1} be such that gcd(y, n) = 1 and σy ∈

Aut(Q(ω)) be the Q-automorphism defined by ω 7→ ωy. Then σy(λj) = λj for all

j ∈ {0, 1, . . . , n−1} if and only if there is ny ∈ N with C = C1∪· · ·∪Cny , yCl ≡ Cl

mod n and a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}.

Proof. If there is an ny ∈ N with C = C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n and

a0,k = a0,yk for all k ∈ Cl and l ∈ {1, 2, . . . , ny}, then

σy(λj) = σy

(∑
k∈C

a0,kω
jk

)
=

ny∑
l=1

∑
k∈Cl

a0,kσy

(
ωjk
)
=

ny∑
l=1

∑
k∈Cl

a0,kω
jky

=

ny∑
l=1

∑
k∈Cl

a0,ykω
jky =

∑
k∈C

a0,ykω
jyk =

∑
yk∈C

a0,ykω
jyk = λj

for all j ∈ {0, 1, . . . , n − 1}. On the other hand, suppose that σy(λj) = λj for

all j ∈ {0, 1, . . . , n − 1}. Then
∑

k∈C a0,k (ω
j)

yk
=
∑

k∈C a0,k (ω
j)

k for all j ∈

{0, 1, . . . , n − 1}. Let p(x) =
∑

k∈C a0,kx
yk −

∑
k∈C a0,kx

k. It is a polynomial of

degree at most n − 1. Since 1, ω, . . . , ωn−1 are distinct roots of p(x), we have

p(x) = 0. Define an equivalence relation on C by k ∼ k′ whenever a0,k = a0,k′ .

Let C1, . . . , Cny be all equivalence classes of ∼. Then C = C1 ∪ · · · ∪ Cny . Since

p(x) = 0, we have yCl ≡ Cl mod n and so a0,k = a0,yk for all k ∈ Cl and

l ∈ {1, 2, . . . , ny}.
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Theorem 3.2.2. Let H = t-Cay(Zn, S) and C = S ∪2S ∪ · · ·∪ (t−1)S∖{0}. Let

m be the number of y in {0, 1, . . . , n − 1} such that gcd(y, n) = 1 and there is an

ny ∈ N with C = C1 ∪ · · · ∪ Cny , yCl ≡ Cl mod n and a0,k = a0,yk for all k ∈ Cl

and l ∈ {1, 2, . . . , ny}. Then

deg H =
ϕ(n)

m
.

Moreover, deg H ≤ ϕ(n)
2

.

Proof. By Lemma 3.2.1, m is the size of Gal (Q(ω)/Q (λ0, λ1, . . . , λn−1)). It follows

from Equation (3.1) that deg H = ϕ(n)
m

. From S ≡ −S mod n, we have C = −C

mod n. Since {±k} = −{±k} and a0,k = a0,−k for any k ∈ C, 1 and −1 are such

y. Hence, m ≥ 2, so ϕ(n)
m

≤ ϕ(n)
2

.

Consider H = 2-Cay(Zn, S). Then C = S and a0,k = 1 for any k ∈ S and a0,k =

0 otherwise. The assumption of Theorem 3.2.2 can be reduced to yS ≡ S mod n.

In addition, if n = p is a prime number, Mönius showed in the proof of Theorem

2.5 of [18] that m in Theorem 3.2.2 is the maximum number of M ∈ {1, 2, . . . , |S|}

such that M divides gcd(|S| , p− 1) and

S =

|S|/M∪
l=1

Sl

where |Sl| = M and for each l ∈ {1, 2, . . . , |S| /M}, kM = (k′)M mod p for all

k, k′ ∈ Sl. The next corollary gives the algebraic degree of Cayley graph of Zn over

S which generalizes Theorem 2.5 of [18].

Corollary 3.2.3. Let H = 2-Cay(Zn, S). If m is the number of y in {0, 1, . . . , n−1}

such that gcd(y, n) = 1 and yS ≡ S mod n, then

deg H =
ϕ(n)

m
.

Example 3.2.4. Consider H = 2-Cay(Z31, S) where S = {±2,±3,±10,±12,±13,

±15} = C. Since ±1,±5,±6 are all elements of y such that gcd(y, 31) = 1 and
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yC ≡ C mod 31, by Corollary 3.2.3, deg H = ϕ(31)
6

= 5. This coincides Example

2.10 of [18].

In the proof of Theorem 3.2.2, we have known that 1 and −1 are always such y

satisfying yC ≡ C mod n. If only they satisfy this congruence, we have a special

case of Theorem 3.2.2 as follows.

Corollary 3.2.5. Let H = t-Cay(Zn, S) and C = S ∪ 2S ∪ · · · ∪ (t− 1)S ∖ {0}. If

y = 1 and y = −1 are the only elements in Zn such that gcd(y, n) = 1 and yC ≡ C

mod n, then

deg H =
ϕ(n)

2
.

We provide some numerical examples using Theorem 3.2.2 and Corollary 3.2.5

as follows.

Example 3.2.6. Consider H = 3-Cay(Z12, {±1}). We have C = {±1,±2}. In

addition, a0,±1 = 2 and a0,±2 = 1. The characteristic polynomial of A(H) is

(x− 1)2(x+ 2)3(x+ 3)2(x− 6)(x2 − 2x− 11)2

and hence deg H = 2. Since 1 and −1 are the only elements y in Z12 such that

gcd(y, 12) = 1 and yC ≡ C mod 12, by Corollary 3.2.5, deg H = ϕ(12)
2

= 2.

Example 3.2.7. Let S = {±1} be a subset of (Z9,+). Them max{o(x) : x ∈

S} = 9, so 2 ≤ t ≤ 9. The algebraic degree of t-Cayley hypergraph of Z9 over S

for all t are presented in the following table. The cases t ∈ {2, 3, 4} are computed

by Corollary 3.2.5 and the others are obtained from Theorem 3.2.2.
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t a0,±1 a0,±2 a0,±3 a0,±4 y with yC ≡ C mod 9 deg t-Cay(Z9, S)

2 1 ±1 3

3 2 1 ±1 3

4 3 2 1 ±1 3

5 4 3 2 1 ±1,±2,±4 3

6 5 4 3 3 ±1,±2,±4 3

7 6 5 5 5 ±1,±2,±4 3

8 7 7 7 7 ±1,±2,±4 1

9 1 1 1 1 ±1,±2,±4 1

Example 3.2.8. Let S = {±2} be a subset of (Z10,+). Then max{o(x) : x ∈

S} = 5, so 2 ≤ t ≤ 5. The algebraic degree of t-Cayley hypergraph of Z10 over

S for all t are presented in the following table. The case t = 2 is computed by

Corollary 3.2.5 and the others are obtained from Theorem 3.2.2.

t a0,±1 a0,±2 a0,±3 a0,±4 a0,5 y with yC ≡ C mod 10 deg t-Cay(Z10, S)

2 1 ±1 2

3 2 1 ±1 2

4 3 3 ±1,±3 1

5 1 1 ±1,±3 1

Remark 3.2.9. From Examples 3.2.7 and 3.2.8, we note that when a subset S of

Zn is fixed, for any 2 ≤ t ≤ max{o(x) : x ∈ S} − 1, we have deg t-Cay(Zn, S) ≥

deg(t+ 1)-Cay(Zn, S).

Remark 3.2.10. The adjacency matrix of t-Cayley hypergraph of Zn is circulant.

We know the exact eigenvalues and they are in simple forms (Theorem 1.2.3).

We may work on integrality or compute algebraic degree of spectra of t-Cayley

hypergraphs of other finite groups in the future.
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3.3 Algebraic degree of spectra of Cayley graphs of Zn

Corollary 3.2.3 gives algebraic degree of spectra of the Cayley graph of Zn over

S by using congruence properties of the set S. In this section, we discuss recent

Mönius’ result comparing with Corollary 3.2.3.

In 2022, Mönius [19] studied other properties of spectra of Cayley graphs of

Zn. He provided the splitting field and algebraic degree of Cayley graphs of Zn

by using many results on Schur rings and Schur partitions. We shall compute

algebraic degree from Mönius’ result and our result when t = 2.

Next, we briefly introduce Schur rings and orbit Schur rings. Let (G, ·) be a

group with identity e. For a subset S of G, let S =
∑

g∈S g ∈ QG.

A Schur ring A over G is a subalgebra of the group algebra QG satisfying the

properties below:

1. A has a linear basis S0, . . . , Sr, where S0 = {e},

2. {S0, . . . , Sr} is a partition of G, and

3. Sj = {x−1 : x ∈ Sj} ∈ {S0, . . . , Sr} for all j ∈ {0, . . . , r}.

For a subgroup Γ of AutG, the orbit Schur ring of Γ over G, denoted by QGΓ,

is a Schur ring defined by

QGΓ = {α ∈ QG : σ(α) = α for all σ ∈ Γ}.

We quote the first main theorem in [19].

Theorem 3.3.1 ([19]). Let H = 2-Cay(Zn, S) and f(x) = det(xIn − A(H)). The

splitting field of f(x) over Q is given by Q(ω)Γ, where Γ ≤ AutZn is defined by

⟨⟨S⟩⟩O = QZΓ
n the unique least orbit Schur ring containing S. In addition, Γ is

the maximum subgroup of AutZn such that S = ∪x∈S{σ(x) : σ ∈ Γ}.

By Theorem 3.3.1, we have that

ϕ(n) = [Q(ω) : Q] =
[
Q(ω) : Q(ω)Γ

] [
Q(ω)Γ : Q

]
= |Γ|

[
Q(ω)Γ : Q

]
.
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Since deg H =
[
Q(ω)Γ : Q

]
, we can conclude the following theorem.

Theorem 3.3.2 ([19]). Let H = 2-Cay(Zn, S) and Γ be the maximum subgroup of

AutZn such that S = ∪x∈S{σ(x) : σ ∈ Γ}. Then

deg H =
ϕ(n)

|Γ|
.

Remark 3.3.3. Mönius [19] has a more general result of Theorem 3.3.2 by consid-

ering any subset S of Zn which may not satisfy the condition S = −S. However,

under the assumption S = −S, we can show that |Γ| = m, where m is defined in

Corollary 3.2.3, as follows. Recall that m is the number of y in {0, 1, . . . , n − 1}

such that gcd(y, n) = 1 and yS ≡ S mod n. We note that AutZn
∼= Z×

n and

AutZn = {σy : y ∈ Z×
n } where σy(1) = y. Let y ∈ {0, 1, . . . , n − 1} with

gcd(y, n) = 1 and yS ≡ S mod n. We have that the map σy(1) = y is an

automorphism of Zn such that σy(s) = sσy(1) = sy for any s ∈ S. Since yS ≡ S

mod n, we can conclude that σy ∈ Γ. On the other hand, we can see that for any

σy ∈ AutZn, so |σy(S)| = |S|. If S = ∪x∈S{σy(x) : σy ∈ Γ} = ∪σy∈Γσy(S), then

σy(S) ⊆ S. Hence, S = σy(S) = yS. This means yS ≡ S mod n. Therefore,

|Γ| = m.

From Mönius’ result, to compute the algebraic degree of Cayley graphs of 2-

Cay(Zn, S) by using Schur rings, we follow the steps below.

1. Find all subgroups of AutZn.

2. For each subgroup Γ of AutZn, compute the orbit Schur ring QZΓ
n.

3. Find the unique least orbit Schur ring containing S, i.e. ⟨⟨S⟩⟩O.

4. Suppose that ⟨⟨S⟩⟩O = QZΓ
n for some subgroup Γ of AutZn. By the one-

to-one correspondence between the lattice of orbit Schur rings over Z12 and

the lattice of subfields of Q(e2πi/n) and Theorem 3.3.1, the splitting field is

Q(e2πi/n)Γ.
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5. By Theorem 3.3.2, the algebraic degree of 2-Cay(Zn, S) = ϕ(n)/|Γ|.

Example 3.3.4. Let n = 12 and ω = e2πi/12. The subgroups of AutZ12
∼= Z×

12 are

{1}, {1, 5}, {1, 7}, {1, 11} and {1, 5, 7, 11}. Mönius [19] computed the orbit Schur

rings over Z12 as follows:

QZ{1}
12 =

⟨
{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

⟩
,

QZ{1,5}
12 =

⟨
{0}, {3}, {6}, {9}, {1, 5}, {2, 10}, {4, 8}, {7, 11}

⟩
,

QZ{1,7}
12 =

⟨
{0}, {2}, {4}, {6}, {8}, {10}, {1, 7}, {3, 9}, {5, 11}

⟩
,

QZ{1,11}
12 =

⟨
{0}, {6}, {1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}

⟩
and

QZ{1,5,7,11}
12 =

⟨
{0}, {6}, {2, 10}, {3, 9}, {4, 8}, {1, 5, 7, 11}

⟩
.

The following figure shows the one-to-one correspondence between the lattice of

orbit Schur rings over Z12 and the lattice of subfields of Q(ω).

QZ{1}
12

QZ{1,7}
12 QZ{1,11}

12QZ{1,5}
12

QZ{1,5,7,11}
12

Q(ω)

Q(
√
3i) Q(

√
3)Q(i)

Q

Figure 3.1: Lattice of orbit Schur rings over Z12 (left) and lattice of subfields of

Q(ω) (right)

The following table shows some algebraic degree of Cayley graphs of Z12 where

S = {±1}, {±3}, {±1,±2} and {±1,±2,±3} by using Theorems 3.3.1 and 3.3.2.
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S ⟨⟨S⟩⟩O = QZΓ
12 Γ Q(ω)Γ deg 2-Cay(Z12, S)

{±1} QZ{1,11}
12 {1, 11} Q(

√
3) 2

{±3} QZ{1,5,7,11}
12 {1, 5, 7, 11} Q 1

{±1,±2} QZ{1,11}
12 {1, 11} Q(

√
3) 2

{±1,±2,±3} QZ{1,11}
12 {1, 11} Q(

√
3) 2

Next, we compute the algebraic degree of Cayley graphs of Z12 where S =

{±1}, {±3}, {±1,±2} and {±1,±2,±3} by using Corollary 3.2.3 as the following

table.

S y with yS ≡ S mod 12 deg 2-Cay(Z12, S)

{±1} {1, 11} 2

{±3} {1, 5, 7, 11} 1

{±1,±2} {1, 11}} 2

{±1,±2,±3} {1, 11} 2

In Example 3.3.4, we compute the algebraic degree of some Cayley graphs over

Z12 in two different ways. Firstly, we use the corresponding Schur ring over Z12. It

requires complicated tools and consists of many steps. By the way, an advantage

of this computation is that we can find the splitting field of the characteristic poly-

nomial of its adjacency matrix over Q. In the other hand, we immediately compute

its algebraic degree by using simple congruence property by using Corollary 3.2.3.
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