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CHAPTER 1
PRELIMINARIES

This chapter contains some terminologies and backgrounds from algebraic graph
and hypergraph theory, linear algebra, finite abelian groups, and field extensions.

We also discuss many elementary results on hypergraphs.

1.1 Cayley graphs

We recall some terminologies of spectra of graphs. Let G be a graph with the
vertex set {vy,...,v,}. The adjacency matriz of G, denoted by A(G), is the n x n
matrix whose entry a;; = 1 when v; and v; are adjacent and a;; = 0 otherwise for
all 1 <i,j <n. The spectrum of a graph G, denoted by Spec(G), is the multi-set
of all eigenvalues of its adjacency matrix including multiplicity. A graph is called
integral if all eigenvalues are integers.

Let (G, -) be a finite group with the identity e and S a subset of G \ {e} such
that S = S~!. The Cayley graph of G over S is the graph whose vertex set is

'z € S. Next, we

G and for any z,y € G,  and y are adjacent if and only if y~
discuss spectra of Cayley graphs.

Cayley graphs, as known as Cayley color graphs or Cayley color diagrams, were
first introduced by Cayley [4] in 1878. They have been regularly studied and have
many applications. Harary and Schwenk [10] asked “Which graphs have integral
spectra?”. From this question, the integral Cayley graphs have been widely studied,
e.g., [15], [12], [13], [14] and [22]. For a finite commutative ring (R, +,-), a well-
studied Cayley graph of (R,+) over S is to set S = R* where R* denoted the
set of all units in R and is called the unitary Cayley graph of R. This graph has

the integral spectrum. Klotz and Sander [15] studied combinatorial properties of



the unitary Cayley graph of Z,. They explored the chromatic number, the clique
number, the independence number, the diameter and the vertex connectivity of this
graph. In addition, they showed that the gcd-graphs are integral (ged-graphs are
introduced in Section @) A few year later, Ili¢ [12] determined the energy of the
unitary Cayley graph of Z, which is the sum of absolute values of its eigenvalues.
He also provided that the energy of the unitary Cayley graph of Z,, is greater than
2n — 2. Kiani et al. [14] worked on the eigenvalues of the unitary Cayley graph
of finite local rings and extended the result to finite commutative rings. So [22]
completely characterized integral Cayley graphs of (Z,,+). He showed that the
Cayley graph of Z, over S is integral if and only if S is a union of some G, (d)’s,
where d | n and G,(d) = {k € {1,2,...,n =1} : ged(k,n) = d}. This result is
important on spectra of Cayley graphs and there are many works from So which
study spectra of Cayley graphs in other approaches.

For non-integral graphs, Monius et al. [17] defined the algebraic degree of
a graph G to be the degree extension of the splitting field of the characteristic
polynomial of its adjacency matrix A(G) over Q. They studied a relation between
the diameter of arbitrary graph and its algebraic degree (the diameter is defined
in Section ) They showed that a graph with large diameter has large algebraic
degree. Later, Monius [18] determined the algebraic degree of Cayley graphs of
Z,, where p is a prime number. He showed that the algebraic degree of the Cayley
graphs of Z, over S is £t where m is the maximum number of M € {1,2,...,|S|}
such that M divides ged(]S|,p — 1) and S = Ell/M S; where |S;| = M and for
each | € {1,2,...,|S|/M}, k™ = (K'Y mod p for all k, k' € S; by using Galois
theory. Recently, Monius [19] extended his work to Cayley graphs of Z,. He
studied other properties of spectra of Cayley graphs and provided a deep connection
between Schur rings and the splitting fields of Cayley graphs of Z,,. By using this
connection, the algebraic degree of Cayley graphs of Z, is demonstrated (see more
details in Section @)

For a generalization of the Cayley graphs, Buratti [3] extended the notion of
Cayley graphs to Cayley hypergraphs in 1994 as mentioned in Section @ Since



Cayley hypergraphs are generalizations of Cayley graphs and we have known from
the above discussion that the integrality and the algebraic degree of Cayley graphs
are well-studied, these reasons motivate us to attempt results on the integral Cayley

hypergraphs and their algebraic degree.

1.2 Spectra of circulant matrices

Throughout this section, we let n € N and a matrix A = [a;j]nxn. A matrix A
is called a symmetric matriz if a;; = a;; for all 1 < 7,5 < n. The spectrum of
A, denoted by Spec(A), is a multi-set of all eigenvalues of A including multiplici-
ties. It is well-known that all eigenvalues of a real symmetric matrix are real, see
[9]. Hence, its spectrum contains only real eigenvalues recorded in the following

theorem.

Theorem 1.2.1. The spectrum of a real symmetric matriz contains only real

eigenvalues.
0 =31 5W
g N
Example 1.2.2. Let A= |3 2 2 1 1| . By computing its eigenvalues, we
0 0 1 0 2
5 0 1 20 |

have Spec(A) = {7.46,1.42, —0.04, —2.11, —5.74}. Note that all of the eigenvalues

are approximated by rounding these numbers to two decimal places.

A circulant matriz is a square matrix in which each row is obtained by a right
cyclic shift of the preceding row. In other word, a matrix is circulant if and only

if it is in the following form



(%) a1 ag -+ Ap—1
Ap—1 Gy ar -+ QGp-2
Qp—2 GQp-1 Gy - Qp-3

aq (05} as - Qo

Note that if A is a circulant matrix, then it suffices to know only the first row of
A. From now on, we shall write only the first row of a circulant matrix A. We
now find the spectrum of a circulant matrix A. For any j € {0,1,...,n — 1}, we
let v; = [1 e2mji/n (eQWﬁ/”)Q (e%ji/")"—l]t where 4 is the imaginary unit

defined by i = —1. Then

[ ap ai as - anfl_ [ 1 i
U1 /fod SoBTEER D a5 p2mii/n
AV = |Gn_o G ity et Qs (e2mii/n)2
aq o as - ao (627rji/n>n—1
— . ~
627rji/n

n—1
i | Z ag (2™ )k (e2mii/n)2
k=0

(627rji/n)n—1

= Ajv;

where \; = Y7070 ag(e2™™)k for all j € {0,1,...,n — 1}. We conclude this result

in the theorem below.

Theorem 1.2.3. The spectrum of a circulant matriz with the first row

Gy ar Qs -+ Qp-1



is the multi-set {\; : j € {0,1,...,n — 1}} where \; = Y70 ar (™™ for all
je{0,1,....,n—1}.

Example 1.2.4. Let A be a circulant matrix with the first row (0 1 0 0 1|.

This means ag = 0,a; = 1,a2, = 0,a3 = 0,a4 = 1 and hence

Za 27 (0 1/5 Zak—Z

Za 2m(1 1/5 Za 2m/5 6271’1'/5 + ( 2772/5 — 9¢os

| §

Za 2m(2 1/5 Za 4m/5 6471’1'/5 + ( 4m/5 — 9¢os

| §

| §

(%)
(%)
Za 2m(3)i/5) Z“ (€875 Yk = OTi/5 | (mi/5)A 2008( )
(5)

M\ = Za 2m(4 1/5 Za 8772/5 687r'i/5 + ( 8771/5 — 9¢os

| @

By Theorem ,

SpeC<A) = {2,2COS (2—7T> ,QCOS <4—7T) 72(}03 (6_7T> ,2COS (8_7T) } .
5 5 5 5

1.3 Hypergraphs

This section contains terminologies about hypergraphs following [[]. This includes
the adjacency, Laplacian and distance matrix of a hypergraph. We discuss spec-
tra, L-spectra and D-spectra of hypergraphs. In addition, the spectra of product
hypergraphs are presented at the end of this section.

A hypergraph H is a pair (V(H), E(H)), where V(H) is a finite set, called the
vertex set of H, and E(H) is a family of subsets of V(H), called the edge set
of H. The elements in V(H) are called vertices and the elements in F(H) are
called hyperedges. In particular, if E(H) consists only of 2-subsets of V(H), then
H is a simple graph. For v € V(H), we write ©(v) for the set of all hyperedges

containing the vertex v and the number of elements in D (v) is the degree of the



vertex v, denoted by degv. A hypergraph in which all vertices have the same
degree k > 0 is called k-regular and it is said to be reqular if it is k-regular for
some k£ > 0. A hypergraph in which all hyperedges have the same cardinality [ > 0
is an [-uniform hypergraph. A path of length s in H is an alternating sequence
v1 v Fyvs .. vsEgugyq of distinet vertices vy, v, ..., 0511 € V(H) and distinct
hyperedges Ei, Es, ..., E; € E(H) satisfying v;,v;41 € E; for any i € {1,2,...,s}.
The distance between two vertices v and w, denoted by d(v,w), is the smallest
length of a path from v to w. If there is no path from v to w, we define d(v, w) = oco.
The diameter of H is diam(H) = max{d(v,w) : v,w € V(H)}. A hypergraph H is

connected if diam(H) < oo.

Example 1.3.1. An example of a hypergraph H is shown in the following figure.
The vertex set of H is {vy,ve,...,v6} and the edge set of H is {Ey, Ey, E5, Ey}
where Fy = {v1,v9, 03}, Bs = {vy,v5}, B3 = {v3, 04,05} and Ey = {vs,v6}. Since
|Ey| = |E3| = 3 and |Es| = |Ey| = 2, we have that H is not uniform. Note that
degv; = degvy = degvg = 1, degvs = degvy = 2 and degvs = 3. Then H is not

regular. Moreover, it is easy to check that diam(H) = 3 and hence H is connected.

Figure 1.1: A hypergraph H

From the above discussion, we have known some structural definitions of hy-

pergraphs, we shall move to spectral properties of hypergraphs. We start with the



spectrum of a hypergraph as follows.

For a hypergraph H with vertex set {v,...,v,}, the adjacency matriz of H,
denoted by A(H), is the n x n matrix whose entry a;;, ¢ # j, is the number of
hyperedges that contain both of v; and v; and a;; = 0 for all 1 <4,5 < n.

This concept was investigated by Bretto [2]. Evidently, it is a generalization of
the adjacency matrix of a graph. An equivalent definition of the adjacency matrix
is given in [§] by using the bipartite graph associated to H which is the graph
whose vertex set is the union of two independent sets V' (H) and E(H) and for any
v € V(H) and E € E(H), they are adjacent whenever v € E. In particular, if H
is an [-uniform hypergraph, there is another way to define an adjacency matrix
by using hypermatrix, see [5] and [L1]. In this work, our hypergraphs may not be
[-uniform, so we follow Bretto’s.

The adjacency matrix is one of matrices represented by a hypergraph. There
are other matrices that can be used to explain some properties of a hypergraph e.g.,
Laplacian matrix and distance matrix. They are also related to spectral properties
of a hypergraph. This version of Laplacian matrix was introduced by Rodriguez
21].

For a hypergraph H with vertex set {v1,...,v,}, the Laplacian matriz of H,
denoted by L(H), is the n x n matrix defined by L(H) = D(H) — A(H) where D(H)

is the diagonal matrix [deg vi] Moreover, if H is connected, the distance

1<i<n’

matriz of H, denoted by D(H), is the n x n matrix in which entry d;; = d(v;, v;)

forall 1 <i,5 <n.

Example 1.3.2. Let H be a hypergraph defined in Figure . Then

01 1000 1 -1 -1 0 0 0

1 01 000 -1 1 -1 0 0 0

1 10110 -1 -1 2 -1 -1 0
A(H) = aL(H) = )

001020 0 o -1 2 -2 0

001 201 0 o -1 -2 3 -1

00 O0O0T10O0 0 0 0 0o -1 1




011223

10122 3

110112
and D(H) =

22101 2

221101

332210

The spectrum of H, denoted by Spec(H), is the multi-set of all eigenvalues of
A(H) including multiplicity. Similarly, we can define Lspec(H) and Dspec(H) as
the multi-sets of all eigenvalues of L(H) and D(H), respectively.

Observe that A(H) is a real symmetric matrix, so Spec(H) contains only real
eigenvalues by Theorem . By the definition of the adjacency matrix A(H), we
have known that the diagonal entries of A(H) are zero. Then the characteristic
polynomial of A(H) is monic with integral coefficients, so its rational roots are
integers. From this fact, a hypergraph which its spectrum contains only integral
eigenvalues is defined to be an integral hypergraph.

A hypergraph is integral if all eigenvalues of this hypergraph are integers. Also,
an L-integral hypergraph is a hypergraph with integral Laplacian eigenvalues and
a D-integral hypergraph is a hypergraph with integral distance eigenvalues.

Example 1.3.3. Let H be the hypergraph defined in Example . We have the
following results by computing the eigenvalues of A(H), L(H) and D(H), respec-
tively.

1. Spec(H) = {3.10,1.52,0.07, — 1, —1.44, —2.24}
2. Lspec(H) = {4.76,3.29,2,1.11,0, —1.15}
3. Dspec(H) = {8.60, —0.57, —0.83, —1, —1.88, —4.31}

Hence, H is not integral, not L-integral and not D-integral.



Example 1.3.4. Let H be a hypergraph with a vertex set V(H) = {vy, v, v3,v4}
and E(H) = {{Ub V2, 2}3}7 {Ula Vo, U4}a {Ula U3, U4}7 {U27 VU3, U4}}' Then

02 2 2 3 -2 =2 =2 0111

20 2 2 -2 3 -2 =2 1 011
A(H) = ,L(H) = , and D(H) =

2 20 2 -2 -2 3 =2 1101

22 20 -2 =2 =2 3 1110

By computing the eigenvalues of A(H), L(H) and D(H), we have
1. Spec(H) = {6, —2, —2, —2},
2. Lspec(H) ={-3,5,5,5}, and
3. Dspec(H) = {3,—1,—-1,—1}.

Hence, H is integral, L-integral and D-integral.

Several properties of hypergraphs have been studied such as diameter, con-
nectivity and chromatic number. Spectral and combinatorial properties of hy-
pergraphs are widely related (see for example [6], [8], [15] and [21]). Feng and
Li [8] showed the relation between the diameter of H and its eigenvalues. They
proved that if {H, },cn is a collection of k-regular and [-uniform hypergraphs with
lim, o |V (H,)| = oo, then lim,_,. diam(H,) = oo by using the second largest
eigenvalue of H,. Later, Rodriguez [21] showed that if b + 1 is the number of
distinct Laplacian eigenvalues of a connected hypergraph H, then diam(H) < b.

Now, we have known the way to compute spectrum of hypergraphs and some
related works. We next give the spectrum of some products of hypergraphs. In
this thesis, we focus only Cartesian and tensor products of hypergraphs. These
two products will be used to classify integral Cayley graphs in Theorem .

For hypergraphs H; and H,, the Cartesian product of H; and Hs, denoted by
H; O H,, is the hypergraph with V(H; OHs) = V/(H;) x V(Hs) and E(H; OH,) =
{H{e} x B iz e V(H)),E' € EH)} U{E x{y} : E € E(H;) and y € V(Hy)}.
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Observe that A(H; OHy) = (A(H1) ® Ljv(u,y) + (Ly ) ® A(Hg)) where A ® B

denotes the Kronecker product of matrices A and B. Therefore,

Spec(H; OHy) = {A\+ 5 : X € Spec(H;) and /5 € Spec(Hz)}. (1.1)

Let H; and Hy be t-uniform hypergraphs. Following Pearson [20], the ten-
sor product of H; and Hs, denoted by H; ® Hy, is the t-uniform hypergraph with
V(Hy ®Hs) = V(Hy) x V(Hy) and E(H; ® Ha) = {{(@i,, y5,)s - -, (@i, 95,) } - {iy,
ooz, y € EHy),{yj,, .-,y ) € E(H2)}. It follows that the number of hyperedges
containing both of two vertices (z;,y;) and (z;,ym) in Hy ® Hy is (¢ — 2)la;;bi,
where a;; is the number of hyperedges containing both of z; and z; and by, is
the number of hyperedges containing both of y; and y,,. Hence, A(H; ® Hy) =
(t —2)!A(H;) ® A(Hs). Consequently,

Spec(H; @ Hy) = {(t = 2)IA\B : XA € Spec(H;) and § € Spec(Hs)}. (1.2)

Example 1.3.5. Let H; and Hy be hypergraphs with V(H;) = {vy, v, v3,v4}, and
E(Hl) = {{Ul,vg,’ljg}, {’02,’04}}, V(Hg) = {wl,wg} and E(Hg) = {{wl,wg}}. Then
H; OH, is a hypergraph with V (H; OH,) = V(Hy) x V(Hy) and

E(Hy OHy) ={{ (v, w1), (v1,wa) }, { (v, w1), (v2, w2) }, {(v3, 1), (v3,w2) },
{(va, wr), (vg, w2) }} U {{ (01, 01), (va, w1), (vs, w1)},

{(v1,w2), (v2,w2), (vs, w2) }}.

)

G J O N .

U1 V2 U3

Figure 1.2: Hypergraphs H; (left) and Hy (right)
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(214,w2)
2
‘\
\\\\
S
(v1,w2)  (v2,w2) (v3, W) \~\\
~
C..\ .'~ .'\ \\\\\m
= ~ \‘\ S e (’U4,'UJ1)
S Se S
\\\ \\\ \\\
~ < N
\\\ S \\~
\\\ \\\; \\\
[ T
[ ) e [ )
(01,71)1) (U2aw1) (U3,w1)

Figure 1.3: A hypergraph H; [JHy

Example 1.3.6. Let H be a 3-uniform hypergraph with V(H) = {v, v2,v3} and
E(H) = {{vi,v2,v3}}. Then H® H is a hypergraph with V(H® H) = V(H) x V(H)

and

E(H ® H) :{{(Ula Ul)v (027 U2)7 (U37 'U3)}7 {(Ulv Ul)v (UQv 03)’ (U3a2 )}7
{(v1,v2), (v2,01), (v3,v3) }, {(v1, v2), (v2,03), (v3,v1)},

{(v1, v3), (v2,02), (v3, 1) }, {(v1,v3), (v2, V1), (v3,v2)}

1.4 Background in algebra

We recall some useful properties from algebra quoted from [7] and [16]. This
section contains the structure theorem for finite abelian groups, field extensions
and Galois theory.

Let G be a finite abelian group. We have known that G is isomorphic to a
direct product of its Sylow p-subgroups (a maximal subgroup of G in which the
order of every element is a power of p) where p is a prime number dividing |G].
Since any abelian Sylow p-subgroup is a direct product of cyclic groups of p-power
order, we have that G is a direct product cyclic groups of p-power order. By this

fact, we can prove that G is a direct product of cyclic groups as follows.
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Theorem 1.4.1 (Structure Theorem for Finite Abelian Groups). Let G be a finite
abelian group. Then there exist integers my,...,n, > 1 such that ny | ng,ny |

N3y .y Npq | Ny and
G = Zpy X Ly X -+ X Loy,

where these integers are uniquely defined by G. More precisely, if my,ma, ..., myg

are positive integers greater than 1 such that my | ma, mo | m3, ..., ms_1 | ms, and
G =2 Zpy X Ly X v+ X Ly, = Loy X Lipy X Ly,

then r = s, and ny = mqy, Ny = Mo, ..., N, = M.
Example 1.4.2. Let G be a finite abelian group of order 36. Note that 36 = 22.3%
By Theorem , G is isomorphic to one of the following groups:

1. Zo2 X Zg2 = Zize

2. D2 X g X Uiz = Zig X Lo

3. Lo X Uiy X Uigz = Uiy X Ly

4. Do X Ty X Lz X U3 = Uig X .

Next, we recall the definition of an extension field and some important prop-
erties as follows.

Let F and K be fields. A field K is said to be an extension of F if I is a subfield
of K. If K is an extension of F', we can consider K as a vector space over F. The
degree of K over F| denoted by [K : F|, is the dimension of K as a vector space
over F'. An extension is called finite if its degree is finite, and infinite otherwise.

The theorem below shows one important property of a finite field extension.

Theorem 1.4.3. Let L, K and F be fields such that F C K C L. If [L : K| and
K : F] are finite, then [L : F] is finite and

[L:F|=I[L:K]|K:F].



13

Let F be a field and f(x) a monic polynomial in F[x]. An extension field E of
F is a splitting field of f(x) over F if

fl@)=(x=mr)-(x—7)

in E[x] and
E=F(ry,...,m),

that is, F is generated by the roots of f(x).
We recall the existence and uniqueness of the splitting field in the following

theorems.

Theorem 1.4.4 (Existence of Splitting Fields). Let f(x) be a monic polynomial
of degree n > 1. Then there exists an extension field E of F' such that [E : F] < n!
and E contains n roots of f(x) counting multiplicities. Hence, in Elz|, f(z) =
ct—=ry)---(t —ry) for some c € F and r,...,r, € E, so that ry,...,r, aren

roots of f(x) in E.

Theorem 1.4.5 (Uniqueness of Splitting Fields). Let f(x) be a monic polynomial
of degree n > 1. If K an E are splitting fields of f(x) over F, then there is an

isomorphism n : K — E extending the identity map of F'.
Example 1.4.6. The following examples show some splitting fields over Q.

1. Let F = Q and f(z) = 2* — 1. Note that f(z) = (z — 1)(z + 1)(z* +1). A
field Q(7) is a splitting field of F' over Q with degree 2.

2. Let F =Qand f(r) = (2> —2)(2? - 3). A field Q(v/2,v/3) is a splitting field
of f(x) over Q with degree 4.

Let E be an extension field of a field F'. The Galois group of E over F' denoted
by Gal(E/F) is the group

{p e AwtE : p(a)=aforall a € F}
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where Aut E' denotes the set of all automorphisms of F.
Let G be a subgroup of Aut E where F is a field. Then the field of G-invaraint
of E or the fixed field of G on E is the field

{a € E:¢p(a) =a forall p € G}.

It is denoted by E¢.
Now, we recall the Fundamental Theorem of Galois Theory and the Galois

2mi/n

group of Q(w) over Q when w =-e as follows.

Theorem 1.4.7 (Fundamental Theorem of Galois Theory). Let E be a finite
dimensional Galois extension of a field F' and let G = Gal(E/F). Let T' = {H},
the set of subgroups of G, and X, the set of intermediate fields between E and F.
Then the map H — E and K — Gal(E/K), H € ', K € X, are inverse of each

other. In particular, they are one-to-one correspondences between I' and .

Theorem 1.4.8 (Galois Group of Q(w)). Let w = €>™/™. The Galois group of
Q(w) over Q is isomorphic to 7> . Explicitly, the elements of the Galois group are

the automorphisms o, fory € Z) defined by o,(w) = wY.

1.5 Objectives

In this thesis, we study the algebraic degree of spectra of t-Cayley hypergraphs. In
Chapter E, we present t-Cayley hypergraphs of G over S when G is a finite abelian
group and ¢t > 2. We show combinatorial properties of ¢-Cayley hypergraphs,
i.e., conectivity, size of hyperedges and regularity. Integral Cayley graphs are
determined in Section @ We recall criteria on S of a Cayley graph of Z, to be
integral. By using facts on integral Cayley graphs of Z,,, spectra of product graphs
and Theorem , we explore integral Cayley graphs of G. In Chapter a, we
study the t-Cayley hypergraphs of G over S when ¢t > 2. We specify criteria on
S of this hypergraph to be integral, L-integral and D-integral by considering its

adjacency, Laplacian and distance matrix, respectively. For ¢-Cayley hypergraphs,
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we show a condition on S for integral t-Cayley hypergraphs of Z,, generalized So’s
result. The ged-hypergraphs of 7Z, are defined to be the t-Cayley hypergraphs
of Zy, over S where S = (J,cp Grn(d) and D is a set of divisors of n. We show
that gcd-hypergraphs of Z, are integral, L-integral and D-integral by clarifying
the first row of its adjacency matrix. In addition, we see that the well-known
unitary Cayley hypergraph of Z, is associated with gcd-hypergraphs. In Section
, non-integral hypergraphs are discussed. We compute the algebraic degree of
t-Cayley hypergraphs of Z,, for all n > 3 which generalizes Monius’ results [1§] and
provides an answer to his outlook. Our combinatorial approach is different from
him and presented in Lemma . The results have been published in Discrete
Applied Mathematics [23]. Moreover, we focus on the algebraic degree of Cayley
graphs of Z,, by comparing two approaches which are by using Corollary and
by using a Schur ring from Monius’ result [19] presented in Section @



CHAPTER II
t-CAYLEY HYPERGRAPHS

In this chapter, we introduce t-Cayley hypergraphs of a finite group. Some com-
binatorial properties of this hypergraph are presented in the first section. Next, in

Section @, we study integral Cayley graphs of a finite abelian group.

2.1 t-Cayley hypergraphs

We start this section with the definition of the ¢t-Cayley hypergraph. We recall
some well-known properties of this hypergraph. In addition, we show that the
t-Cayley hypergraph is regular. Moreover, we classify integral Cayley graphs of
finite abelian groups in the last theorem of this section.

Throughout this section, we let (G, -) be a finite group with the identity e and
a subset S of G\ {e} such that S = S~1.

For t € N and 2 < t < max{o(x) : x € S}, the t-Cayley hypergraph H = t-
Cay(G,S) of G over S is a hypergraph with vertex set V(H) = G and E(H) =
{H{yz":0<i<t—1}:2 € S and y € G}. Here, o(x) denotes the order of z in G.

The 2-Cayley hypergraph of GG over S is a Cayley graph of G over S.
Example 2.1.1. Consider a finite group (Zg, +) and a subset S = {1,3,5}. Then
max{o(z) : x € S} = max{6,2} = 6. The following hypergraphs are the t-Cayley
hypergraphs for all ¢ € N with 2 <t < max{o(z) : x € S}.
1. A hypergraph H; = 2-Cay(Zg, S) has a vertex set V(H;) = {0,1,2,3,4,5}
and E(H;) = {{0,1},{1,2},{2,3},{3,4},{4,5},{5,0},{0, 3}, {1,4},{2,5} }.
2. A hypergraph Hy = 3-Cay(Zg, S) has a vertex set V(Hy) = {0,1,2,3,4,5}
a"nd E(H2) = {{O’ 17 2}7 {17 27 3}7 {2’ 37 4}7 {37 47 5}7 {47 57 0}7 {57 OJ 1}’ {07 3}7
{1,4},{2,5}}.
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3. A hypergraph Hs = 4-Cay(Zg, S) has a vertex set V(Hs) = {0,1,2,3,4,5}
and B(H;) = {{0,1,2,3},{1,2,3,4},{2,3,4,5}, {3,4,5,0}, {4,5,0,1},
{5,0,1,2},{0,3},{1,4},{2,5}}.

4. A hypergraph Hy = 5-Cay(Zg, S) has a vertex set V(Hy) = {0,1,2,3,4,5}
and E(H,) = {{0,1,2,3,4},{1,2,3,4,5},{2,3,4,5,0}, {3,4,5,0, 1},
{4,5,0,1,2},15,0,1,2,3}, {0, 3}, {1, 4}, {2,5} .

5. A hypergraph Hs = 6-Cay(Zg, S) has a vertex set V(Hs) = {0,1,2,3,4,5}
and E(Hs) = {{0,1,2,3,4,5},{0,3},{1,4},{2,5}}.

Figure 2.2: Hy = 3-Cay(Zg, S)
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Example 2.1.2. For m = (my,...,m,) and n = (ny,...,n,) in Z", we define
the greatest common divisor of m and n to be the vector d = (dy,...,d,) where
d; = ged(my,n;) forall i € {1,...,r}. Now, let n = (ny,...,n,) € Z" and a divisor
tuple d = (dy,...,d.) € Z! of n, ie., d; | n; foralli € {1,...,r}. Define

Gn(d) - {X: (xla"'uxr) S an X X Zn” : ng(X’n> :d}

Let D be a set of divisor tuples of n not containing the zero vector of Z,,, X - - - X Z,,
and S = (Jgep Gn(d). For t € N and 2 <t < max{o(x) : x € S}, the t-Cayley
hypergraph of Z,, X --- X Z,, over S is called a gcd-hypergraph and the 2-Cayley
hypergraph of Z,,, X --- X Z,, over S is called a gcd-graph.

Some properties of t-Cayley hypergraphs quoted from [3] are as follows.
Proposition 2.1.3. Let H = t-Cay(G, S).
1. H is connected if and only if (S) = G.
t if t < o(x),

o(x) ift>o(x).

3. H is t-uniform if and only if t < o(z) for any x € S.

2. Foranyz € S,y € G, {yz' : 0<i<t—1} =

Clearly, a Cayley graph 2-Cay(G,S) is |S|-regular. We study a Cayley hy-
pergraph t-Cay(G, S). For any y € G, we have that all hyperedges (may not be

distinct) containing y are

t—1) (t-2) t—2) (t—3)

{ymi( 7yx7 "7yx717y}7{yx7( 7y'7’.7 7"'7y7y',’c}7"'7

t—2

{y,yx, ... yz" 2 ya' '}

where x € S. This implies

degy = [{{ya'7:0<i<t—-1}:0<j<t—1,z€S}

=[{{z'7:0<i<t-1}:0<j<t—1lzeS}H.
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for all y € GG. Hence, we have shown

Proposition 2.1.4. A t-Cayley hypergraph of G over S is reqular of degree equal
to the number of distinct subsets {x'™7 : 0 <i <t —1} where 0 < j <t —1 and

reSs.

2.2 Integral Cayley graphs

The main purpose of this section is to classify integral Cayley graphs of finite
abelian groups. We first recall So’s result [22] on integral Cayley graphs of Z, as

follows.

Theorem 2.2.1. The Cayley graph 2-Cay(Z,, S) is integral if and only if S is a
union of some G, (d)’s, where d | n and G,(d) = {k € {1,2,...,n—1} : ged(k,n) =
d}.

Remark 2.2.2. From the above theorem, the Cayley graph 2-Cay(Z,, S) is inte-
gral if and only if it is a gcd-graph.

Example 2.2.3. Consider a finite group (Zg,+) and a subset S = {1,3,5}. Let
H = 2-Cay(Zg, S) a Cayley graph of Zg over S. Since S = {1,3,5} = Gg(1) U
G¢(3), by Theorem we can conclude that H is integral. In fact, V(H) =
{0,1,2,3,4,5} and E(H) = {{0,1},{1,2},{2,3}, {3, 4}, {4,5}, {5,0},{0,3}, {1, 4},
{2,5}}. Then A(H) is a circulant matrix with the first row [0 1 0 1 0 1|.
By computation its eigenvalues, we have Spec(H) = {3,0,0,0,0, —3}.

Example 2.2.4. Consider a finite group (Zo,+) and a subset S = {1, 3,6, 8}.
Let H = 2-Cay(Zy, S) a Cayley graph of Zgy over S. Since S = {1,3,6,8} cannot
be written as a union of Gg(d) where d is a proper divisor of 9, by Theorem
we can conclude that H is not integral. In fact, V(H) = {0, 1,2,3,4,5,6,7,8,9} and
E(H) = {{0,1},{1,2},{2,3},{3,4},{4,5}, {5,6},{6, 7}, {7, 8}, {8,0},{0, 3}, {1,4},
{2,5}},{3,6},{4,7},{5,8},{6,0}}. Then A(H) is a circulant matrix with the
firstrow [0 1 0 1 0 0 1 0 1|. By computation its eigenvalues, we have

Spec(H) = {4,1,1,0.53,0.53, —0.65, —0.65, —2.88, —2.88}.
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To characterize integral Cayley graphs of finite abelian groups, we first discuss
the Cayley graph of the group (Z,, X Z,,,+). Let S = S; x Sy be a subset of
Loy X Zipy ~ {(0,0)} such that S = —S. The Cayley graph 2-Cay(Z,, X Zy,,S)

can be distinguished into three cases.

1. K,,02-Cay(Z,,,S:) if S; = {0} and S, # {0}, where K,, denotes the empty

graph on n vertices.
2. 2-Cay(Zn,,S1)0 K, if S # {0} and S, = {0}.
3. 2-Cay(Zy,, S1) ® 2-Cay(Z,,, S») if Sy # {0} and S, # {0}.

It is clear that the eigenvalues of an empty graph are zero. By Equations (EI),
(@) and a Cayley graph always has an integral eigenvalue, the Cayley graph 2-
Cay(Zn, X Zy,, S) is integral if and only if for any ¢ € {1, 2} such that S; # {0}, the
2-Cay(Zy,, S;) is integral. By the fundamental theorem of finite abelian groups, a
finite abelian group is a direct product of finite cyclic groups. We can obtain a
characterization of the integral Cayley graphs of finite abelian groups similar to

the above discussion.

Theorem 2.2.5. Let G be a finite abelian group and S a subset of G~ {e} such
that S = S™t. Suppose G = Z,, X+ xZ,, and S = Sy x---xS,. The Cayley graph
2-Cay(G, S) is integral if and only if for any i € {1,...,r} such that S; # {0}, the
2-Cay(Zy,, S;) is integral.

Example 2.2.6. Consider a finite abelian group (Zs x Zg, +) and a subset S =
{(1,3),(3,3)}. Let H = 2-Cay(Z3 x Zg, S) a Cayley graph of Zs x Zg over S.
Note that S = {1,3} x {3} = S x Sy. From the above discussion, we observe
that H = 2-Cay(Zs, 51)® 2-Cay(Zg, S2). Since S; = G3(1) and Sy = Gg(3), by
Theorem we can conclude that 2-Cay(Zs, S1) and 2-Cay(Zg, S2) are integral.
By Theorem , we have 2-Cay(Zs x Zg, S) is integral.



CHAPTER I11
ALGEBRAIC DEGREE OF SPECTRA OF {-CAYLEY
HYPERGRAPHS

In this chapter, we determine algebraic degree of spectra of ¢-Cayley hypergraphs.
The main purpose of Section El] is Theorem . This theorem shows all -
Cayley hypergraphs of algebraic degree one. We also study gcd-hypergraphs of Z,,
in this section. We find the first row of its adjacency matrix mentioned in Theorem
. Next, in Section @ we compute the algebraic degree of spectra of t-Cayley
hypergraphs of Z, when t > 2 referred in Theorem . In addition, we focus
the algebraic degree of Cayley graphs of Z,, in Section @

3.1 Integral t-Cayley hypergraphs of 7Z,

From Section El!, we classify integral Cayley graphs over finite abelian groups.
In this section, we give a criterion for integral ¢-Cayley hypergraphs where ¢t > 2
over Z,. In addition, we also discuss the first row of adjacency matrix of a ged-
hypergraph of Z,. Moreover, we prove that a gcd-hypergraph of Z, is integral.
Recall that a circulant matrix is a square matrix in which each row is obtained by
a right cyclic shift of the preceding row. From now on, we let n > 2 and H = t-
Cay(Z,,S). By the natural labeling {0,1,...,n — 1} of Z,, it is easy to see that
A(H) = [a;;]0<i,j<n—1 is circulant. To work on the adjacency matrix A(H), it suffices
to compute the first row of A(H). Let C be the set of vertices adjacent to the vertex
0. Since all hyperedges containing 0 are of the form {(i —j)z : 0 < i <t — 1}

where z € Sand 0 < j <t—1, and S = —S5, we have the union of all hyperedges
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containing 0 is

U G-»s= |J kS=su2su---u(t-1s

0<i,j<t—1 —(t—1)<k<t—1

It follows that C' = SU2SU---U (t —1)S ~ {0}. Since A(H) is circulant, by
Theorem , the eigenvalues of H are

>\j _ Z a07k(€2ﬂji/n)k

kel

where 0 < j < n — 1. We recall some useful properties taken from [22].

Proposition 3.1.1. 1. If d is a proper divisor of n and x is an nth root of

unity, then ZkeGn( a) a2 is an integer.

2. Let w = e*™/" qnd

Wl w12 R NS
W2l W22 2D
F =
w(n—l)-l w(n—l)-2 w(n—l)-(n—l)

IfA={veQv!:FveQ"'}, then A is a vector space over Q. Moreover,
A = Span{vy :d | n and d < n} where vq is the (n — 1)-vector with 1 at the
kth entry for all k € G,(d) and 0 elsewhere.

Now, we prove a criterion for integral ¢-Cayley hypergraphs.

Theorem 3.1.2. Let H = t-Cay(Z,,S). Then H is integral if and only if C is a
union of some G,(d)’s where for each d, there is cq € {1, 2,..., (th)} such that
aor = ¢q for all k € G,(d).

Proof. Let dy,...,ds be all proper divisors of n. Without loss of generality, we
assume that C' = G,(dy) U--- U G,(d;) for some [ € {1,...,s}. Clearly, \y =

Y kec ok € Z. For any 1 < j < n — 1, by the assumption and Proposition
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)‘j _ Zaak(e%rji/n)kz

keC
_ Z a07k(€2ﬂji/n>k 4t Z ao’k(e%rji/n)k
keGp(dr) keGn(dy)
= cq, Z (™M o 4 cy, Z (eXmiiimk ¢ 7,
keGnr(dy) keGr(d)

Conversely, suppose that H is integral. Then A; € Z for any 0 < j <n —1. We
consider the vector v € Q" ! with ap for the kth entry for any £ € C and 0

elsewhere. Then

r Qo,1
Wl 0% AR WO WD)
aop,2
Fv = ’
w(nfl) 1 w(n—l)-Q w(nfl)-(nfl)
- ap,n—1

Zkec ao»k‘w(n_l) g
A
A
=| 7| ez
/\nfl

It follows that v € A in Proposition (2), and hence v = >, ,_, cavq for
some rational coefficients c4’s. The definition of v implies that the coefficient
cq € {O, 1,..., (th) } Therefore, C' is a union of some G,,(d)’s where for each such

d, we have ag = ¢4 for all k € G,,(d). O

Remark 3.1.3. In particular, for ¢t = 2, we have S = C'. Theorem implies
that H = 2-Cay(Z,, S) is integral if and only if S is a union of some G,(d)’s and for



24

which d, ap =1 for all k € G,,(d). This coincides So’s result recalled in Theorem

2.1,

Example 3.1.4. Consider a finite group (Zg, +) and a subset S = {1,3,5}. Let
H = 3-Cay(Zg, S) a 3-Cayley hypergraph of Zg over S. We note that V(H) =
{0,1,2,3,4,5} and E(H) = {{0,1,2}, {1,2,3},{2,3,4}, {3,4,5), {4,5,0}, {5,0, 1},
{0,3},{1,4},{2,5}}. Then C' = {1,2,3,4,5} = {1,5} U{2,4} U {3} = Gs(1) U
G¢(2) U Gg(3). This implies ag1 = ap5 = 2,a02 = ap4 = 1 and ap3 = 1. By Theo-
rem B.1.3, we can conclude that H is integral. In fact, A(H) is a circulant matrix

with the first row [0 2 1 1 1 2] and we have Spec(H) = {7,0,0, -2, —2, —3}.

Let H = t-Cay(Z,,S) be a ged-hypergraph. We shall use Theorem to
show that H is integral. By Example , S = U.cp Gn(e) for some set D of
proper divisors of n. Since IG,(e) = G,(ged(le,n)) for any [ € {1,2,...,t — 1},
we have C' = SU2SU---U (t = 1)S \ {0} equals (J,cpy Gn(d) for some set D
of proper divisors of n and D C D’. For each d € D’, we aim to show that ag’s
are identical for all k € G, (d). Let d € D" and k, k" € G, (d). There is u € G, (1)
such that ¥’ = uk. Since hyperedges containing 0 are {(i — j)z : 0 < i <t — 1}
where z € S and 0 < j <t — 1, we count such hyperedges containing k. For each
e € D, let Nyi(e) be the number of hyperedges containing 0 and k of the form
{(i —j)x :0<i<t—1} with x € G,(e). For any e, f € D with e # f, such
hyperedges with € G, (e) and x € G,,(f) are distinct, so

o,k = Z Nd,k<€>-

ecD

Let Sy ={l:1<[1<t—1andk € lG,(e)}. Since G, (d) = IG,(e) for all | € S}
and k' = uk, it follows that Nyx(e) = Ngy (e). Hence,

Clo’k = Z Nd,k(e) = ZNd,k/(e) = ang/.
ecD eeD

Therefore, we can conclude that H is integral by Theorem . We record this

result in the following theorem.
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Theorem 3.1.5. Let H = t-Cay(Z,,S) be a gcd-hypergraph of Z, where S =
U.ep Gnle) for some set D of proper divisors of n and C = SU2SU--- U (t —
1)S N {0} = Ugep Gn(d) for some set D' of proper divisors of n and D C D'. Let
de D' and k € G,(d). For each e € D, let Nyy(e) be the number of hyperedges
containing 0 and k of the form {(i — j)x : 0 <i <t — 1} with x € G,(e). Then

a(),k = Z Nd7k(€)-

ecD
Moreover, agy’s are identical for all k € G,(d) and H is an integral hypergraph.

Ford € D', k € G,(d) and e € D in Theorem , we can compute Ny (e)

as the remark below.

Remark 3.1.6. Let d € D', k € G,(d) and e € D. If k € IG,(e) for all | €
{1,2,...,t—1}, then hyperedges containing 0 of the form {(i —j)z : 0 <i <t—1}
where z € Gp(e) and 0 < j <t — 1 do not contain k, so Ngx(e) = 0. Assume
that S, = {l : 1 <1 <t—1andk € IGy(e)} # &. Note that o(z) = 2 for
all z € Gu(e). If 2 < ¢, then {(i —j)z : 0 < i <t -1} = (x) = €Z, for all
x € Gpe) and 0 < j <t — 1, so we have only one hyperedge containing 0 and k
and Ngx(e) = 1.

Suppose that 2 > t. Let [ € Si. Since k € [Gy(e), there is x € G, (e) such
that k = lx. We wish to find the number of elements y in G,,(e) such that k& = ly.
Since k € IG,,(e), we have d = ged(le, n), so

Gn(d) = Gp(ged(le,n)) = 1Gy(e) = leGn(1).

Suppose that k = Iz = leu for some u € G=(1). To find the number of such y’s
in Gy(e), it is equivalent to find the number of elements v in G=(1) such that
k = lev. Now, we count such v’s. For any v € G=(1) with k = lev, we have
lev = leuw modn, sol(v—u) =0 mod 2. If v —u =0 mod %, then /-0 =0
mod 2, and if v —u # 0 mod %, then there are ¢ € Z and r € {1,2,...,2 — 1}

such that v = u + Zq + 7. Consequently, I(v —u) = 0 mod % if and only if
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Ir =0 mod %. Thus, the number of v in Gz (1) such that k¥ =lev mod n equals
to the number of 7 in {0,1,...,%2 — 1} such that Ir = 0 mod Z. Note that

|G(e)] = ¢ (%) if e is a divisor of n. Since this number is independent of k,

$(n/e) i n = :
ST d) elements, say vy, Vg, . . . ,v%;g, in G= (1) such that k = lev;

for all i € {1,2,...,2&%}. Let y; = ev; for all i € {1,2,...,%}. Since

o(y;) = 2 > t, the sets

there are exactly

are hyperedges of H containing 0 and k for all i € {1, 2,..., Z;EZ;Z; } Thus,

Nd7k<6) =

lgk{{(i—j)ymzogigt—1}:0§j§t—1—l,1§m§Z:((Z;Z;}‘

if 2 > t. However, these hyperedges may not be distinct, it follows that Ng(e) <
d(n/e
Zlesk (t—=1)- ¢En;d;'
From Theorem and the above discussion, we have agj, for all k € C. It

can be used in computing the spectrum of ged-hypergraphs of Z, as mentioned

before Proposition .

Example 3.1.7. By Theorem , an integral 2-Cay(Z,, S) is a ged-graph. How-
ever, an integral t-Cay(Z,,S) may not be a gcd-hypergraph when ¢ > 3. For
example, if H = 5-Cay(Zs,{£1}) which is not a gcd-hypergraph of Zs, then
EH) = {{0,1,2,3,4}}. Hence, C' = Z5 ~ {0} = G5(1) and agy = 1 for any
k € C, but H is integral by Theorem .

Finally, we study L-integral and D-integral ¢-Cayley hypergraphs. We start
with a simple result on L-integral t-Cayley hypergraphs obtained by Proposition
, Theorems |312 and |315| Let H = t-Cay(Z,, S). By Proposition , H

is regular, so there exists d € N such that degk = d for any 0 < k < n — 1.
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It follows that

Hence,
Lspec(H) = {d — X : A € Spec(H)}.

By Theorems and , we easily get

Corollary 3.1.8. Let H = t-Cay(Z,,S). Then H is L-integral if and only if H is
integral. In particular, a ged-hypergraph of Z,, is L-integral.

Now, we consider D-integral ¢t-Cayley hypergraphs. For ¢t = 2, Tli¢ [13] showed
that a ged-graph of Z,, is D-integral. Assume that H = ¢-Cay(Z,, S) is connected.
That is, (S) = G' by Proposition (1). By the natural labeling in D(H), it is
clear that D(H) is circulant. Thus, it suffices to consider the first row of D(H).
Since H is connected, the set {k : d(0,k) # 0} = {1,2,...,n — 1}. Hence, we get
a characterization of D-integral ¢-Cayley hypergraphs similar to Theorem .

Theorem 3.1.9. Assume that H = t-Cay(Z,,S) is connected. Then H is D-
integral if and only if for each d | n, there is cq € {1,2,...,diam(H)} such that
d(0,k) = cq for all k € G,(d).

Let H = t-Cay(Z,,S). We observe that d(0, k) is the distance between 0 and
k in 2-Cay(Z,,C) where C' = SU2SU---U (t —1)S ~ {0}. Hence, the distance
matrix D(H) = D(2-Cay(Z,,C)). If H is a gcd-hypergraph, then 2-Cay(Z,, C) is
also a ged-graph. This implies that 2-Cay(Z,,, C) is D-integral [[13]. Consequently,

H is D-integral and we obtain the following theorem.
Theorem 3.1.10. A gcd-hypergraph of Z, is D-integral.

Remark 3.1.11. Let S = S} x Sy be a subset of Z,, X Z,, ~ {(0,0)} such that
S = —S and H = t-Cay(Z,, X Zy,,,S). Suppose that S; # {0} and Sy # {0}.
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We observe that t-Cay(Z,, X Zn,,S1 X S3) is a subgraph of t-Cay(Z,,,S1) ® t-
Cay(Zn,, S2). Fix two vertices (z1,v1), (x2,Y2) € Zp, X Zp,. Let {z +iz’ : 0 <
i <t — 1} be a hyperedge in t-Cay(Z,,,S;) containing both of z; and z, and
let {y +1w/ : 0 < i < t—1} a hyperedge in t-Cay(Z,,,S2) containing both
of y; and yo. Then {(z,y) +i(2’,y') : 0 < ¢ < t — 1} is a hyperedge in -
Cay(Zyn, X Zn,,S1 X S3). But when t > 3, the problem is that it may not contain
(x1,y1) and (za,y2). This means that A(t-Cay(Z,, X Zy,,S1 X S2)) may not equal
to A(t-Cay(Zy,, S1) ® t-Cay(Zy,,, S2)) when t > 3. Hence, a characterization of
integral ¢t-Cayley hypergraphs of finite abelian groups is still an open problem

when ¢t > 3.

3.2 Algebraic degree of spectra of {-Cayley hypergraphs
of 7,

The main purpose of this section is Theorem which shows the algebraic degree
of spectra of t-Cayley hypergraphs of Z,. To prove this theorem, we shall recall
basic properties and give a lemma which is useful to prove Theorem . In
addition, we give formulas of algebraic degree of specific cases in Corollary
and .

Firstly, we define the algebraic degree of a hypergraph as follows.

Let H be a hypergraph on m vertices and f(z) = det(z1,, — A(H)) € Z[z] the
characteristic polynomial of A(H). Let E; be the splitting field of f(z) over Q.
The algebraic degree of H is [Ey : Q] and denoted by deg H.

By Theorem , we have a characterization of integral ¢-Cayley hypergraphs
of Z,. They are hypergraphs of Z, of algebraic degree one. We study the algebraic
degree of t-Cayley hypergraphs of Z,, in this section.

Let n > 3 and H = t-Cay(Z,, S). Recall from the beginning of Section 2 that

the eigenvalues of H are

2wji/n\k ik
Aj = E aox(e ]/) = g ag W’

keC keC
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where C' = {k 1 app #0} =SU25U---U(t—-1)S {0}, j € {0,1,...,n — 1}
and w = €2™/" a primitive nth root of unity. By Theorems [1.4.4 and [1.4.5, the
splitting field is Q(Aog, A1,.. ., Ap—1) and Q € Q(Ags A1,-- -, A1) € Q(w). By
Theorems |1.4.3|, |147| and |1.4.54,

¢(n)
|Gal (Q(w)/Q (Aos A1y -, Ap—1))|

degH = [@ (/\0, Al, <oy )\n—l) : Q] = (31)

where Gal (Q(w)/Q (Ao, A1, ..., A1) = {0 € Aut(Q(w)) : o is a Q-automorphism
and o(\;) = A; forall j € {0,1,...,n — 1}}. We shall determine the size of this
group and obtain the algbraic degree of H.

Lemma 3.2.1. Let y € {0,1,...,n — 1} be such that ged(y,n) = 1 and o, €
Aut(Q(w)) be the Q-automorphism defined by w — wY. Then o,(\;) = A; for all
Jj €{0,1,...,n—1} if and only if there isn, € N with C = C1U---UC,, , yC, = C

mod n and agy = ag i for allk € Cpand 1 € {1,2,...,n,}.

Proof. If there is an n, € N with C = C; U ---UC(C,,, yC; = C; mod n and

aor = oy for all k € Cpand 1 € {1,2,...,n,}, then

ay(Aj) = oy (Z ao,kwjk> = Z Z Ao,k 0y (ij) = Z Z ao,kwjky

keC =1 keCy =1 keCy
k jyk
= E E ao ykuﬂ Y — E ao ykuﬂy E Aoy’ = A
=1 keC, keC ykeC

for all j € {0,1,...,n —1}. On the other hand, suppose that o,()\;) = A; for
all j € {0,1,...,n —1}. Then ), - aox (wj)yk = > pec G0k (wj)k for all j €
{0,1,...,n —1}. Let p(x) = Y 1cc a0k — > 4cc aorz®. It is a polynomial of

n=1 are distinct roots of p(z), we have

degree at most n — 1. Since 1,w,...,w
p(x) = 0. Define an equivalence relation on C' by k ~ k' whenever ag; = ag .
Let C,...,C,, be all equivalence classes of ~. Then C' = C;U---UC,, . Since
p(x) = 0, we have yC; = C; mod n and so agr = agy, for all £k € C; and

le{l,2,...,n,}. ]
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Theorem 3.2.2. Let H = t-Cay(Z,,S) and C = SU2SU---U(t—1)S~{0}. Let
m be the number of y in {0,1,...,n — 1} such that ged(y,n) = 1 and there is an
ny € Nwith C =CyU---UC,, , yC; = C; mod n and agy = agyr for all k € C
andl € {1,2,...,n,}. Then

degH = M
m

Moreover, degH < %

Proof. By Lemma , m is the size of Gal (Q(w)/Q (Mo, A1, ..., A\n—1)). It follows
from Equation (@) that degH = @ From S = —S5 mod n, we have C' = —C
mod n. Since {£k} = —{£k} and apx = ag i for any k € C, 1 and —1 are such
y. Hence, m > 2, so ¢n) < ) ]

m 2

Consider H = 2-Cay(Z,, S). Then C' = S and apx = 1 for any k € S and ag ) =
0 otherwise. The assumption of Theorem can be reduced to yS =S mod n.
In addition, if n = p is a prime number, Monius showed in the proof of Theorem
2.5 of [18] that m in Theorem 3.2.9 is the maximum number of M € {1,2,...,]S]}
such that M divides ged(|S|,p — 1) and

S|/ M

S=J S
=1

where |S)| = M and for each [ € {1,2,...,|S|/M}, k™ = (K)™ mod p for all
k, k' € S;. The next corollary gives the algebraic degree of Cayley graph of Z,, over
S which generalizes Theorem 2.5 of [18§].

Corollary 3.2.3. LetH = 2-Cay(Z,, S). If m is the number of y in {0,1,...,n—1}
such that ged(y,n) =1 and yS =S mod n, then

degH = M
m

Example 3.2.4. Consider H = 2-Cay(Z3;, S) where S = {+2, +3, +10, +12, £13,
+15} = C. Since £1,£5, £6 are all elements of y such that ged(y,31) = 1 and
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yC = C mod 31, by Corollary , degH = @ = 5. This coincides Example
2.10 of [1§].

In the proof of Theorem , we have known that 1 and —1 are always such y

satisfying yC' = C' mod n. If only they satisfy this congruence, we have a special

case of Theorem as follows.

Corollary 3.2.5. Let H = t-Cay(Z,,S) and C = SU2SU---U(t—1)S~{0}. If
y =1 andy = —1 are the only elements in Z,, such that ged(y,n) =1 and yC = C

mod n, then

degH = @

We provide some numerical examples using Theorem and Corollary

as follows.

Example 3.2.6. Consider H = 3-Cay(Z9,{£1}). We have C' = {£1,£2}. In

addition, ag 41 = 2 and ag 4o = 1. The characteristic polynomial of A(H) is
(z — D3z +2)%(z + 3)*(z — 6) (2 — 22 — 11)?

and hence degH = 2. Since 1 and —1 are the only elements y in Zi5 such that
ged(y,12) = 1 and yC' = C' mod 12, by Corollary , degH = @ = 2.

Example 3.2.7. Let S = {£1} be a subset of (Zy,+). Them max{o(z) : x €
S} =9,s02 <t <9. The algebraic degree of t-Cayley hypergraph of Zgy over S
for all ¢ are presented in the following table. The cases t € {2, 3,4} are computed

by Corollary and the others are obtained from Theorem .
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t | aos1 | aox2 | Goxs | Go+a | y with yC =C mod 9 | degt-Cay(Zy, S)
2 1 +1 3
3 2 1 +1 3
4 3 2 1 +1 3
) 4 3 2 1 +1,+£2 44 3
6 5) 4 3 3 +1,+£2 44 3
7| 6 5 5 5 +1,+2 +4 3
s 7 | 7 | 7| 71 +1,42, 44 1
9| 1 1 1 1 41,42, +4 1

Example 3.2.8. Let S = {£2} be a subset of (Zo, +).

Then max{o(z) : x €

S} = 5,502 <t <5 The algebraic degree of t-Cayley hypergraph of Zq over

S for all ¢t are presented in the following table. The case t = 2 is computed by

Corollary and the others are obtained from Theorem .

t | aos1 | Gox2 | Goxs | Gota | Gos | y With yC' = C mod 10 | degt-Cay(Zyo, S)
2 1 +1 2
3 2 1 +1 2
4 3 3 +143 1
) 1 1 u=| i LK 1

Remark 3.2.9. From Examples l327| and b.ZQ, we note that when a subset S of

Z,, is fixed, for any 2 < t < max{o(x) : x € S} — 1, we have degt-Cay(Z,,S) >
deg(t + 1)-Cay(Z,, S).

Remark 3.2.10. The adjacency matrix of t-Cayley hypergraph of Z,, is circulant.
We know the exact eigenvalues and they are in simple forms (Theorem )

We may work on integrality or compute algebraic degree of spectra of t-Cayley

hypergraphs of other finite groups in the future.
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3.3 Algebraic degree of spectra of Cayley graphs of 7Z,

Corollary gives algebraic degree of spectra of the Cayley graph of Z, over
S by using congruence properties of the set S. In this section, we discuss recent
Moénius’ result comparing with Corollary .

In 2022, Ménius [19] studied other properties of spectra of Cayley graphs of
Z,. He provided the splitting field and algebraic degree of Cayley graphs of Z,
by using many results on Schur rings and Schur partitions. We shall compute
algebraic degree from Monius’ result and our result when t = 2.

Next, we briefly introduce Schur rings and orbit Schur rings. Let (G,-) be a
group with identity e. For a subset S of G, let S =3 .9 € QG.

A Schur ring A over GG is a subalgebra of the group algebra QG satisfying the

properties below:

1. A has a linear basis Sp, ..., S, where Sy = {e},

2. {So,...,S,} is a partition of G, and

3. Sj={a7t:zeS;} €{S,..., S} forall j €{0,...,7}.

For a subgroup I' of Aut G, the orbit Schur ring of I' over G, denoted by QG?',
is a Schur ring defined by

QG' = {a € QG :0(a) =aforall o € T}.

We quote the first main theorem in [19].

Theorem 3.3.1 ([19]). Let H = 2-Cay(Z,, S) and f(x) = det(zl, — A(H)). The
splitting field of f(x) over Q is given by Q(w)'', where I' < AutZ, is defined by
() = QZ, the unique least orbit Schur ring containing S. In addition, T is
the mazimum subgroup of Aut Z,, such that S = Uzes{o(x): 0 €T'}.

By Theorem , we have that
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Since degH = [Q(u))F : Q], we can conclude the following theorem.
Theorem 3.3.2 ([19]). Let H = 2-Cay(Z,, S) and I' be the mazimum subgroup of
Aut Z,, such that S = Uzes{o(z): 0 € I'}. Then

_ o(n)

Remark 3.3.3. Monius [19] has a more general result of Theorem by consid-
ering any subset S of Z, which may not satisfy the condition S = —S. However,
under the assumption S = —S, we can show that |I'| = m, where m is defined in
Corollary , as follows. Recall that m is the number of y in {0,1,...,n — 1}
such that ged(y,n) = 1 and yS = S mod n. We note that AutZ, = Z* and
AwZ, = {o, : y € ZX} where o,(1) = y. Let y € {0,1,...,n — 1} with
ged(y,n) = 1 and yS = S mod n. We have that the map o,(1) = y is an
automorphism of Z,, such that o,(s) = so,(1) = sy for any s € S. Since yS = S
mod n, we can conclude that o, € I'. On the other hand, we can see that for any
oy € AutZy,, so |o,(S)| = |S|. It § = Uzes{oy(z) : 0y € I'} = Uy eroy(S), then
o,(S) € S. Hence, S = 0,(S) = yS. This means yS = S mod n. Therefore,
IT| = m.

From Monius’ result, to compute the algebraic degree of Cayley graphs of 2-

Cay(Z,, S) by using Schur rings, we follow the steps below.
1. Find all subgroups of Aut Z,.
2. For each subgroup I' of Aut Z,,, compute the orbit Schur ring QZ!.
3. Find the unique least orbit Schur ring containing S, i.e. ((5))o.

4. Suppose that ((S)),, = QZ. for some subgroup I' of AutZ,. By the one-
to-one correspondence between the lattice of orbit Schur rings over Z,, and

the lattice of subfields of Q(e*™/") and Theorem , the splitting field is
@(627ri/n)f"
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5. By Theorem , the algebraic degree of 2-Cay(Z,,S) = ¢(n)/|T|.

Example 3.3.4. Let n = 12 and w = €2™/12, The subgroups of Aut Z,, = 7}, are
{1},{1,5},{1,7},{1,11} and {1,5,7,11}. Monius [19] computed the orbit Schur

rings over Z, as follows:

Qzty {0}, {13, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}>
{0}, {3}, {6}, {9}, {1, 5}, {2,10}, {4, 8}, {7, 11}>

=
=
zf;” = ({0} 42} {4}, {6}, {8}, {10}, {1, 7}, {3,9}. {5,11}).
=
=

Qz{l 5}

Qz: {0}, {6}, {1,11},{2,10},{3.9}, {4,8}, {5, 7}> and

{0}, {6}, {2, 10}, {3,9}, {4,8},{1,5,7, 11}>

QZ«E,5,7,1 1}

The following figure shows the one-to-one correspondence between the lattice of

orbit Schur rings over Zj, and the lattice of subfields of Q(w).

QzlV Q(w)
QZ{I 5} @Zi{éi} @ng“} Q(2) Q(v/3i) Q(v3)
@Zié“”}/ N

Figure 3.1: Lattice of orbit Schur rings over Zj, (left) and lattice of subfields of
Q(w) (right)

The following table shows some algebraic degree of Cayley graphs of Zis where
S = {£1}, {£3}, {1, £2} and {£1, £2, +£3} by using Theorems B.3.1 and B.3.9.



36

S (5o = QZY, r Q)" | deg2-Cay(Zs, 5)
{+1} Qzi; {1,11} | Q(V3) 2
{£3} QzL»M {15711} | Q 1
{£1,+2} Qzi; {1,11} | Q(V3) 2
{£1, 42, +3} Qz {1,11} | Q(/3) 2

Next, we compute the algebraic degree of Cayley graphs of Ziy where S =
{41}, {&3}, {1, £2} and {#1,£2, £3} by using Corollary B.2.9 as the following
table.

S y with S =S mod 12 | deg2-Cay(Zs, S)
{£1} (1,11} 2
{£3} {1,5,7,11} 1
{£1,4£2} {1,11}} 2
{£1,£2,£3} frhien 2

In Example , we compute the algebraic degree of some Cayley graphs over
75 in two different ways. Firstly, we use the corresponding Schur ring over Zis. It
requires complicated tools and consists of many steps. By the way, an advantage
of this computation is that we can find the splitting field of the characteristic poly-
nomial of its adjacency matrix over Q. In the other hand, we immediately compute

its algebraic degree by using simple congruence property by using Corollary .



1]

[10]

[11]

[12]

REFERENCES
Biggs, N.: Algebraic Graph Theory, 2nd ed., Cambridge University Press, New
York, 1993.
Bretto, A.: Hypergraph Theory An Introduction, Springer, New York, 2003.

Buratti, M.: Cayley, Marty and Schreier hypergraphs, Abh. Math. Semin.
Univ. Hambg. 64, 151-162 (1994).

Cayley, A.: Desiderata and suggestions No 2. The theory of groups. graphical
representation, Amer. J. Math. 1, 174-176 (1878).

Cooper, J., Dutle, A.: Spectra of uniform hypergraphs, Linear Algebra Appl.
436, 3268-3292 (2012).

Delorme, C., Solé, P.: Diameter, covering index, covering radius and eigen-
values, Europ. J. Combinatorics 12, 95-108 (1991).

Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd ed., John Wiley and Sons,
Inc., 2004.

Feng, K., Li W.-C.: Spectra of hypergraphs and applicatios, J. Number Theory
60, 1-22 (1996).

Friedberg, S.H., Insel A.J., Spence L.E.: Linear Algebra, 4th ed., Prentice
Hall, 2003.

Harary, F., Schwenk, A.J.: Which graphs have integral spectra?, In Bari,
R.A., Harary, F. (eds), Graphs and Combinatorics, Springer, Berlin, 1974.

Hu, S., Qi, L., Xie, J.: The largest Laplacian and signless Laplacian H-
eigenvalues of a uniform hypergraph, Linear Algebra Appl. 469, 1-27 (2015).

Ili¢, A.: The energy of unitary cayley graphs, Linear Algebra Appl. 431, 1881—
1889 (2009).

Ili¢, A.: Distance spectra and distance energy of integral circulant graphs,
Linear Algebra Appl. 433, 1005-1014 (2010).

Kiani, D., Aghaei, M.M.H., Meemark, Y., Suntornpoch, B.: Energy of unitary
Cayley graphs and ged-graphs, Linear Algebra Appl. 435, 1336-1343 (2011).

Klotz, W., Sander, T.: Some properties of unitary Cayley graphs, FElectron.
J. Combin. 14, 1-12 (2007).

Lang, S.: Algebra, 3rd ed., Springer, New York, 2002.

Monius, K., Steuding, J., Stumpf, P.. Which graphs have non-integral spec-
tra?, Graphs Combin. 34, 1507-1518 (2018).



38

Monius, K.: The algebraic degree of spectra of circulant graphs, J. Number
Theory 208, 295-304 (2020).

Monius, K.: Splitting fields of spectra of circulant graphs, J. Algebra 594,
154-169 (2022).

Pearson, K.J.: Figenvalues of the adjacency tensor on products of hyper-
graphs, Int. J. Contemp. Math. Sciences 8(4), 151-158 (2013).

Rodriguez, J.A.: On the Laplacian eigenvalues and metric parameters of hy-
pergraphs, Linear Multilinear Algebra 50(1), 1-14 (2002).

So, W.: Integral circulant graphs, Discrete Math. 306, 153—-158 (2005).

Sripaisan, N., Meemark, Y.: Algebraic degree of spectra of Cayley hyper-
graphs, Discret. Appl. Math. 316, 87-94 (2022).



Name
Date of Birth
Place of Birth

Education

Scholarship

Conference

Publication

39

VITA

Miss Naparat Sripaisan
22 September 1993
Udonthani, Thailand

T B.Sc. (Mathematics)(First Class Honours),
Khon Kaen University, 2015
T M.Sc. (Mathematics), Chulalongkorn University, 2017

Science Achievement Scholarship of Thailand (SAST)

Presenter

1 Approximately Mutually Unbiased Bases by Inte-
gers Modulo n, at the Annual Pure and Applied Math-
ematics Conference 2017 (APAM 2018), 30 May — 1 June
2018 at Chulalongkorn University, Bangkok

Proceeding

1 Sripaisan, N. and Meemark, Y., “Approximately Mu-
tually Unbiased Bases by Integers Modulo n”, Pro-
ceeding of Annual Pure and Applied Mathematics Confer-
ence 2018, Bangkok, 72-77, 2018.

Article

1 Sripaisan, N. and Meemark, Y., “Approximately Mu-
tually Unbiased Bases by Frobenius Rings”, J. Syst.
Sci. Complex 2020; 33 1244-1251.

1 Sripaisan, N. and Meemark, Y., “Algebraic degree of
spectra of Cayley hypergraphs”, Discret. Appl. Math.
2022; 316 87—-94.



	Abstract in Thai
	Abstract in English
	Acknowledgements
	PRELIMINARIES
	Cayley graphs
	Spectra of circulant matrices
	Hypergraphs
	Background in algebra
	Objectives

	t-CAYLEY HYPERGRAPHS
	t-Cayley hypergraphs
	Integral Cayley graphs

	ALGEBRAIC DEGREE OF SPECTRA OF t-CAYLEY HYPERGRAPHS
	Integral t-Cayley hypergraphs of Zn
	Algebraic degree of spectra of t-Cayley hypergraphs of Zn
	Algebraic degree of spectra of Cayley graphs of Zn

	REFERENCES 
	VITA

